ISA 562: Information Security, Theory and Practice

Lecture 3

1 Defining Message authentication

1.1 Defining MAC schemes

In the last lecture we saw that, even if our data is encrypted, a clever adversary can still manipu-
late ciphertexts and learn from server responses to the manipulated messages. It is very important,
therefore, that we also consider authenticating our messages. Intuitively, the goal is to enable two
parties that share a key to send messages to one another, together with a proof that the person
sending the message knows the secret key. We achieve this using message authentication codes
(MACs), which, like encryption schemes, consist of three algorithms, in this case: (Gen, MAC, Vrfy).
It also has associated with it a keyspace, K, a message space, M, and a message tag space, 7.

Gen(1™): outputs the shared key, k.
MAC(k,m): uses the key k to compute a tag t for the message m. It outputs t.
Vrfy(k,m,t): verifies that the tag t is valid for message m. It outputs either 1 or 0.

Just as in the case of encryption, we have a correctness requirement — it should always be the
case that a good MAC verifies. That is, we insist that honest parties that share a key will not
have their messages rejected. Therefore, we require that for all £ € IC, for all messages m € M,
Pr[Vrfy(k, (m, MAC(k,m))) = 0] = 0. In many cases, the Vrfy algorithm is deterministic, always
outputting the same tag t for some fixed message m and key k. In this case, we can verify a tag
t by simply recomputing it ourselves and comparing the result to the value ¢ that was provided.
This is called canonical verification.

1.2 Defining security for MAC schemes

As in the case of message encryption, we define security for MACs through a security game between
an adversary and a challenger. We consider a particular scheme secure if there does not exist any
polynomial-time adversary that can succeed in this game (with more than negligible probability),
whenever the challenger uses the suggested scheme. Equivalently, we can show that a particular
MAC scheme is insecure by demonstrating that some adversary wins in this game whenever the
challenger uses the proposed scheme.

Mac-forge(n):
1. k < Gen(1™)
2. A(1™) is given oracle access to MAC(k, ). The adversary eventually outputs (m,t).
Let @ denote the set of all queries that A asked its oracle
3. A succeeds iff a) Vrfy(k,m,t) =1 and b) m ¢ Q. In that case, the experiment output is defined
to be 1.
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Definition 1 A MAC, II = (Gen,Mac,Vrfy) is existentially unforgeable under and adaptive
chosen-message attack if for all probabilistic poly-time adversaries A there is a negligible function
negl() such that Pr[Mac-forge(n) = 1] < negl(n)

One issue that we want to pay attention to when we define security is that the adversary might
have an opportunity to see some valid message / tag pairs. We want to ensure that the adversary
cannot use these pairs in some clever way to create new forgeries. This is captured in Step 2 of the
security definition: when we say the adversary is given “oracle access to MAC(k,-)”, we mean that
he can submit arbitrary messages of his choice to the challenger, who responds by computing and
sending the MAC on each submitted message, using the key k that was chosen in Step 1. This allows
the adversary to gather information, capturing whatever information he might be able to gather
in the real world, when this scheme is eventually used in a real application. Note that we allow
the adversary to choose these messages however he would like, because we do not know how this
scheme will eventually be used, and so we do not know what message / tag pairs a true adversary
might witness in the real world. By allowing the adversary to pick the messages in this security
game, we are capturing the fact that, regardless of what messages the users choose to authenticate,
the adversary cannot use the message / tag pairs that he observes to later create a forgery.

Intuitively, a secure MAC scheme should prevent a malicious party that doesn’t know a key
k from generating any valid pair, (m,t), such that Vrfy(k, (m,t)) outputs 1. If the adversary can
find any forgery, even a forgery on some random, meaningless sequence of bits, we should consider
this to be a dangerous attack on our scheme. Indeed, we will see in the next lecture that many
applications require the users to MAC random strings, so an adversary that is able to carry out
even this seemingly minimal attack could cause a lot of damage. On the other hand, we can’t
prevent him from “replaying” any of the pairs that he witnessed previously: if he is listening when
one party sends an authenticated message, he can always write it down, bring it back tomorrow,
and claim that he is the one that holds the key and created the tag on that message. There is
no universally acceptable way to handle replay attacks, so we do not try to capture this in our
definition, and we leave the issue to the application layer. (Some suggestions of how to do that
appear below.) The two properties defining a successful attack in Step 3 are meant to capture
these two facts. On the one hand, we do not consider this adversary successful if all he manages
to do is bring back (m,t), where m € @ was one of the messages he was given a tag on in step
2. This is just a replay attack, and not something we can hope to prevent, so we do not consider
this a successful attack. However, if he manages to find a forgery on any other message, m ¢ Q,
regardless of its format, we consider this a successful attack, and we must throw away the proposed
MAC scheme.

There are several natural ways to handle replay attacks at the application layer. If the two
parties are able to stay synchronized and maintain state, then they could keep a counter, and
insist that the MACd messages have the correct counter value prepended. Any message that does
not have the correct counter prepended should then be rejected, even if the Vrfy would output 1.
Another option is to prepend the time before computing the MAC. The users would have to agree
on how much clock skew they are willing to accept: if a message has a timestamp that is either a
little old or a little in the future, this is not necessarily a replay attack, while if it the timestamp is
from last week, it is unlikely this is due to clock skew or network delay. The amount of skew that
should be tolerated is application specific, which is why we do not build such a defense into our
security definition.
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2 Constructing MACs from block ciphers

2.1 Secure schemes for fixed-length messages

If the users know that their messages will always be exactly a single block length in size, then there
is a simple construction of a MAC. We can simply run the message through the block cipher, and
output the result as the tag.

Gen(1™): Output a random k <+ {0, 1}".
MAC(k,m): Compute F'(k,m) =t. Output t.
Vrfy(k, (m,t)): If |m| # n, output 0. Otherwise, compute F(k,m) =1t¢. Output 1 iff t == ¢'.

It can be proven that as long as F' is a secure pseudorandom function (i.e. a secure block cipher),
then this MAC scheme satisfies the definition provided in the previous section. Note that the MAC
algorithm in this scheme is deterministic, but, unlike in the case of encryption, this is not a problem.
Also, as mentioned above, because a deterministic MAC algorithm ensures that the same tag is
always output for a fixed message, we can use canonical verification, as is done here. That is, we
simply recompute the tag, and compare to the tag that was provided.

Obviously, the limitation on message size is a drawback with the construction above. We next
show how to support arbitrary, but still fixed, message sizes. By that we mean that the users can
fix some message size of their choice at the time that they share their key, and then agree to never
accept any messages that are not of that size. Below we assume that the fixed size they agreed
upon was n - £. The construction looks a lot like CBC mode encryption, but with two important
distinctions, described below.

Gen(1™): Output a random k < {0,1}".
MAC(k, m): Parse the message m = myl|-- - ||my.
Compute t; = F(k,my), and,
for 1 <i </, compute t; = F(k,t;—1 ©m;).
Output t,.
Vrfy(k,m,t): If (|m| == n-£), and MAC(k, m) == t, output 1. Otherwise, output 0.

There are two important distinctions between this and CBC-mode encryption. The first is that
we have (implicitly) used an IV that is 0”. (Note that t; = F'(k,m1) = F(k, m1 ®0").) The second
is that we only output t,, rather than ¢;,--- ,¢,. Note that, because we can send the message to
the receiver, they can compute all of the ¢; values on their own, using the key k£ and the message
blocks m1,--- ,my. In contrast, in CBC-mode decryption, the receiver’s task was different: they
were not given my,--- ,my, and they had to use t1,--- ,t; to recover those values (though, there
we called these values c¢q, -+, ¢f).

These particular distinctions are crucial. We show now that had we modified CBC-MAC to
remove either of these 2 changes to CBC-mode encryption, we would have an insecure MAC scheme.
That is, if we modified our scheme in these ways, we can demonstrate an adversary that succeeds
in the security game Mac-forge described above.
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2.2 Insecure variants of CBC-MAC

Consider the first insecure MAC scheme:

Insecure-CBC-MAC-1:
Gen(1"): Output a random k < {0,1}".
MAC(k,m): Parse the message m = mql|---||my.
Choose random IV <+ {0,1}". Compute t; = F(k,m; & IV), and,
for 1 <i < ¢, compute t; = F(k,t;—1 & m;).
Output (IV, ).
Vrfy(k, m, (IV,t;)): If |m| # n - £, output 0. Otherwise, parse the message as m = mq|| - - ||my.
Compute t) = F(k,my & IV), and,
for 1 < i < ¢, compute t, = F(k,t,_; & m;).
Output 1 iff ¢, == t,.

If (|m| ==n-¢), and MAC(k, m) == t, output 1. Otherwise, output 0.

To show that this is insecure, consider the following adversary that plays Mac-forge with a
challenger, both using this scheme. Let’s assume that the agreed message length is 2n (that is,

¢ = 2). The adversary chooses any message of his choice, m(!) = m§1)||m§1) and submits it to the

(1)

MAC oracle in step 2 of the security game. Let (IV,t; ') denote the tag he receives on message m()

in response to his query. Recall this is computed as tgl) = F(k, IV@mgl)), and t(21) = F(k, tgl)@mgl))

(and then discarding tgl)). The adversary outputs the following forgery. He fixes any m; of his
choice, and defines his forgery message as m = mle(QI). He computes IV = IV & 'm(ll) @ m1, and
outputs (IV’, t(Ql)).

To show that this adversary succeeds in the Mac-forge game, we have to show that his message
tag pair satisfy the 2 stated constraints in Step 3 of the game. a) Vrfy(k, (m, (]V’,tgl)))) = 1.
Recall, Vrfy simply computes MAC(k, m) and compares the result with (IV’ ,tgl)). MAC(k,m) is
computed as t; = F(k, IV’ @) and to = F(k,t; @mgl)). However, note that, because of the way
IV’ was chosen

tv = F(k, IV ©mq)
= F(k,(IVemiY @my) &)
= F(k,(IVemiM))
= ¢

Therefore, ty = F(k,t(ll) ® m(21)) = tgl), and the tag matches the one provided by the adversary.
Intuitively, what happened here is that, because we allow arbitrary IV values, the adversary was
able to manipulate IV’ specifically ensuring that the first input to the block cipher matched the
first input to the block cipher for the message / tag pair he was given in Step 2. From there, since
his own forged message maintained the same 2nd block as the message from his query, the 2nd tag
block also remains the same, and he has found a good forgery.

The 2nd constraint for success in Mac-forge is that the message the adversary forges be different
from all of the messages he queried in Step 2. Note that the 2nd block of this message is identical
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to the 2nd block of the message that he submitted as a query in Step 2. But, because the 1st block
has been modified, m # m(), this still satisfies the requirements. As a practical matter, you could
imagine that mgl) contains important header information, which the adversary just managed to
manipulate arbitrarily. But, as per the prior conversation in Section 1.2, regardless of what real
world attack we can think of that might correspond to this attack on the security game, we should
dismiss this MAC scheme immediately, since we have no idea what application might use it, and

how such attacks might impact that application.

Insecure-CBC-MAC-2:
Gen(1™): Output a random k < {0,1}".
MAC(k, m): Parse the message m = myl|-- - ||my.
Compute t; = F(k,m1), and,
for 1 <i </, compute t; = F(k,t;—1 ®m;).
Output (t1,--- ,tp).
Vrfy(k,m, (t1,- -+ ,tg)): If [m| # n - £, output 0. Otherwise, parse the message as m = myq|| - - ||my.
Compute ty = F(k,m1), and,
for 1 < i < ¢, compute t;, = F(k,t,_; & m;).

7

Output 1 iff for 1 <14 < £, t) ==t;.

We show how an adversary can forge any arbitrary message of his choice. Let that message be
m = mql|---||me. He will make ¢ queries to the oracle in Step 2 of the security game, and each
query will enable him to determine one of the ¢ blocks that make up a forgery on his message. To

learn t1, he queries m™) = my||0||---||0. Letting (tgl), e ,tél)) denote the response that he gets
~———

£—1 times
from the challenger, note that tgl) = F(k,m1), which is exactly the value ¢; that should appear as
the first element in a valid MAC on m. To learn t, he submits m(?) = tgl) @mal|0]]---]]0. Letting
N——

£—1 times

(th), e ,tg2)) denote the MAC that he receives in response, note that t = F(k,t()) @ my) which
is precisely the value that should appear as the 2nd element in a valid MAC on m. He continues in
this way, letting m® = ¢t~ g m;|| 0]| - - - ||0, and using the first block of the challenger’s response

——

¢—1 times
to define t;. Finally, he outputs (m,t;,--- ;) as his valid message and forgery. The reader can
verify that Vrfy(k,m, (t1,--- ,t¢)) would output 1. To see that the 2nd requirement of Step 3 in the
challenge game is satisfied, note that for any i € {1,---, £}, m # m® !

2.3 Secure MACs from block ciphers, arbitrary length messages

Recall that in both of the secure MACs we saw above, we required the users to agree on the
message size before sending any messages, and to reject any message that wasn’t of the appropriate
size. What goes wrong with CBC-MAC if users don’t reject messages of the wrong size? Suppose
we modified the verification algorithm to ignore the size check, but that it otherwise remained
the same. In this case, CBC-MAC uses a fixed IV of 0, and only outputs the final block of ¢,

Well, implicitly we're assuming that m does not itself has £ — 1 0 blocks. But if the message that the adversary
wished to forge had that property, we can use any other garbage to fill the last £ — 1 blocks in each of his queries.
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so we might assume it is not subject to either of the attacks we described in the previous sub-
section. Unfortunately, even though the MAC algorithm only outputs the last tag block, it is easy
to trick the challenger into giving all ¢ blocks on any message. Suppose the adversary would like
to learn ¢q,--- , ¢, corresponding to message m1||0[| - - - [|0, as he did in the last attack that we saw.
Currently, the MAC algorithm will only reply with ¢y, and what he really needs for his attack is ¢;.
But by shortening the message to the single block mi, the MAC algorithm, again outputting only
the last tag block, will now output exactly ¢, which is what the adversary needs for his forgery.
The reader should convince themselves that they can carry out the 2nd attack described above,
and that the resulting forgery is “valid”, in the sense that the forged message was never queried to
the challenger in Step 2.

There are two easy fixes to CBC-MAC that would allow us to use it for arbitrary length
messages. The first is to pre-pend |m| as a length n string. Verification should check this value
and output 0 if it doesn’t match the actual size of the message being verified. How does prevent
the attack that was just described?

The other fix is to use two different keys: the first as was already done in CBC-MAC, and the
2nd to provide a fixed-message MAC on the result. Formally,

Gen(1™): Choose a random ky < {0,1}", and random ko < {0,1}". Output (ki, k2).
MAC(k, m): Parse the message m = mql|-- - ||my.

Compute t; = F(ki1,m1), and,

for 1 < i </, compute t; = F(ky,t;—1 & m;).

Output F(ko,ts).
Vrfy((k1, k2), m,t): Perform canonical verification.

Of course, while it’s useful to think about how these fix address the particular attacks we saw
in the previous section, we can’t know what other attacks might lie out there. To be sure that
these fixes suffice, we should prove that NO polynomial time adversary can win in the Mac-forge
game, as long as we make these modifications. We don’t do that in this class, but a proof of this
fact does exist.

3 Hash functions

A hash function is a fixed function that takes arbitrary length input and outputs a fixed length
string (say, of size 256 bits). Because hash functions can take arbitrary length input, note that,
on most inputs, such functions are compressing. In particular, the number of possible outputs
from a hash function are much fewer than the infinite number of possible inputs! Nevertheless,
the security property that we require is that it is hard to find collisions in this function. That
is, it is hard to find two different inputs x1, z2, such that x; # x9, but H(x1) = H(z2). We call
such a function collision resistant. Because the function is compressing, it is easy to see that such
collisions must exist. Despite that, if certain computational problems are difficult, we can prove
that collision-resistant hash functions do indeed exist.?

2Technically, we can’t even define what what we mean when we say that it is hard to find collisions in some
single fixed function. What if a polynomial time adversary is given two colliding points, and he hardcodes them into
his “search” algorithm? So, from a theoretical standpoint, we should actually define a family, or collection, of hash
functions, and claim that when we choose a function at random from this family, no fixed adversary can find collisions
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In addition to collision resistance, it is also common to assume that the output of a hash function
looks random. In fact, this is a bit problematic, and we can prove that no single, fixed function
can be indistinguishable from a truly random function. It is best to avoid this assumption if it is
possible. But, it is still sometimes a useful assumption, and we don’t know of any real attacks on
systems that have made use of this assumption.

3.1 Hash and MAC

Hash functions give us a very easy mechanism for creating secure MACs. Since the output of a
hash function has fixed length, we can use a fixed-length MAC from the beginning of this lecture,
and, rather than MACing our message directly, we can simply MAC the hash of the message. Since
it is hard to find collisions under this hash function, it would be hard for the adversary to find a
different message that has the same MAC! In following scheme, we let H denote a collision-resistant
hash function with output size n.

Gen(1™): Output a random k <+ {0, 1}".
MAC(k,m): Compute F(k, H(m)) =t. Output ¢.
Vrfy(k, (m,t)): Compute F(k, H(m)) =1t". Output 1 iff t ==1¢'.

3.2 HMAC

The above construction is provably secure (assuming a secure block-cipher and a collision-resistant
hash function), but for a long time, developers were not using this construction, and instead
opted for a simpler MAC that simply pre-pended the key to the message and computed the
hash: MAC(k,m) = H(k||m). This is actually insecure, and real attacks on such a construc-
tion exist! The problem has to do with the particular design of commonly used hash functions,
and we don’t discuss the issue here. However, we point out that the reason people preferred this
MAC is because block-ciphers are a little bit slower to compute than hash functions, and this gave
them some performance speedup. Cryptographers responded, and developed a new MAC that is
provably secure, and relies only on collision-resistant hash functions. The result is called HMAC,
and it is now the most common way of handling message authentication. The scheme is described
below. H is a hash function, and ipad and opad are fixed, constants values.

Gen(1™): Output a random k <+ {0, 1}".
MAC(k,m): H(k @ opad||H (k & ®ipad||m))

Intuitively, we can view this as another example of “hash and mac”: the inner hash brings the
message down to a fixed length, and the outer application of the hash function provides the secure
MAC. This construction is provably secure

in the chosen function. This is similar to what we did for pseudorandom functions, where we can view the key k
as “selecting” one of the functions in the family. In practice, nobody does this — instead, we all just use one fixed,
unkeyed hash function; today, we usually use SHA-256. In practice, nobody has found any collisions in SHA-256, so
we just let this slide and accept the disconnect between what we can prove and what we do in practice.
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4 Authenticated encryption

Message authentication and message encryption should be thought of as two distinct tasks. As
we’ve seen, the security goals are completely different. But, certainly it is often important to have
both message authentication and encryption, so what is the right way to achieve both properties?
There are 3 obvious approaches, but only one of them is secure.

1. Authenticate and encrypt. That is, using some encryption scheme (Geny, Enc, Dec) and some

MAC (Geng, MAC, Vrfy), generate ki < Gengln), and ko Gengln). Then, on message m,
compute ¢ = Enc(k1, m) and t = MAC(k2, m). Output (c,t).

2. Authenticate, then encrypt. Generate the keys as above, but then compute ¢t = MAC(k2, m),
and ¢ = Enc(ky,m||t). Output c.

3. Encrypt, then authenticate. Generate the keys as above, but then compute ¢ = Enc(ky,m),
t = MAC(k2, ¢), and Output (c, ).

The first approach is very clearly insecure, because there is no guarantee that a MAC preserves
any privacy of the message at all. So, including MAC(kq, m) could mean including m in the clear,
completely destroying any privacy we were hoping to gain from the encryption scheme. But even
if we used a MAC scheme that does not appear to completely leak the message, note that the
Mac-forge security game says nothing about the privacy of the message, so we can’t possibly found
such a construction on a security proof.

The second approach is also insecure, though the issue is less obvious. (In fact, this approach
was used in early versions of IPSec, before people realized the issue.) If we authenticate and then
encrypt the MACd message, we are still vulnerable to the same padding attack we saw in the
previous class. Suppose, by way of example, that we’re again using CBC mode encryption for the
encryption portion. (The choice of MAC algorithm is irrelevant.) Note that the Dec algorithm will
recover a pair of values, m||t, but before it can do anything to verify ¢, it has to determine how
much padding was used in the process of encrypting m/||t, so that the padding can be removed. Of
course, if the padding is intact, but the value of ¢ is manipulated, which will happen at some point
during the padding oracle attack, the server will likely still indicate an error. If the attacker cannot
tell whether the error is caused due to the manipulated padding, or due to the manipulated MAC,
then it might be hard to carry out the attack. But, as long as the attacker can distinguish these
two different errors, then the attack can continue as before.

The final approach allows us to verify the tag before we even attempt to decrypt the ciphertext,
so the verification process cannot possibly leak any information about the plaintext value. This
approach is provably secure, regardless of what encryption scheme and MAC scheme are used. This
is the way authenticated encryption should always be performed.

4.1 Timing attacks on MACs

All MACs that have canonical verification can become subject to the following clever attack. Recall
that in canonical verification, a fresh tag is constructed from the message, using the shared key,
and the result is compared against the original tag that was received with the message. In the final
step, where the two tags are compared, the comparison algorithm likely compares the two tags one
byte at a time, and likely aborts as soon as it finds a byte in which they differ. By timing how long
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verification takes, it is sometimes possible to determine exactly how many bytes were compared
before the comparison operation terminated. The attacker can therefore guess the tag, one byte
at a time, as follows. Let’s suppose that t is a valid tag on message m (for some key k that the
adversary doesn’t know). Let’s write ¢ = ¢1||---||ty, where each t; is one byte of t. Since a byte
is 8 bits, there are exactly 28 = 256 possible values for each t;. The adversary will start trying to
guess t1, filling the remaining bytes of ¢ with arbitrary values. Until he guesses ¢; correctly, the
verification algorithm will simply fail in the first byte comparison, but when t¢; is actually filled
in correctly, it will fail in the 2nd byte comparison. Since one more byte comparison is performed
before the abort, there is a small difference in the time it takes to abort, and this can be detected
by a careful adversary. The adversary therefore learns when he has guessed ¢; correctly! He fixes
this byte of ¢, and then continues to start guessing the 2nd byte. If the tag is 32 bytes long, he
will have to make at most 256 x 32 guesses, totaling 8192. This is quite doable, and obviously far
far fewer than it would take to guess all 22°6 possible tag values. This attack was used to load
un-authenticated games onto the Xbox 360.
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