
ABSTRACT

Title of dissertation: ON FAIRNESS IN SECURE COMPUTATION

S. Dov Gordon, Doctor of Philosophy, 2010

Dissertation directed by: Professor Jonathan Katz
Department of Computer Science and UMIACS

Secure computation is a fundamental problem in modern cryptography in which mul-
tiple parties join to compute a function of their private inputs without revealing anything
beyond the output of the function. A series of very strong results in the 1980’s demonstrated
that any polynomial-time function can be computed while guaranteeing essentially every
desired security property. The only exception is the fairness property, which states that no
player should receive their output from the computation unless all players receive their out-
put. While it was shown that fairness can be achieved whenever a majority of players are
honest, it was also shown that fairness is impossible to achieve in general when half or more
of the players are dishonest. Indeed, it was proven that even boolean XOR cannot be com-
puted fairly by two parties

The fairness property is both natural and important, and as such it was one of the first
questions addressed in modern cryptography (in the context of signature exchange). One
contribution of this thesis is to survey the many approaches that have been used to guaran-
tee different notions of partial fairness. We then revisit the topic of fairness within a modern
security framework for secure computation. We demonstrate that, despite the strong impos-
sibility result mentioned above, certain interesting functions can be computed fairly, even
when half (or more) of the parties are malicious. We also provide a new notion of partial
fairness, demonstrate feasibility of achieving this notion for a large class of functions, and
show impossibility for certain functions outside this class. We consider fairness in the pres-
ence of rational adversaries, and, finally, we further study the difficulty of achieving fairness
by exploring how much external help is necessary for enabling fair secure computation.

ON FAIRNESS IN SECURE COMPUTATION

by

Samuel Dov Gordon

Dissertation submitted to the Faculty of the Graduate School of the
University of Maryland, College Park in partial fulfillment

of the requirements for the degree of
Doctor of Philosophy

2010

Advisory Committee:
Professor Jonathan Katz
Professor William Gasarch
Professor David Mount
Professor Bobby Bhattacharjee
Professor Lawrence Washington

c� Copyright by
Samuel Dov Gordon

2010

Acknowledgments

I began graduate school knowing almost nothing about cryptography. I asked Jonathan
Katz to advise me primarily because he seemed excited and eager to teach. He has taught me
a tremendous amount about cryptography in the last four years, and always with complete
patience and interest. He almost always found time for me when I needed it, even when it was
in short supply, and no matter my mood when I went into his office, I left feeling motivated
and excited.

Jonathan also kept my eye on a bigger picture, teaching me to write papers, research
grants and talks, and providing me with many opportunities to pursue exciting collaborations
and learning experiences. I entered graduate school with an idealistic view of academic life. It
is easy to become discouraged as a more realistic understanding sets in, and I credit Jonathan
for teaching me to navigate not only cryptographic research, but academic life in general. The
most important aspect of the graduate experience is the student / advisor relationship. I am
very lucky to have had Jonathan as an advisor. He has been a model teacher.

I want to thank Arkady Yerukhimovich for six years of friendship and collaboration.
We began graduate school with similar interests, and we have worked closely together the
entire time. He has always been available to help me think through research problems, and to
provide feedback and insight, no matter the topic. Working and learning with him has made
these years a lot of fun. I want to thank all of Jonathan’s past and present students as well,
and Ranjit Kumaresan in particular, for his continued enthusiasm, his friendship, and for the
many hours he has spent with me at the white board.

I was fortunate to form many collaborations over the last four years. The research in this
thesis began primarily out of a collaboration with Jonathan Katz, Carmit Hazay, and Yehuda
Lindell. My other co-authors include Tal Moran, Yuval Ishai, Amit Sahai and Rafail Ostro-
vsky. I was lucky to have been hosted by Moni Naor at Weizmann for a summer, where I
worked with Moni, Tal Moran, Gil Segev, Noam Livne, and Eran Omri. I also had a won-
derful summer at IBM, where I worked with Tal Rabin, Vinod Vaikuntanathan, and Hugo
Krawczyk; their research group is among the warmest, and I enjoyed many fun hours there
with Jonathan, Tal, Vinod, Hugo, Shai, Rosario, Muthu, Craig and Charanjit. I have met and
learned from many more people at conferences, workshops and visits. Our research commu-
nity provides a warm and encouraging environment for research, and I appreciate everyone
that contributes to this atmosphere. I am again grateful to Jonathan for facilitating all of these
experiences.

Finally, I may never have considered this career path without a family that so fully values
learning and education. My own excitements and frustrations were well understood and
completely shared by my parents. This work is dedicated to them.

i

Contents

1 Introduction 6
1.1 Contributions . 8
1.2 A Survey of Fairness in Secure Computation . 9

2 Definitions and Preliminaries 23
2.1 Basic Notation . 23
2.2 Basic Cryptographic Primitives . 24
2.3 Secure Two-Party Computation with Complete Fairness 26
2.4 Secure Two-Party Computation With Abort . 28
2.5 Secure Multi-Party Computation with Complete Fairness 29
2.6 Secure Multi-Party Computation With Designated Abort 30
2.7 The Hybrid Model . 31
2.8 A Canonical Form for Fair Two-Party Computation 32

3 Complete Fairness in Secure Two-Party Computation 35
3.1 Fair Computation of the Millionaires’ Problem (and More) 35

3.1.1 The Protocol . 36
3.2 Fair Computation of Functions with an Embedded XOR 43

3.2.1 Proof of Security for a Particular Function 46
3.2.2 Extending the Protocol to Other Functions 56
3.2.3 A Characterization of When Protocol ⇧EXOR is Secure 58

3.3 A Lower Bound for Functions Containing an Embedded XOR 63
3.3.1 Preliminaries . 63
3.3.2 The Proof . 66

4 Complete Fairness in Secure Multi-Party Computation 71
4.1 Fair Computation of Majority for Three Players 71
4.2 A Lower Bound on the Round Complexity of Majority 81

4.2.1 Proof Overview . 82
4.2.2 Proof Details . 83

4.3 Fair Computation of OR for n Players . 86

5 Partial Fairness in Secure Two-Party Computation 90
5.1 1

p -Secure Computation of General Functionalities 91
5.1.1 A Useful Lemma . 92
5.1.2 1

p -Security for Functionalities with Polynomial-Size Domain 93
5.1.3 1

p -Security for Functionalities with Polynomial-Size Range 97
5.2 Optimality of Our Results . 100

ii

5.2.1 Impossibility of 1

p -Security and Security-with-Abort Simultaneously . . 100
5.2.2 Impossibility of 1

p -Security for General Functions 102

6 Fairness When Players are Rational 104
6.1 Definitions from Game Theory . 106
6.2 A Protocol for Rational Secret Sharing . 107
6.3 Discussion . 110

7 Fair Primitives for Secure Computation 113
7.1 A Complete Primitive for Fair Two-Party Computation 113
7.2 A Lower Bound on the Size of Complete Primitives 117

iii

Chapter 1

Introduction

In 1980, two years after Rivest, Shamir, and Adleman [82] introduced the first digital
signature scheme, Shimon Even and Yacov Yacobi published a paper titled Relations Among
Public Key Signature Schemes [34]. In this work, they explored the power of digital signa-
tures, proving, among other results, that it is impossible for two distrusting parties to fairly
exchange signatures on a contract. Their intuition was simple and interesting: as the two par-
ties exchange messages back and forth, there must exist some point in the protocol at which
one party has enough information to produce his opponent’s signature, while the other party
does not. The party that receives a signature first can terminate the protocol at that point,
and violate the fairness of the exchange. It seems an obvious point, but it sparked a very
interesting line of research.

In the summer of 1980, Manuel Blum suggested to Even a way to circumvent this impos-
sibility result. While it is true that there exists a point in the protocol at which only one player
can recover the other’s signature, it may be that they can do this only at great computational
cost. Blum’s idea (roughly) was to have the players begin by exchanging an encryption of the
signatures.1 Technically, it is still true that the first player to receive the encryption has an
unfair advantage, as they can run away with the ciphertext and recover the output through
“brute-force”. But this is computationally infeasible, and should not be considered unfair.
Once the players have encryptions of the output, they alternate sending one bit of the de-
cryption key, along with a proof of correctness, until the entire key has been sent. Of course,
the leading player has a continuing advantage over the other: informally, at any point in the
protocol it is twice as easy for him to recover the output as it is for his opponent. But on an
intuitive level, the solution seems fair. Soon after their discussion, Blum [15] and Even [32]
each wrote papers that made use of this very idea.

So who was right? Even and Yacobi [34], who proved that signature exchange was im-
possible, or Blum [15] and Even [32] who demonstrated the first protocols for fair exchange?
Of course, there is no contradiction — like much of modern cryptography, the subtleties arise
in the definitions, and in this case, the authors were (implicitly) considering two different
notions of fairness. Although the impossibility result was informal, the intuition can easily
be used to formally rule out completely fair protocols for signature exchange. In contrast, the
positive results allow one player a slight advantage, and therefore do not violate such a proof.
We will return to discuss the question of how fairness should be defined, and we will recon-
sider the above results at that time. Before doing that, we turn briefly to consider a separate

1Actually, Blum doesn’t use encryption, but rather demonstrates how two players can exchange signing keys
bit by bit. See Section 1.2 for details.

7

line of research that would merge with fairness only in 1986.

Secure computation

“Two millionaires wish to know who is richer; however, they do not want to find
out inadvertently any additional information about each other’s wealth. How can
they carry out such a conversation?” [88]

This was the question that opened Andrew Yao’s groundbreaking 1982 paper on secure com-
putation [88]. While the image of the millionaires is certainly compelling, this particular prob-
lem is only one example of several similar questions already considered by others, such as
how to play poker without cards, or vote without ballot boxes. What made Yao’s paper stand
out was his presentation of a “unified view of secure computation.” He generalized the above
problems, unifying them with one single question: Alice and Bob hold private inputs, x and
y (respectively), and wish to compute F (x, y) = (f1

(x, y), f2

(x, y)), where Alice receives out-
put f1

(x, y) and Bob receives f2

(x, y). How can they do this without revealing anything more
than their intended outputs? In addition to presenting the general question, which encom-
passes all of the problems previously considered in the field, Yao gave a general solution,
demonstrating that any polynomial-time function of this form can be computed, while guar-
anteeing the privacy of the inputs.

Then, in a second paper that was published in 1986, Yao merged the questions of fairness
and secure computation, showing that any two-party secure computation can be computed
fairly. Here, Yao defined a notion of fairness similar to the one intended by Blum: his protocol
ensures that no player has a significant computational advantage in recovering their output
before the other [89]. In the remainder of that decade there was a flurry of impressive works
on secure computation [45, 37, 22, 13, 22, 11, 47],2 demonstrating very strong feasibility re-
sults. However, the definitions of security varied from paper to paper, and in some cases
they were hard to understand and equally hard to use (in the sense that proofs of security
were cumbersome and often were not presented). Most of the definitions failed to capture all
possible attacks (though it should be noted that only the definitions of security were flawed,
and not the protocols themselves). Finally, in the Crypto 1991 conference, there were two
(similar) papers that unified and strengthened the varying security definitions: one by Micali
and Rogaway [73] and another by Beaver [10]. The definition of security that emerged as the
accepted definition, which is presented in Section 2.3 (Definition 2.3.1), is based on the defi-
nitions presented in these two papers, and on the works of Canetti [20] and Goldreich [42].
Collectively, after a decade of research, these works resulted in a single, beautiful framework
for defining and proving security in interactive computation. Furthermore, they provided
strong feasibility results enabling the secure computation of any polynomial-time function,
and even guaranteeing complete fairness whenever a strict majority of players are honest.

Fairness in Secure Two-Party Computation: Unfortunately, when we revisit the impossibil-
ity result of Even and Yacobi [34] in the context of this framework, we find that it still applies.
Their work rules out completely fair protocols for two-party signature exchange, and our pre-
ferred security definition (Definition 2.3.1) requires complete fairness in the protocol. More
technically, although it was never stated explicitly, the assumption made by Even and Ya-
cobi was that the protocol must always specify well defined output for the honest player,
even when the dishonest player aborts. The same assumption is also implicitly demanded
by Definition 2.3.1. Under this assumption, at some point during a fair signature exchange,

2There exist several excellent surveys of secure computation [42, 27], so we do not review these works here.

8

the protocol must specify correct output (i.e., a valid signature) for one player while not yet
specifying it for the other, and in this sense any protocol must be unfair.3 Furthermore, in
1986, Richard Cleve proved that two players cannot even agree on an unbiased random bit
[25], assuming, again, that the players always have well defined output. His result implies
that it is impossible for two parties to fairly exchange two bits while satisfying Definition 2.3.1
(since the XOR of two random bits yields an unbiased coin flip).

As we will soon see, there is a rich body of work achieving various notions of partial
fairness. We have already briefly described one approach suggested by Blum in 1980. How-
ever, most of this work appeared before the preferred security definition had emerged. Now
that we have adopted this notion of security, some very interesting questions about fairness
resurface. We address the following questions in this thesis.

1.1 Contributions

What functions can be computed with complete fairness, without an honest ma-
jority, satisfying Definition 2.3.1?

As mentioned above, we already know we cannot compute boolean XOR without a strict
honest majority. This is most likely why nobody asked this question after the definition of
secure computation first appeared in 1991. Surprisingly, we show that certain interesting
functions can be computed in this setting, including Yao’s millionaire problem.4 These results
appear in Chapters 3 and 4.

What alternative security definitions can we use that will allow some meaningful
notion of partial fairness?

The works on fair exchange clearly achieve some notion of partial fairness, even if the proto-
cols do not satisfy the strong definition that we would prefer. But there are very compelling
reasons for sticking to the general framework presented in Chapter 2. Recall that Defini-
tion 2.3.1 guarantees complete security, including fairness, while Definition 2.4.1 guarantees
complete security excluding fairness. In Chapter 5 we present a new definition in the same
framework that allows for a meaningful middle ground.

Fairness is impossible to achieve in general when half (or more) of the players are
malicious. Can we do better by considering weaker adversaries?

Our discussion until now has revolved around malicious adversaries that may act in a worst-
case manner to ruin our protocols. Most cryptographic tasks can be achieved even in this
setting, which is why we typically design protocols with such adversaries in mind. However,
fairness cannot in general be achieved in this setting, so this may be one case where it pays to
consider weaker adversaries. In particular, we consider achieving fairness when the players
are rational in the standard game-theoretic sense. Our work in this direction is presented in
Chapter 6.

3It is interesting to think about how the protocols of Blum [15] and Even [32] violate this assumption. Notice
that the protocol cannot specify whether one player should choose to recover the output through brute-force if the
other aborts in the middle of the protocol. If it did specify this, the aborting player can always choose to abort one
round earlier and violate fairness. It follows that the player’s output is not well defined when the other player
aborts.

4Recall that Yao showed how to compute any two-party function fairly, but only according to a notion of partial
fairness we call gradual release.

9

Fairness is easily achieved with the help of a third party. How much help is nec-
essary?

In Chapter 7 we present a work that quantifies how much help is necessary for achieving
fairness. Ideally, we would like to use a third party that is stateless, oblivious even to the
particular function being computed. We demonstrate that this is possible. We also quantify
the help provided by the size of the input given to the third party, and we give upper and
lower bounds on feasibility.

1.2 A Survey of Fairness in Secure Computation

There is a long history of work on the topic of fair exchange, most of it predating the
now-standard definitions of security that are presented in Chapter 2. Consequently, each
work introduced its own notion of security, or simply did not define security at all, making it
relatively hard to formally state what was achieved. Nevertheless, it is worth surveying the
techniques used and, when possible, the notions of security that were considered. We try to
do that here. We have divided the works mainly by the definition of fairness they achieve,
hoping to make it easier to read.

Impossibility of Complete Fairness

Even and Yacobi, 1980: Even and Yacobi [34] introduced the question of fair exchange just a
few years after digital signature schemes had been introduced [29, 82, 78]. The authors were
interested in exploring the possible applications of digital signatures, and their relationship
to other cryptographic primitives. Specifically, they study the relationship between signature
schemes and identification schemes, the round complexity of signature schemes, and, finally,
the application of exchanging signatures (which they call a “public key agreement scheme”).
As described in the previous section, they prove impossibility of the latter through a simple
informal argument, claiming that one party must have enough information to efficiently pro-
duce a verifiable signature before the other party can do the same. As we will see below, this
is not technically true (if we apply the standard asymptotic definition of “efficient”), but the
intuition is correct. Under the assumption that both players always have well defined out-
put, even when their opponent aborts, we can prove that no protocol offers completely fair
signature exchange.

Cleve, 1986: Under the same assumption that players always have well defined output, Cleve
strengthens the earlier impossibility result [25], proving that even completely fair bit exchange
is impossible. Actually, framing his result in this light skews his motivation, which stemmed
from two recent results on distributed coin flipping [7, 18], and not from recent work on fair
exchange. Technically, his theorem states that there does not exist an efficient protocol en-
abling two players to agree on an unbiased coin. Nevertheless, his result has the implications
suggested above: if two players could fairly exchange two bits, they could choose random
bits, exchange them, and output their XOR to produce an unbiased coin. Even though this
was not his motivation, he certainly recognized the implication. Indeed, Beaver and Gold-
wasser’s 1989 paper [11] (discussed below) will cite Cleve’s result as proof that “perfect fair-
ness is not achievable” for general secure computation, and, citing a personal communication
with Cleve, they state that:

10

If p and q are the maximal a priori probabilities of the players to know the value
of f(x

1

, x
2

), given x
1

or x
2

respectively, then for any two-party protocol running
for  rounds there exists a quitting strategy of one player enabling him to predict
f with probability at least min(1�p,1�q)

2 better than the other player.

It is likely that Cleve’s result is what prevented people from asking whether anything of
interest could be computed with complete fairness; the results we present in Chapters 3 and
4 are surprising in light of this earlier work.

Cleve’s impossibility result is remarkably simple to read and understand. For any 
round protocol, he demonstrates that there exist 4 different adversaries such that at least
one adversary inflicts a polynomial bias on the outcome of the coin. The adversaries are
easily described: A(i)

b runs honestly for i rounds, and then tests internally what his own output
would now be if the honest player were to abort. (Here we are using the assumption described
earlier that both players always have well defined output in case the other player aborts.) If
his output is b, he continues honestly for one more round and then aborts; if it is 1 � b, he
aborts immediately. The intuition for why one of these adversaries is successful is as follows.
Take any coin-flipping protocol, and consider an execution that results in output b. At the very
start of the protocol, Pr[OUT = b] = 1

2

, while at the end of the protocol, Pr[OUT = b] = 1; since
there are only a polynomial number of rounds, somewhere in the middle of the protocol, there
must be a “gap” where this probability makes a polynomial jump towards 1. Cleve proves
very cleanly that this gap exists, and demonstrates that one of these adversaries exploits that
gap and biases the outcome.

Gradual Release

Despite the above impossibility results, as we have already discussed, it is possible to
achieve various notions of partial fairness. Gradual release is the technique used in most of
the feasibility results that we present below. As we have already briefly described, the idea
used in all of these works is that in each round of interaction, it becomes progressively easier
(cryptographically) to recover the output.

Blum, 1983: Although Blum’s 1983 work [15] was not the first result using gradual release, it
is cited in nearly every work on fair exchange after Even and Yacobi’s 1980 result [34]. It seems
that this paper sparked the long line of feasibility results.5 Blum provided a way for two play-
ers to fairly exchange secret keys using gradual release. He then suggests several applications
that this might be used for, including signature exchange. In his work, the two public keys are
composite numbers of the form NA = pA · qA, and NB = pB · qB , where pA, qA, pB, qB are all
large primes, and the users wish to exchange (pA, qA) and (pB, qB). The protocol relies on the
following facts from number theory. Any a relatively prime to NA has 4 square roots mod NA,
and knowing its roots (for any such a) is sufficient for efficiently factoring NA. (Actually, only
two square roots are necessary, if they are they are paired appropriately, but four certainly
suffices.) Furthermore, given pA and qA, it is easy to find square roots mod NA.

The protocol proceeds as follows. The player that wishes to factor NA chooses a random
element a 2 ZN

A

and sends a2 mod NA to his opponent. The player learning the factors of NB

acts similarly sending some b2 mod NB . Note that each player knows two roots of the number
they sent: ±a for the first player, and ±b for the second. Furthermore, they can each compute

5There are also several later references to a 1981 technical report by Blum titled “Three Applications of the
Oblivious Transfer”, which we could not find. This title refers to Rabin’s work [79] which we describe below.

11

the four square roots of the number they received. They then alternate sending messages
for i rounds, where in round i, each player sends the ith bit of all four square roots. Because
neither player knows which two roots the other holds, they cannot send incorrect bits without
getting caught! This suffices for soundness 1/2: to further reduce the probability of cheating,
the players instead start by each sending  squares, and then alternate sending one bit of all
4 roots in each round. At Crypto in 1983 and 1984, Tedrick [85, 86] demonstrated how to
slow down the advantage of the leading player in Blum’s protocol. Instead of sending a bit
of the secret key, the user can cut the search space by a lesser amount by sending a statement
like “the last 3 bits are not 001”.

Unfortunately, Blum’s result relied on several strong assumptions (all very precisely
stated in his paper). One of these assumptions was proven false by Håsted and Shamir a
few years after his paper appeared [54]. Blum had assumed that having a few bits from many
square roots is no more useful (with respect to factoring NA or NB) than having the same
number of bits from only a single square root. Put more formally, given the k most (or least)
significant bits from the roots of y

1

= a2
1

, . . . , y = a2, he assumed that it is no easier to find
the remaining bits of any root ai than it would be if given only k bits of ai. Håstad and Shamir
demonstrate how to factor in polynomial time given only O(logNA/) bits of each of the O()
unknown variables. As  grows, then, we require fewer and fewer bits before we can factor.

Even, 1981: This work by Even [32] was done concurrently with Blum’s work on secret ex-
change. Even refers to his earlier impossibility result saying “it was shown by Even and
Yacobi [34] that no deterministic protocol exists [for fairly committing two players to a con-
tract]... During the summer of 1980, in a conversation, M. Blum suggested the use of ran-
domization for such protocols.” It is not clear why Even focuses on whether the protocol is
randomized, since the prior impossibility result rules out even randomized protocols, as long
as they meet the assumption described above. (We cannot easily say anything about the im-
possibility result for protocols that do not meet this assumption.) Nevertheless, regardless of
how he reconciled it with the prior impossibility result, he gives the first published work on
gradual release (chronologically).

Even’s result relies on Merkle puzzles [71], which are (informally) defined as follows.
Given (M,Fk(M)) where M is chosen at random and Fk is a keyed one way function, the
puzzle is to find the key k. It is assumed that given t bits of k, the only way to find k is to try
all |k|� t bits6; this allows the issuer of the puzzle to control its exact difficulty by publicizing
an appropriate fraction of k. Even assumes that the value of the contract to both players is
some fixed value V , and defines the contract to be valid only if they have each signed it + 1

times (where , here and throughout, is a security parameter). His protocol proceeds by hav-
ing both players encrypt 2 signatures on the contract using encryption keys k

1

, . . . , k
2, and

then generate a Merkle puzzle for each encryption key, where each puzzle has difficulty 2V/.
The players exchange the encrypted signatures and the Merkle puzzles: at this point, either
player could brute-force  + 1 puzzles at a cost of more than 2V , but by assumption, neither
player would care to spend the computational resources. Now the players take turns sending
encryption keys, one at a time; each player chooses at random which key he would next like
to receive. If a player ever aborts, they only have a small computational advantage (2V/) in
recovering the other’s signature. Because there are 2 encrypted signatures, if a player cheats
by forming bad puzzles, they will either be caught with high probability (if many of them are
bad), or it will not greatly hinder the signature reconstruction (if only a few are bad). This
provides a tradeoff: if a player cheats, then either we catch him with high probability, or his

6This is a worrisome assumption, which we discuss more below.

12

cheating will not significantly slow us down when we try to brute-force a signature.

Goldreich, 1983: Goldreich published a short note at Crypto 1983 [41] that simplifies Even’s
scheme [32]. He instructs the two parties to each generate  Merkle puzzles, and then sign a
statement saying they are committed to the contract if the other can either solve all  puzzles,
or prove that they’re not all solvable. They then exchange the solutions, one at a time. The point
is that it is not necessary to catch a party that cheats: instead we can define a signature on a
bad puzzle as a commitment to the contract.

Rabin, 1981: This early work on fairness [79] does not use the technique of gradual release.
In fact, although its subject is the fair exchange of two bits, it is not typically remembered
for dealing with the topic of fairness at all. Rabin’s seminal paper introduced a new tool
called oblivious transfer (OT), which has since become an essential cryptographic primitive.
It would later be proven both necessary and sufficient for performing general secure compu-
tation (without fairness) [61, 56]. However, even before that, OT would be used in several
works on gradual release, which is why we present the result here.

Oblivious transfer, as defined by Rabin, is a protocol involving two players, a sender and
a receiver. The sender holds input N = p · q, where p and q are large primes, and at the
end of the protocol, with probability 1/2 the receiver learns p and q and with the remaining
probability he learns nothing; the sender remains oblivious as to whether the receiver learns p
and q. Rabin constructs this scheme using the same number theoretic properties that appeared
in Blum’s protocol. The receiver begins by choosing a value a and sending a2 mod N to the
sender. The sender responds with one of the square-roots of a2. If he happens to respond with
â = ±a, then the receiver learns nothing. However, if he responds with either of the other
two roots, the receiver can easily recover p and q.

The definition of fairness that Rabin considers for bit exchange (left implicit) is that nei-
ther player should have complete confidence in their output bit before the other. He assumes
that the players are honest, except that they may abort once they have complete confidence
in the answer. (In order to enforce honest behavior, he suggests signing all messages so that
they can be shown to a judge later. However, he is not willing to rely on the judge for the
fairness property.) He also assumes that if either player learns their output, the other player
will know that they learned it. This is a strange assumption, but can perhaps be motivated
when the outcome of the protocol leads to an observable action in the real world. Finally, he
allows the protocol to have a polynomial probability of failure, in which case it terminates
with neither party learning the bit (and cannot be restarted).

This is a long list of assumptions, which certainly seem to weaken the importance of the
result, but the technique that he uses is very interesting. It turns out to be very similar to the
one we use in Chapter 3 to compute Yao’s millionaire problem with complete fairness and,
surprisingly, it is unlike any other approach used in the 30 years between those two works.
The key idea is to design the protocol such that the very act of aborting reveals some crucial
information. To exchange two input bits, bA and bB , Alice and Bob each begin by choosing
(and announcing) a public key, NA and NB respectively. They each take a turn playing the
role of the sender in an execution of an OT. We let bOT

A denote the outcome of the execution
when Alice is the receiver, namely bOT

A = 1 if she learned the factors of NB , and bOT
A = 0

otherwise. We define bOT
B analogously. Then, Alice sends bA � bOT

A and Bob sends bB � bOT
B .

Finally, Alice sends an encryption of her input bit using her public key NA (without knowing
whether Bob has learned its factors as a result of the OT), and Bob responds in kind. If Bob
neglects to send his final message, and instead goes to use his learned bit, Alice will know
that he learned the factors of NA; she will deduce that the value of bOT

B = 1, and thus recover

13

Bob’s input bit, reinstating fairness. Similarly, if Bob sends his encryption and Alice recovers
bB , Bob will know when she uses the bit that the value of bOT

A = 1, and will thus recover
bA. With probability 3/4, the protocol ends with both players recovering the other’s input
bit in the above manner. With the remaining probability, neither player learns anything.7
The motivation is forced, and this is hardly a satisfying protocol for bit exchange, but the
techniques are very interesting.

Even, Goldreich and Lempel, 1982: In Crypto 1982, Even et al. [33] published another paper
that made use of the gradual release technique. (A more complete version with a slightly
different protocol would appear in Communications of the ACM in 1985.) It is essentially a
hybrid of the works by Blum [15] and Even [32] described above, through the use of Rabin’s
new oblivious transfer primitive. In the 1982 version, they present a new, more general con-
struction of OT from a public key encryption scheme (of a particular form), where the value
learned by the receiver (with probability half) is some message M rather than the prime fac-
tors of a public key.

Similar to Even’s approach, they define a contract to be signed if the party can produce
the solutions to  Merkle puzzles. Similar to Blum’s approach, they catch a cheating player
by using OT to send (an expected) half of the solutions up front. The players then alternate
sending one bit of every solution. A cheater is caught if they send the wrong bit in a solution
that was already learned through OT.

In the version that appeared in 1985, they define and implement a 1-out-of-2 OT, which
is the notion used today in reference to OT. In this cryptographic primitive, the sender has
two values, rather than one, and the receiver always learns exactly one value. The sender is
oblivious to which value was learned. The players begin the protocol with  pairs of unsolved
Merkle puzzles, and they define a signature to be a pair of solutions to any pair of puzzles.
The players first receive exactly one solution to each pair through OT, and then exchange the
bits of all 2 solutions, one at a time. They use the solution they learned through OT in order
to prevent the sender from cheating as they send the bits of the solutions. This approach
removes any advantage that might arise from statistical deviation in the number of puzzle
solutions received through OT in the 1982 version of the protocol.

Yao, 1986: As we mention in the previous section, Yao’s 1986 paper played a crucial step in
developing the formal study of fairness [89]. Just as he was the first to generalize the notion
of secure computation in his 1982 paper [88], this work is the first to generalize fairness.
Whereas previous work studied a few select problems, like signature exchange, certified mail
and bit exchange, Yao extended the notion of fairness, arguing that it should be a property of
any secure computation. If Alice and Bob are computing some function F (x, y), we should
guarantee that neither player receives output before the other.

Yao gives a formal definition of three security properties: validity, privacy, and fairness.
We focus here only on the last property, for which he requires that if one player can recover
the output, the other player should have some “recovery” protocol, R, that allows him to
do the same. The specification of R may be dependent on the adversarial code A. It takes
as input the honest player’s input and the honest player’s view in the protocol execution.
With significant probability, it outputs the correct output whenever the adversary recovers
the correct output. Formally (but modified to make the exposition clearer):

7It seems Rabin could have further assumed that players always use their output within some known time
period. Then the players can each deduce their output from the fact that the other player did not learn anything.
The protocol would guarantee output in this case.

14

Definition 1.2.1 A protocol ⇡ constitutes a fair protocol for computing F =

�

f1

 , f
2



�

if for any fixed
constant c, any probabilistic, polynomial time adversary A, there exists a probabilistic, polynomial
time recovery protocol R such that the following holds for any probabilistic, polynomial time algorithm
G:

Pr

⇥�

OUTA
⇡ = f2

(x, y)
�

^
�

R(1

, x, VIEWH
⇡) 6= f1

(x, y)
�⇤

 Pr

⇥

G(1, y) = f2

(x, y)
⇤

+O(�c)

where OUTA
⇡ = OUTA

⇡ (1
, x, y; rA, rH) is the output of the adversary when interacting with H,

each having inputs (1, y) and (1

, x) (respectively) and random coins rA and rH (respectively), and
VIEWH

⇡ = VIEWH
⇡ (1

, x, y; rA, rH) is the view of the honest player in the same interaction.

The role of G in the above definition is to capture the fact that the adversary may be able
to guess the output just by looking at his input. We note that this definition does not address
the fact that the malicious player may substitute his input for another value. We refer the
reader to the original paper to see how this is addressed.

The fact that R is dependent on the particular adversary is a drawback to this definition,
and unfortunately it is unavoidable in the gradual release approach. Intuitively, R must know
whether A has recovered the output (using brute-force) in order to decide whether it must do
the same. Otherwise, suppose R were fixed and the code of A were allowed to depend on
R; A could simply choose to abort the protocol and recover the output just before the point at
which R would choose to do the same. A would still be polynomial time, and the fairness
definition would be violated.

Although he does not provide the protocol, Yao also claims to have a solution that achieves
this definition while enabling the computation of any polynomial-time function. The basic
approach is to jointly compute an encryption of the output under public key N = p · q while
revealing p to one player and q to the other. Then the players can run an exchange protocol
for p and q.

Brickell, Chaum, Damgård, and van de Graaf, 1987: This Crypto 1987 paper [17] by Brickell
et al. gives a new Blum-style approach to exchanging secret keys. They work in a large
prime order group, Z⇤p, under the (well accepted) assumption that it is hard to find discrete
logarithms. They demonstrate a protocol for proving that the discrete logarithm of some
group element lies in a particular interval. By repeatedly narrowing this interval, one can
gradually release a secret. One obvious advantage over Blum’s protocol [15], of course, is that
their assumptions still stand up to cryptanalysis. Another advantage stressed by the authors
is that this more easily enables broadcasting the release of the secret to a group, rather than
releasing it to only one other party. This is because the receiver’s part in the protocol is only
to send random challenge bits (rather than squares for which only he knows the roots).

The authors do not define fairness. In fact, they barely discuss the application of ex-
change, focusing instead on the one-sided release of a secret. However, one could interleave
the role of several senders to achieve secret exchange. In line with contemporary results on
zero-knowledge proofs [48, 46], they do prove that the protocol reveals nothing other than the
intended interval containing the logarithm.

Imagliazzo and Yung, 1987: The focus of this paper is not the topic of fairness, but zero
knowledge. Impagliazzo and Yung [55] demonstrate a protocol for proving that you have
correctly computed a circuit. However, they point out that their result can be used to prove
correctness of the computation one bit at a time, even adaptively choosing which bit to reveal

15

next. If the output is a decryption key, this becomes the same approach to gradual release
that Yao proposed [89]. It could also be used to reveal bits of the output directly (instead of to
reveal a secret key that allows decryption of the encrypted output). Whether this is fair may
depend heavily on the function being computed, since some output bits may be much more
valuable than others.

It is interesting that the preceding breakthroughs in the area of zero-knowledge [48, 46],
which lead to breakthroughs in secure computation [45, 37], also enable gradual release of
verifiable secrets (in a very general form). Specifically, suppose the secret is verifiable via
some string w, known only to the holder of the secret. Consider the statement: “the ith bit of
the secret is b.” This is an instance of an NP language for which w is the witness. Furthermore,
as the authors of this paper show, if the secret is the result of computing some circuit (e.g., the
circuit that multiplies large prime numbers), then the inputs and randomness used in the
computation of that circuit suffice as a witness w.

Damgård, 1993: The main focus of this paper [28] is to enable efficient fair secret exchange
for a wider variety of secrets. Prior schemes employing gradual release only enabled the
exchange of a very particular type of secret: Blum [15], and Yao [89] suggest ways to ex-
change factors, and Brickell et al. [17] demonstrate how to exchange discrete logs.8 In this
work, Damgård introduces a new unconditionally hiding bit commitment, with length that is
independent of the underlying value, along with a simple way of correctly revealing the com-
mitted value one bit at a time. Of course, for the protocol to be useful in some application, the
players still need to prove that the committed value is relevant to the application, and not just
some random string. Damgård demonstrates how to do this when the secret is a particular
type of signature (such as RSA or El Gamal).

Damgård only defines security for a one-sided gradual release scheme. He requires a
proof through simulation that nothing other than the last i bits of s is learned after i rounds.
More formally, he includes the following requirement in his definition of security (rewritten
in our own notation).

Definition 1.2.2 Let ⇡ be a secure release protocol in which an adversary A gradually receives a
secret s from player H. Let A hold inputs (1

, z, w), where z is some auxiliary input and w is a
public value enabling the verification of s. Let H hold inputs (1, w). We denote by VIEWi

⇡ the view
of A in this interaction after i rounds, and we denote by s|i the last i bits of s. ⇡ is fair if for every
such adversary and for every round i there exists a simulator S(z, w, s|i) outputting VIEWi

S such that
VIEWi

⇡
c⌘ VIEWi

S .

Boneh and Naor, 2000: Boneh and Naor [16] give a result that is similar to Damgård’s, build-
ing a commitment scheme that can be opened gradually. However, there are a few strong ad-
vantages to the newer scheme. For one, the commitments are designed to hold up against par-
allel algorithms: assuming some particular number theoretic assumption, the commitments
are no easier to open with multiple processors than they are with a single processor. A second
advantage is that a committed player can make it gradually easier to open the commitment
without revealing any bits of the committed value. In contrast, in Damgård’s commitment
scheme, the committed player actually reveals a bit of the committed value in order to grad-
ually open the commitment. When using such a scheme for releasing signatures, one would

8Merkle puzzles allow players to exchange a secret, but not in a provable fashion. Even et al. [33] did use
Merkle puzzles to exchange secrets in a provable fashion, but only when the secrets were of a very specific form.
The work of Impagliazzo and Yung [55] is actually very general, but it uses generic zero-knowledge proofs for
NP, which involve a Karp reduction and are quite impractical.

16

have to assume that a single bit of the signature only makes it twice as easy to produce a valid
signature. Here, this assumption is not necessary (though it is replaced with other number
theoretic assumptions). In fact, the authors demonstrate that their protocol is zero knowledge,
as long as the distinguisher runs in less time than is necessary to recover the committed value
using brute-force.

As before, the commitment is only useful when we can prove something about the com-
mitted value. The authors demonstrate how to prove that the underlying committed value
is an RSA signature. (They also demonstrate applications to other spheres of cryptography
that are of lesser interest to our work.) They define fairness for the application of signature
exchange in a way similar to that of Yao:

Definition 1.2.3 A protocol is (c, ✏)-fair if the following holds: for any adversary A running in time
runtimeA < , let A choose a contract C and run the contract signing protocol with party H. At some
point, A aborts the protocol and attempts to recover a valid signature �H(C). Denote A’s probability
of success by successA. Suppose now that party H runs the recovery algorithm R for time c · runtimeA
and let successH be the probability he recovers a signature �A(C). Then successA � successH  ✏.

The authors also give the first lower bound on the round complexity of a gradual release
protocol. Letting �A =

runtimeA
successA and �H =

runtimeH
successH , they define an unfairness measure: �A

�H .
Then, given a signature scheme, they define its security gap, �, as the ratio between the time
needed to forge a signature, and the time required to legitimately sign and verify. They prove
that any -round gradual release protocol for exchanging signatures with security gap � has
unfairness �1/.

Garay and Pomerance, 2003: Garay and Pomerance [40] improve on the scheme of Boneh and
Naor [16] in several ways. First, when using the timed commitments of Boneh and Noar for
signature exchange, the signatures and commitments have to have the same public modulus,
which limits the types of signatures that can be exchanged. The protocol in this paper allows
for the exchange of several types of digital signatures. Another benefit that they introduce,
building on prior work by Garay and Jakobsson from the previous year [38], is to allow for the
reuse of public keys for the commitments. This enables them to push the overhead required
in Boneh and Naor’s commitments to a single one-time setup. They can then recommit to
new values using a very short, efficient protocol.

Pinkas, 2003: The three prior works on time-released commitments [28, 16, 40] all demon-
strate ways of proving that the underlying committed value is of a particular form, such as,
say, an RSA signature. Pinkas generalized the preceding works, providing a method for using
timed commitments in general secure two-party computation [77]. Specifically, he takes Yao’s
approach for general secure computation [88], in which P

1

creates a “garbled circuit” for P
2

to evaluate. At the end of the protocol, each player has a commitment to the value of each
output wire belonging to the other player.9 They then gradually open their commitments.
Pinkas uses a mix of “cut and choose” and blind signatures to enable the players to prove that
the underlying committed values are the actual outputs from the computation. We refer the
reader to the paper for details. His definition of fairness is very similar to the one in Boneh
and Noar’s work [16], so we do not present it here.

9Actually, this is a slightly inaccurate simplification. At the end of Yao’s protocol, for every output wire i, P2

learns a random key k

i

representing the output bit on that wire, and only P1 knows the mapping k

i

! {0, 1}. P2

is supposed to send the random values corresponding to P1’s output wires, while P1 simultaneously sends the
mapping of k

i

! {0, 1} for P2’s output wires. Pinkas demonstrates a way to compute Yao’s circuits such that in
the end, P2 holds commitments to P1’s output bits, rather than just a random value associated with each output
bit, and similarly that P1 has a commitment to the mapping of k

i

! {0, 1}.

17

Garay, MacKenzie, Prabhakaran and Yang, 2006: This paper is the first work to place the
gradual release approach into the formal security setting described in Chapter 2. The fairness
of the protocol presented in the paper uses the same timed commitments presented in Garay
and Pomerance’s prior work in order to gradually release the output of any general secure
computation [40]. The bigger contribution, though, is a new security framework, extending
the framework of Chapter 2, in order to include a notion they call resource fairness.10 Garay
et al. compare the real world protocol to an ideal world protocol, as we will do in Chapter 2,
but they modify the ideal world to model recovery of committed messages by the adversary
through the use of brute-force. Specifically, they allow the ideal world adversary early access
to these messages by “investing” resources, and then allow the honest party to request similar
resources in order to recover fairness. They then prove that an execution by the simulator in
this ideal model is indistinguishable from their real world protocol.

Probabilistic Fairness

There are several drawbacks to gradual release, which were very nicely described by
Ben-Or et al. [12] (their own approach is described later):

1. It requires both parties to have the same resources.

2. There are no explicit instructions of what to do when a player aborts prematurely.

3. It relies on the “ideal” OWF assumption: given f(x), even after revealing some bits of
x, f(x) is hard to invert.

In this section we present several works that took a second approach. As opposed to
the technique of gradual release, where the solution becomes cryptographically easier to find
after each round, they suggest using a probabilistic method in which the players’ confidence
in the solution increases over time. This has the advantage of addressing the first and third
concerns described above, though as we will see it does not always handle the second con-
cern.

Luby, Micali and Rackoff, 1983: Luby, Micali and Rackoff published a paper at FOCS in 1983
on the fair exchange of a bit [69].11 Informally, each player creates a “coin” that is biased
towards the value of their input bit by a factor of 1/. They then take turns flipping each
other’s biased coin, each time gaining more confidence in the value of the other player’s
input. Actually, implementing it this way with two independent coins is insecure, because
two independent random walks will likely diverge, creating a point in the protocol where one
player will have a constant advantage in confidence, independent of . Instead, the authors
present a way to create correlated biased coins, such that they either both land on the favored
side, or neither does.

Vazirani and Vazirani, 1983: Concurrently, Vazirani and Vazirani demonstrated a way for
Bob to send Alice a bit, while fairly receiving a “receipt” that proves that he did so. The
approach is very similar to that of Luby et al.12 The intuition is to have Alice and Bob create

10Actually, they extend the more general Universal Composability framework introduced by Canetti [21], which
models security in an interactive environment involving other protocols. For simplicity we do not describe that
framework in this thesis.

11Occasionally cited under the title “The MiRackoLus Exchange of a Secret Bit”.
12By the previous discussion about random walks, it is not clear that this result can be made into a fair bit

exchange protocol by interleaving two executions. On the other hand, the authors do state that the protocol of
Luby et al. could be made into a one bit disclosure scheme, albeit with poorer efficiency.

18

two biased coins in each round. For the first coin, Alice chooses at random whether it should
be biased towards the value of Bob’s bit or towards the opposite value. (We stress that she
does not know the value of Bob’s bit, so she does not know whether the coin is biased towards
0 or 1. But she does know whether it is biased towards the value of Bob’s bit.) The second
coin is biased towards a value of Alice’s choice, and has a further property that allows Alice
to predict its outcome. Bob cannot distinguish the two coins from one another. He flips
the two coins simultaneously, and reports both outcomes to Alice. She checks for cheating
by watching the coin she can predict, and she learns something about Bob’s bit from the
other coin. After each flip, she signs a receipt for Bob. These coins are built on the quadratic
residuosity assumption, and we leave the reader to find the details in the paper.

Beaver and Goldwasser, 1989 Just as Yao formalized the notion of fairness implied by gradual
release, Beaver and Goldwasser [11] formalize the fairness provided by Luby et al. [69]. They
demonstrate a protocol for n parties to compute any boolean function, regardless of the num-
ber of corruptions, achieving privacy, validity, and the notion of fairness defined below. To
ease the exposition, we only define fairness for two parties, though the original paper defines
it for n players. Let ⇡ be a protocol for computing F =

�

f1

(x, y), f
2

(x, y)
�

. Let VIEWH,i
⇡ (x, y)

denote the view of honest player H with input (1, x) after i rounds of interacting with A who
holds input (1, y) in protocol ⇡; we define VIEWA,i

⇡ (x, y) similarly. Let CorrectH|i(1, x) de-
note the probability (taken over the random tapes, and the input distribution) that the honest
player H, holding input (1, x), outputs the correct output, f1

(x, y) after i rounds of inter-
action with A(1

, y) in protocol ⇡. In other words, Pr[CorrectH|i] = Pr[OUTH
⇡ = f1

(x, y) |
VIEWH,i

⇡ (x, y)]. We define CorrectA|i similarly as the probability that the adversary, holding
input (1, y) outputs the correct value f2

(x, y) after i rounds of interacting with H(x, y) in ⇡.
Below, to make the notation more succinct, we leave the inputs implicit.

Definition 1.2.4 A protocol ⇡ for computing F =

�

f1

(x, y), f
2

(x, y)
�

is considered d-fair if the
following holds for all rounds i of ⇡:

1

(1 + d)
·
Pr

⇥

CorrectA|0
⇤ �

1� Pr

⇥

CorrectH|0
⇤�

Pr

⇥

CorrectH|0
⇤ �

1� Pr

⇥

CorrectA|0
⇤�


Pr

⇥

CorrectA|i
⇤ �

1� Pr

⇥

CorrectH|i
⇤�

Pr

⇥

CorrectH|i
⇤ �

1� Pr

⇥

CorrectA|i
⇤�

 (1 + d) ·
Pr

⇥

CorrectA|0
⇤ �

1� Pr

⇥

CorrectH|0
⇤�

Pr

⇥

CorrectH|0
⇤ �

1� Pr

⇥

CorrectA|0
⇤�

A protocol is fair if it is d-fair for all d > 0.

Intuitively, the idea behind the definition is to require that the partial view of the players
in the protocol never helps one player to guess the output much more than it helps the other
(even though the adversarial player may be one round “ahead”). Because one player may
begin the protocol with a greater advantage than the other (depending on the function and the
input distribution), Beaver and Goldwasser compare the ratio of the probabilities of guessing
the correct output before the protocol begins to the same ratio part-way through the protocol.
(Technically, the above requirement only guarantees security when the first player is corrupt.
We omit a similar definition for the case where the second player to act is corrupt.)

As mentioned, the authors present a protocol that achieves this definition for any polynomial-
time computable boolean function. The intuition is similar to that used by Luby et al. [69] and

19

Vazirani et al. [87] for bit exchange. In each round, the players receive the output, XORed with
a random bit that is biased slightly towards 0. Over many such rounds, their confidence in
the output approaches 1. Technically, while the earlier works had to build such a scheme from
scratch from the quadratic residuosity assumption, here the authors make use of the strong
general results for secure computation that were developed only after 1983. Specifically, by
1989 it was known that the players can unfairly compute any function, including the function
that outputs F(x, y)� b, where b is slightly biased towards 0.

With respect to the criticism of gradual release by Ben-or et al. [12], this approach, like
[69, 87] before it, addresses two out of three problems. It removes the constraint that players
have to have similar computational ability (concern 1). It also removes the strong assumptions
about the impact of revealing part of a secret key (concern 3). On the surface, it seems to also
address concern 2, that the decision of whether to recover the output is left external to the
protocol. In fact this is only partially addressed by this approach. It is true that brute-force
cannot help here, and that the output is always well defined; these properties seem beneficial.
However, the output now comes with an associated measure of confidence, and the decision
of whether to trust the output is external to the protocol.

Cleve, 1989: Cleve presents here a new approach to probabilistically revealing (or exchang-
ing) a secret bit [26]. In the three protocols described above [69, 87, 11], at each round we
could only describe the expected confidence of the receiving player. Here, Cleve presents a
protocol such that at round i, the probability of guessing the sender’s bit is always exactly pi,
where p

1

, . . . , pr are specified as parameters. The protocol is much more efficient in terms of
round complexity, requiring r rounds to achieve the same level of confidence that the prior
“biased-coin” protocols achieve in r2 log2(r) rounds (and even then, only in expectation). He
also points out that through the now existing general techniques for secure computation, this
scheme can be swapped in for Beaver and Goldwasser’s fair release of the output of a com-
putation, giving a more efficient protocol for any polynomial-time boolean function.

The definition of fairness he gives is quite informal, and only applies to the release of a
single bit. He assumes that there is no prior knowledge, and that the input bit is uniformly
distributed (though he says something informal about what happens when this is not true).

Goldwasser and Levin, 1990: The next year, Goldwasser and Levin [47] published a paper
in which they refined the notion of fairness presented in [11], and introduced a new proto-
col. The protocol satisfies their definition of partially fair computation for any polynomial
time function, whereas the four works above only allow for boolean output. Their notion
of fairness is very similar to the definition by Beaver and Goldwasser. It is more technically
involved, presumably addressing some issues that were left out of the previous definition.
For example, it also requires a bound on the standard deviation of the ratio CorrectH|i

1�CorrectH|i
(as

defined previously). Unfortunately, the authors do not spend time motivating the definition,
or comparing it to the previous definition. It is hard to infer from the definition exactly what
notion of fairness it achieves, and we do not present it here as the details do not greatly add
to the bigger picture.

The bigger contribution of the work is to extend the approach to more general functions.
Assume for the moment that the players receive the same output value OUT. The authors
achieve fairness by having the players first compute OUT� ! mod 2, where ! is a random bit
string of length l = |OUT|. Then, one round at a time, the players help each other to learn
!. They do this in l phases, each having  steps. In the ith phase, the players slowly learn
the dot product vi · !, for random vi 2 Z|OUT|

2

, gaining confidence in the value over  steps.

20

They repeat this for l such strings, v
1

, . . . ,vl 2 Zl
2

, revealing vi · ! in phase i. The idea is to
ensure that after every  steps the search space for ! (information theoretically) is cut in half.
Certainly this seems true if nothing is known about the output. However, notice that if an
adversary has some auxiliary input, which reveals, say, some bits of the output, it is possible
that a single dot product, vi · !, cuts his search space by much more than half. This issue
of auxiliary input is another concern that we will address when we define partial fairness in
Chapter 5.

Rabin, 1981: The works above all use the same basic approach. They obscure the true answer
with noise, and then reduce the noise over the course of the protocol, increasing the players’
confidence in the output. In his earlier work on fair exchange, Rabin suggests a different,
probabilistic approach to signature exchange [80]. He introduces a trusted third party, but
tries to minimize it’s involvement. Specifically, he suggests using a beacon that broadcasts
signed, time-stamped random numbers from the interval {1, . . . ,} at fixed time periods,
but which has no other interaction with the players. The protocol works as follows. Alice
and Bob begin by choosing a random value 1  i  . Alice signs and sends the following
message: “I’m committed to the following contract as long as Bob can produce a signature
from the beacon on time-stamp t and integer i.” Bob responds with the symmetric message.
If the beacon happens to sign i during time interval t, the protocol ends. Otherwise they
choose a new random number and repeat the process. If Bob ever chooses to abort early, his
advantage is exactly 1/.

By changing the beacon slightly, Rabin also introduces a protocol for releasing private
information in exchange for a receipt. (It seems this could be generalized to enable the fair
exchange of two secrets, though Rabin does not address this.) The beacon broadcasts  fresh
encryption keys, pk

1

, . . . , pk, at each interval t. In interval t + �, he broadcasts a single
corresponding decryption key, chosen at random. He then repeats these steps in a cycle. Alice
and Bob again agree on a random value 1  i  . Alice encrypts the secret information using
the ith public key that was broadcast at time t. As in the protocol for signature exchange, Bob’s
produces a signature on the statement: “I admit I have received the expected information, if
and only if the beacon broadcasts the decryption key for pki at time-step t+�.” (Technically,
we have to deal with a bad encryption by Alice, but Bob can stipulate this in his “admission”.
We omit these details.)

Ben-Or, Goldreich, Micali and Rivest: The ideas contained in this paper were first men-
tioned in a rump session talk by Rivest in 1981, though the paper was not published until
1985 [12]. As mentioned at the start of this section, one of the contributions of the work was
to highlight the drawbacks of gradual release.13 While the results of Luby et al. [69] and Vazi-
rani et al. [87], which preceded this work, address some of the concerns, they only apply to
bit exchange. The solution offered here is of a similar nature, and instead applies only to
signature exchange. They redefine a signature such that it only verifies with some specified
probability. Specifically, when signing a contract, the signer writes “The court should only ac-
cept this as a valid signature with probability p.” The players alternate sending signatures of
this form, increasing the value of p at each round until eventually p is overwhelmingly close
to 1. If a player ever terminates early, the other brings the last contract he received to a judge.
The judge flips a coin (having appropriate bias) and with probability p he rules the contract
binding. With the remaining probability he rules that it is not binding.

13The authors did not appreciate the drawbacks of gradual release in 1981, which was why they did not bother
to publish this paper until several years later.

21

Although this notion of a signature is unappealing, a major contribution of this paper is
to point out the problems with prior approaches. More importantly, it is also the earliest work
(chronologically) to formally define what is meant by fairness! In all earlier works, authors
proved security of the protocols by showing that players would be caught if they deviated
from the instructions. However, they do not prove anything about what the protocols actually
achieve – this is left to the reader to evaluate. Ben-Or et al. begin by (informally) considering
the following two definitions for fairness:

1. The probability that A is committed is large and the probability that B is not committed
is small.

2. Conditioned on A being committed, the probability that B is not committed is small.

Certainly the second suggestion implies the first, so it is at least as strong. However, the
authors point out that it is possible to satisfy the first without satisfying the second. They
consider Rabin’s protocol with beacons [80], where, using the beacon described previously
for contract signing, after every message that Alice sends, and before Bob responds, the prob-
ability that Alice is committed and Bob is not is at most 1/, satisfying definition 1. On the
other hand, after Alice sends a message, and before Bob responds, conditioned on Alice now
being committed, the probability that Bob is not committed is 1. The problem is that Bob is
never committed before he responds! Under the first definition, this is okay because Alice is
only committed with probability 1/ anyway. But a protocol with this property cannot satisfy
the second definition. They accordingly define the following notion of fairness. Let a player
be privileged if they are capable of recovering a valid signature (perhaps with the help of a
judge).

Definition 1.2.5 A contract signing protocol is (v, ✏)-fair for A if the following holds, for any contract
C, when A follows the protocol properly. At any step of the protocol in which the probability that B
is privileged is greater than v, the conditional probability that A is not privileged, given that B is
privileged, is at most ✏. A protocol is (v, ✏)-fair if it is (v, ✏)-fair for both A and B.

Then, using the approach described above, they simply instruct the players to use probability
values for their signatures that are designed to meet this definition.

Fairness For an Honest Majority

At FOCS 1985, Chor et al. [23] introduced a primitive called verifiable secret sharing
(VSS) which would have a huge impact on the field of secure computation. In standard
t-out-of-n secret sharing schemes (as defined by Shamir [84]), a user can share a secret among
n other players, with the guarantee that nothing is learned about the secret unless at least t
of them cooperate to reconstruct it. VSS adds an additional security guarantee that enables
the players (together with the owner of the secret) to verify that the shares provided are legit-
imate: i.e. that they reconstruct some unique, valid secret.

This was first used to guarantee fairness in general secure computation by Goldwasser,
Micali and Wigderson [45], and then in a long line of following work [37, 22, 13, 81, 9]. The
observation is that when t > n/2 players are honest, the players can safely begin the protocol
by first verifiably sharing their inputs and their random tapes. Then, if a player later aborts the
protocol, the honest players can cooperate to recover these values, and continue the protocol
on his behalf. It follows from these results that complete fairness can be achieved as long
as a strict majority of players are honest. (We are assuming here, and throughout this work,

22

that the players have access to a broadcast channel. This can be simulated using a public
key infrastructure. In an information theoretic setting, and without a broadcast channel, the
above results apply as long as more than 2/3 of the players are honest.)

It is interesting that the goal of Chor et al. was to implement a simultaneous broadcast
channel (which they also introduced). This is a communication network in which all players
can speak simultaneously, with the guarantee that a) if a message is broadcast, then all players
receive the same message, and b) if multiple messages are broadcast simultaneously, then the
messages are independent. This second property does not hold in standard communication
networks like the Internet, where it is quite easy to claim to have spoken simultaneously while
actually delaying the sent message, reading the received messages, and then responding only
afterwards. The authors make strong claims about what such a network would enable us to
do:

Simultaneous broadcast networks are a fundamental primitive as simultaneity lies
at the heart of many protocols: coin flipping, fair voting, contract signing, ex-
changing secrets etc... All these protocols are in fact extremely easy to implement
in an simultaneous broadcast network.

In fact, this is not true – the only application among the list that is easy to implement using a
simultaneous broadcast channel is coin flipping. (To implement this, players can all broadcast
a random bit simultaneously, and output the XOR of all received bits, using default values for
any players that abort.) The difficulty with performing, say, two-party signature exchange
in the same manner is that you have no way of ensuring that the other player will send
the correct value. We prove in Chapter 7 that simultaneous broadcast is not complete for
fairness (i.e., it does not allow us to compute all functions fairly). Indeed, we demonstrate
this by proving that a particular function, which is similar to signature exchange, cannot be
fairly computed even when players have access to a simultaneous broadcast channel. It is an
excellent open question to figure out exactly which functions this primitive allows us to fairly
compute. Informally, our own conjecture is that it does not help for very many functions
beyond coin flipping.

Optimistic Exchange

A different notion of fairness was suggested by Asokan et al. [3] and Micali [72]. Here, the
users interact in a protocol that may end unfairly, but, whenever it does, they are guaranteed
that fairness can be restored by a trusted third party. The novelty here is that the trusted
party can remain offline until their is a dispute. This notion of fairness is very interesting, and
has lead to a long line of research, both on optimistic contract signing in the two-party case
[4, 8, 39, 76, 5], the multi-party case [30, 66, 65], and on optimistic general secure computation
[19]. We do not review these works here.

23

Chapter 2

Definitions and Preliminaries

In this chapter we provide some basic definitions and notations that are used through-
out the thesis. In Sections 2.1 through 2.7 we define standard notation and the conventional
notions of security in secure computation [60, 42]. The reader familiar with this material may
choose to skip those subsections, or return to them as needed. In Section 2.8 we present a
canonical form for secure computation that almost all of the protocols in this thesis will fol-
low. We note that some additional definitions that are used only in Chapters 6 and 7 appear
in those chapters rather than here.

2.1 Basic Notation

We let  denote the security parameter. A function µ(·) is negligible if for every positive
polynomial p(·) and all sufficiently large  it holds that µ() < 1/p(). A distribution ensemble
X = {X(a,)}a2D



,2N is an infinite sequence of random variables indexed by a 2 D and
 2 N, where D is a set that may depend on . (Looking ahead,  will be the security pa-
rameter and D will denote the domain of the parties’ inputs.) Two distribution ensembles
X = {X(a,)}a2D



,2N and Y = {Y (a,)}a2D


,2N are computationally indistinguishable, de-
noted X

c⌘ Y , if for every non-uniform polynomial-time algorithm D there exists a negligible
function µ(·) such that for every  and every a 2 D

�

�

Pr[D(X(a,)) = 1]� Pr[D(Y (a,)) = 1]

�

�  µ().

The statistical difference between two distributions X(a,) and Y (a,) is defined as

SD
�

X(a,), Y (a,)
�

=

1

2

·
X

s

�

�

Pr[X(a,) = s]� Pr[Y (a,) = s]
�

� ,

where the sum ranges over s in the support of either X(a,) or Y (a,). Two distribution
ensembles X = {X(a,)}a2D



,2N and Y = {Y (a,)}a2D


,2N are statistically close, denoted
X

s⌘ Y , if there is a negligible function µ(·) such that for every  and every a 2 D, it holds
that SD

�

X(a,), Y (a,)
�

 µ().

Functionalities. In the two-party setting, a functionality F = {f}2N is a sequence of random-
ized processes, where each f maps pairs of inputs to pairs of outputs (one for each party). We
write f = (f1

 , f
2

) if we wish to emphasize the two outputs of f, but stress that if f1

 and f2



are randomized then the outputs of f1

 and f2

 are correlated random variables. The domain

24

of f is X ⇥ Y, where X (resp., Y) denotes the possible inputs of the first (resp., second)
party. If |X| and |Y| are polynomial in , then we say that F is defined over polynomial-size
domains.

The above definition extends naturally to the multi-party setting. In this thesis, the only
multi-party functions we will consider have the form f : {0, 1}⇥ · · ·⇥ {0, 1}! {0, 1}, where
the input of player Pi is xi, and all n players receive the same output bit.

2.2 Basic Cryptographic Primitives

Message authentication codes. We briefly review the standard definition for information-
theoretically secure message authentication codes (MACs). A message authentication code con-
sists of three polynomial-time algorithms (Gen,Mac,Vrfy). The key-generation algorithm Gen
takes as input the security parameter 1 in unary and outputs a key k. The message authenti-
cation algorithm Mac takes as input a key k and a message M 2 {0, 1}n, and outputs a tag t;
we write this as t = Mack(M). The verification algorithm Vrfy takes as input a key k, a message
M 2 {0, 1}n, and a tag t, and outputs a bit b; we write this as b = Vrfyk(M, t). We regard
b = 1 as acceptance and b = 0 as rejection, and require that for all , all k output by Gen(1),
and all M 2 {0, 1}, it holds that Vrfyk(M,Mack(M)) = 1.

We say (Gen,Mac,Vrfy) is a secure m-time MAC, where m may be a function of , if no
computationally unbounded adversary can output a valid tag on a new message, with high
probability, after seeing valid tags on m other messages. For our purposes, we do not require
security against an adversary who adaptively chooses its m messages for which to obtain a
valid tag; it suffices to consider a non-adaptive definition where the m messages are fixed in
advance. (Nevertheless, known constructions satisfy the stronger requirement.) Formally:

Definition 2.2.1 Message authentication code (Gen,Mac,Vrfy) is an information-theoretically se-
cure m-time MAC if for any sequence of messages M

1

, . . . ,Mm and any adversary A, the following
is negligible in the security parameter :

Pr



k Gen(1); 8i : ti = Mack(Mi);

(M 0, t0) A(M
1

, t
1

, . . . ,Mm, tm)

: Vrfyk(M
0, t0) = 1

^

M 0 62 {M
1

, . . . ,Mm}
�

.

Digital signatures. In some cases where we consider multi-party computation it will not
suffice for us to rely on message authentication codes. (With MACs, the ability to verify
implies the ability to tag, and this causes problems when there is a possibility of collusion.)
We therefore review the notion of a digital signature, which is the public-key counter-part of
MACs. Digital signatures are known to exist assuming one way functions exist [83].

A digital signature scheme consists of three polynomial-time algorithms (Gen, Sign,Vrfy).
The key-generation algorithm, Gen, takes as input the security parameter 1

 in unary and out-
puts a pair of keys (pk, sk). The signing algorithm, Sign, takes as input a key sk and a message
M 2 {0, 1}n, and outputs a signature �; we write this as � = Signsk(M). The verification
algorithm, Vrfy, takes as input a key pk, a message M 2 {0, 1}n, and a signature �, and out-
puts a bit b; we write this as b = Vrfypk(M,�). We regard b = 1 as acceptance and b = 0 as
rejection, and require that for all , all (pk, sk) output by Gen(1), all M 2 {0, 1}n, it holds
that Vrfypk(M, Signsk(M)) = 1.

As with the case of MACs, it suffices for us to have signature schemes that are m-time
secure against a non-adaptive adversary.

25

Definition 2.2.2 Signature scheme (Gen,Mac,Vrfy) is an m-time signature scheme if for any
sequence of messages M

1

, . . . ,Mm and any probabilistic, polynomial-time adversary A, the following
is negligible in the security parameter :

Pr



(pk, sk) Gen(1); 8i : �i = Signsk(Mi);

(M 0,�0) A(M
1

,�
1

, . . . ,Mm,�m)

: Vrfypk(M
0,�0) = 1

^

M 0 62 {M
1

, . . . ,Mm}
�

.

Secret sharing schemes. A secret sharing scheme allows a dealer to split some secret s 2 F,
where F is some publicly known field, into shares, such that reconstruction of s is possible
only if enough shares are known.

Definition 2.2.3 A t-out-of-n secret sharing scheme is a pair of polynomial-time algorithms, (Share,Rec).
On input t, n 2 N and s 2 F, Share(t, n, s) outputs shares {s

1

, . . . , sn} 2 F with the following prop-
erties:

• For any S ⇢ {s
1

, . . . , sn} such that |S| < t, S reveals nothing about s information theoretically.

• For any S ⇢ {s
1

, . . . , sn} such that |S| � t, Rec(S) = s.

Non-malleable secret sharing schemes. A non-malleable secret sharing scheme is a secret
sharing scheme with an additional property, guaranteeing that if any party manipulates their
share in any way, the reconstruction protocol outputs a special failure symbol. For our pur-
poses, a 2-out-of-2 scheme will suffice, so we define that.

Definition 2.2.4 A 2-out-of-2 non-malleable secret sharing scheme (NMSS scheme) is defined by a
pair of polynomial-time algorithms (Share,Rec) with the following properties:

• Share(s, r) returns 2 shares, (s
0

, s
1

) (where si is the share of the i-th party) such that a single
share reveals no information about s.

• Rec(Share(s, r)) = (s, 0) for every s, r. The second output of Rec serves as a flag which is set to
0 if the secret has been successfully reconstructed.

• Any attempt by a player to modify their share (independently of the remaining share) is detected
with overwhelming probability. Formally, we say that (Share,Rec) is ✏-non-malleable if for
every secret s, every (computationally unbounded) adversary A can win the following game
with probability at most ✏:

– A corrupts one of the parties.
– Random shares (s

0

, s
1

) from Share(s, r) are given to the 2 parties.
– Based on the share sA it observed, A computes a new share s⇤A.
– A wins if s⇤A 6= sA and Rec(s⇤A, sH) = (s0, 0) for some secret s0, where sH is the share

received by the uncorrupted party.

26

2.3 Secure Two-Party Computation with Complete Fairness

In what follows, we define what we mean by a secure protocol. This definition follows
the definition of [42], which is today the “accepted” notion of security1. The basic underlying
idea of the definition is to compare the result of the interaction to an ideal world that is secure
by definition. Specifically, we prove a protocol is secure by comparing it to an ideal world
where the players submit their inputs to a trusted party that computes the functionality on
their behalf, and simultaneously returns appropriate output to each participant. Of course,
on the surface, our real world protocol and this ideal world are very different, so it is not im-
mediately obvious what it means to compare them. Let us begin by considering our privacy
requirement: the players should not learn anything more from the interaction than is revealed
from their own inputs and outputs. The earliest security definitions formalized this require-
ment in the following way: for any probabilistic polynomial-time adversary A interacting in
a protocol ⇡ for computing functionality F , there must exist a probabilistic polynomial-time
simulator S acting in the ideal world, where there is trusted access to functionality F , such
that

�

VIEW⇡,A(x,)(x, y,)

c⌘
�

VIEWF ,S(x,)(x, y,)

Here, VIEW⇡,A(x,)(x, y,) is a random variable representing the view of the adversary when
acting in the real world protocol ⇡, where both he and the honest player are given security
parameter , A is given input x 2 X, and the honest player is given input y 2 Y. The
random variable VIEWF ,S(x,)(x, y,) is some transcript created by the simulator in the ideal
world, after being given the same input as the adversary, along with the adversary’s output
from F(x, y). We know by definition that the simulator cannot have learned anything inap-
propriate in the ideal world. We can conclude that if the simulator can create the same view
that A would see while interacting in protocol ⇡, then the view of A is harmless as well.

This definition works very well for the privacy requirement, but what about our other
security concerns? The above security notion ensures that the view of the adversary is harm-
less; our only other concern can be with the output of the honest player. Our worry here is
that the adversary could somehow influence the view of the honest player in a way that re-
sults in “bad” output. For example, if the functionality is randomized, the adversary should
not be able to skew the output distribution. So how exactly should we define “bad” output?
One thing to note is that there is no way we can prevent the adversary from changing his own
input: even if he is given input x, he can always choose to interact honestly as though he were
given input x0. However, putting this issue aside, we can demand strong security properties
by again comparing to an ideal world. Letting OUT⇡,A(x,)(x, y,) be a random variable rep-
resenting the output of the honest player on inputs y and  while interacting with A(x,) in
⇡, and OUTF ,S(x,)(x, y,) be a random variable representing the honest player’s output in
the ideal world, we have the following requirement:

�

OUT⇡,A(x,)(x, y,)

c⌘
�

OUTF ,S(x,)(x, y,)

This guarantees that regardless of how A behaves in the protocol ⇡, the output distribution of
the honest player is indistinguishable from his output distribution in the ideal world. How-
ever, we do not restrict the simulator S in terms of what values it may submit to the function-

1Actually, this definition of security only applies in the stand-alone setting, where the function being computed
is isolated from other computations. The work of Canetti [20] demonstrates an even stronger notion of security
that allows us to prove protocols secure even when they are executed simultaneously with arbitrary other proto-
cols. For the purposes of our work, we are satisfied with the stand-alone setting.

27

ality F in the ideal world. In particular, it may choose to submit any x0 2 X, and, therefore,
so may the adversary A in the real world.

We note that it does not suffice to consider these two security properties independently,
but rather we are concerned with the joint distribution over the above random variables.
This captures the requirement that the protocol not only protect the privacy of the inputs,
but that it also guarantee that the adversary cannot correlate his choice of input with the
input of the other party. This will be made explicit in the formal definition of security, which
appears next. In this definition, we give the adversary some auxiliary information z. This
models the possibility that each player will have some external information about the other
player’s input. It also allows us to model non-uniform computation. Technically, we should
also prove that the protocol is secure against eavesdroppers. However, in the two-party case
this property is easily achieved by using a secure channel (which can be assumed, or can be
implemented using cryptography.) Finally, we note that the definition implies a very strong
notion of fairness. This is inherited from the property of the ideal functionality that gives
output to both players at exactly the same time. We are now ready for the complete definition.

Execution in the ideal model. The parties are P
1

and P
2

, and there is an adversary A who has
corrupted one of them. An ideal execution for the computation of F = {(f1

 , f
2

)} proceeds as
follows:

Inputs: P
1

and P
2

hold the same value 1

, and their inputs x 2 X and y 2 Y, respectively;
the adversary S receives an auxiliary input z.

Send inputs to trusted party: The honest party sends its input to the trusted party. The cor-
rupted party controlled by S may send any value of its choice. Denote the pair of inputs
sent to the trusted party by (x0, y0).

Trusted party sends outputs: If x0 62 X the trusted party sets x0 to some default input in X;
likewise if y0 62 Y the trusted party sets y0 equal to some default input in Y. Then
the trusted party chooses r uniformly at random and sends f1

(x
0, y0; r) to party P

1

and
f2

(x
0, y0; r) to party P

2

.

Outputs: The honest party outputs whatever it was sent by the trusted party. S outputs an
arbitrary (probabilistic polynomial-time computable) function of its view.

We let
IDEALF ,S(z)(x, y,) =

�

VIEWF ,S(x,,z)(x, y,), OUTF ,S(x,,z)(x, y,)
�

be the random variable consisting of the output of the adversary and the output of the honest
party following an execution in the ideal model as described above.

Execution in the real model. We next consider the real model in which a two-party protocol
⇡ is executed by P

1

and P
2

(and there is no trusted party). In this case, the adversary A gets
the inputs of the corrupted party and sends all messages on behalf of this party, using an
arbitrary polynomial-time strategy. The honest party follows the instructions of ⇡.

Let F be as above and let ⇡ be a two-party protocol computing F . Let A be a non-uniform
probabilistic polynomial-time machine with auxiliary input z. We let

REAL⇡,A(z)(x, y,) =
�

VIEW⇡,A(x,,z)(x, y,), OUT⇡,A(x,,z)(x, y,)
�

be the random variable consisting of the view of the adversary and the output of the honest
party, following an execution of ⇡ where P

1

begins by holding 1

 and input x and P
2

begins
by holding 1

 and y.

28

Security as emulation of an ideal execution in the real model. Having defined the ideal and
real models, we can now define security of a protocol. Loosely speaking, the definition asserts
that a secure protocol (in the real model) emulates the ideal model (in which a trusted party
exists). This is formulated as follows:

Definition 2.3.1 Protocol ⇡ is said to securely compute F with complete fairness if for every
non-uniform probabilistic polynomial-time adversary A in the real model, there exists a non-uniform
probabilistic polynomial-time adversary S in the ideal model such that

�

IDEALF ,S(z)(x, y,)

(x,y)2X


⇥Y


, z2{0,1}⇤,2N
c⌘
�

REAL⇡,A(z)(x, y,)

(x,y)2X


⇥Y


, z2{0,1}⇤,2N

Relationship to Fairness: The above definition requires that the fairness achieved in the real
world protocol is indistinguishable from the complete fairness achieved (by definition) in the
ideal world. This is much stronger than any of the definitions that are given in Section 1.2,
and indeed, it turns out to be impossible to achieve in general when at least half of the players
are malicious. However, as we shall see, it can be achieved for some interesting functions.

One interesting observation which we made in Section 1.2 is that this definition does still
allow for one player to have an advantage with respect to confidence in the value of F(x, y).
At first glance, this might not be obvious, since the definition requires that a secure protocol is
indistinguishable from an ideal execution where both players simultaneously receive output,
and learn nothing else. Consider, however, an ideal world adversary A that has input x but
submits x0 to the trusted party. It is quite possible that from the result F(x0, y), A gains con-
fidence in the “correct” output F(x, y). At the same time, the honest player outputs F(x0, y)
which may in fact be incorrect. Since this behavior is impossible to prevent, we see this as
evidence that confidence in the output is not an appropriate measure for fairness.

2.4 Secure Two-Party Computation With Abort

As discussed in the previous chapter, we already know that certain functions of interest,
such as bit exchange and signature exchange, cannot be achieved in the two-party setting
according to Definition 2.3.1. As such, the following relaxation of the previous definition
has become the conventional definition in the two-party setting [42]. It differs only in the
definition of the ideal world, where it allows the malicious player to abort early. Specifically,
the adversary will receive its own output from the functionality first, and then choose whether
or not the functionality should give output to the honest party as well. By relaxing the ideal
world model in this way, we are making it easier to prove security of real world protocols
when we have aborting adversaries. We note that with the exception of fairness, all other
security properties are still preserved by this definition. The benefit of this definition is that
there are general results showing how to compute any polynomial-time computable function
securely according to this definition [42].

We again let P
1

and P
2

denote the two parties, and consider an adversary A who has
corrupted one of them. The only change from the definition in Section 2.3 is with regard to
the ideal model for computing F = {f}, which is now defined as follows:

Inputs: As previously.

Send inputs to trusted party: As previously.

29

Trusted party sends output to corrupted party: If x0 62 X the trusted party sets x0 to some
default input in X; likewise if y0 62 Y the trusted party sets y0 equal to some default
input in Y. Then the trusted party chooses r uniformly at random, computes z

1

=

f1

(x
0, y0; r) and z

2

= f2

(x
0, y0; r), and sends zi to the corrupted party Pi (i.e., to the

adversary S).

Adversary decides whether to abort: After receiving its output (as described above), the ad-
versary either sends abort or continue to the trusted party. In the former case the trusted
party sends ? to the honest party Pj , and in the latter case the trusted party sends zj
to Pj .

Outputs: As previously.

We let IDEALabort
F ,A(z)(x, y,) be the random variable consisting of the output of the adversary

and the output of the honest party following an execution in the ideal model as described
above.

Definition 2.4.1 Protocol ⇡ is said to securely compute F with abort if for every non-uniform
probabilistic polynomial-time adversary A in the real model, there exists a non-uniform probabilistic
polynomial-time adversary S in the ideal model such that
n

IDEALabort
F ,S(z)(x, y,)

o

(x,y)2X


⇥Y


, z2{0,1}⇤,2N
c⌘
�

REAL⇡,A(z)(x, y,)

(x,y)2X


⇥Y


, z2{0,1}⇤,2N

2.5 Secure Multi-Party Computation with Complete Fairness

Execution in the ideal model. The parties are P = {P
1

, . . . , Pn}, and there is an adversary S
who has corrupted some subset I ⇢ P of them. An ideal execution for the computation of F
proceeds as follows:

Inputs: Each party Pi holds its input xi and the security parameter . The adversary S also
receives an auxiliary input z.

Send inputs to trusted party: The honest parties send their inputs to the trusted party. S
may substitute any values it likes on behalf of the corrupted parties. We denote by x0i
the value sent to the trusted party on behalf of Pi.

Trusted party sends outputs: If any x0i is not in the correct domain, the trusted party sets
x0i = x̂i for some default value x̂i. Then, the trusted party chooses r uniformly at random
and sends fi(x0

1

, . . . , x0n; r) to each Pi.

Outputs: The honest parties output whatever they were sent by the trusted party, the cor-
rupted parties output nothing, and S outputs an arbitrary function of its view.

We let IDEALF ,S(z)(x1, . . . , xn,) be the random variable consisting of the output of the ad-
versary and the output of the honest parties following an execution in the ideal model as
described above.

Execution in the real model. Here a multi-party protocol ⇡ is executed by P , and there is no
trusted party. In this case, the adversary A gets the inputs of the corrupted parties (as well
as an auxiliary input z) and sends all messages on behalf of these parties, using an arbitrary
polynomial-time strategy. The honest parties follow the instructions of ⇡.

30

Let F be as above and let ⇡ be a multi-party protocol computing F . Let A be a non-
uniform probabilistic polynomial-time machine with auxiliary input z. We let REAL⇡,A(z)(x1, . . . , xn,)
be the random variable consisting of the view of the adversary and the output of the honest
parties, following an execution of ⇡ where Pi begins holding its input xi and the security
parameter .

Security as emulation of an ideal execution. Having defined the ideal and real models, we
can now define security of a protocol. Loosely speaking, the definition says that a secure
protocol (in the real model) emulates the ideal model (in which a trusted party exists).

Definition 2.5.1 Let F be as above. Protocol ⇡ is said to t-securely compute F with complete
fairness if for every non-uniform probabilistic polynomial-time adversary A in the real model that
corrupts at most t players, there exists a non-uniform probabilistic polynomial-time adversary S in the
ideal model such that

�

IDEALF ,S(z)(~x,)

~x2({0,1}⇤)n, z2{0,1}⇤,2N
c⌘
�

REAL⇡,A(z)(~x,)

~x2({0,1}⇤)n, z2{0,1}⇤,2N

Technically, we should also consider security against an external eavesdropper, even in
the case when all players are considered honest. We assume for simplicity that there is a
secure broadcast channel between the players, which immediately guarantees this security
property2.

2.6 Secure Multi-Party Computation With Designated Abort

This definition is standard for secure multi-party computation without an honest major-
ity [42], and is a direct parallel to Definition 2.4.1. It allows early abort (i.e., the adversary may
receive its own outputs even though the honest parties do not), but only if P

1

is corrupted.
We again let P = {P

1

, . . . Pn} denote the parties, and consider an adversary S who has
corrupted a subset I ⇢ P of them. The only change from the definition in Section 2.5 is with
regard to the ideal model for computing F , which is now defined as follows:

Inputs: As previously.

Send inputs to trusted party: As previously.

If any x0i is not in the correct domain, the trusted party sets x0i = x̂i for some de-
fault value x̂i. Then, the trusted party chooses r uniformly at random and sets zi =

fi(x
0
1

, . . . , x0n; r).

Trusted party sends outputs, P
1

honest: The trusted party sends zi to each Pi.

Trusted party sends outputs, P
1

corrupt: The trusted party sends {zi}i:P
i

2I to S . Then S
sends either abort or continue to the trusted party. In the former case the trusted party
sends ? to all honest parties, and in the latter case the trusted party sends zi to each
honest Pi.

Note that an adversary corrupting P
1

can always abort the protocol, even if |I| < n/2.
2To actually implement such a channel, players could (for example) encrypt each message n � 1 times, once

under each of the other player’s public keys, and broadcast all n � 1 messages. They then follow this with a
zero-knowledge proof that each ciphertext is an encryption of the same message. In fact, it suffices to do this only
once in order to establish a single shared symmetric key that can be used to encrypt all broadcast messages in the
remainder of the protocol.

31

Outputs: As previously.

We let IDEALabort
F ,S(z)(~x,) be the random variable consisting of the output of the adversary and

the output of the honest parties following an execution in the ideal model as described above.

Definition 2.6.1 Let f be a functionality, and let ⇡ be a protocol computing F . Protocol ⇡ is said to t-
securely compute F with designated abort if for every non-uniform probabilistic polynomial-time
adversary A in the real model that corrupts at most t players, there exists a non-uniform probabilistic
polynomial-time adversary S in the ideal model such that

n

IDEALabort
F ,S(z)(~x,)

o

~x2({0,1}⇤)n, z2{0,1}⇤,2N
c⌘
�

REAL⇡,A(z)(~x,)

~x2({0,1}⇤)n, z2{0,1}⇤,2N

2.7 The Hybrid Model

The hybrid model combines both the real and ideal models. Specifically, an execution
of a protocol ⇡ in the G-hybrid model, for some functionality G, involves the parties sending
normal messages to each other (as in the real model) but, in addition, the parties have access
to a trusted party computing G. The parties communicate with this trusted party in exactly the
same way as in the ideal models described above; the question of which ideal model is taken
(that with or without abort) must be specified. In this manuscript, we will always considered
a hybrid model where the functionality G is computed according to the ideal model with abort.

For our purposes here, we will require that any protocol in the G-hybrid model makes
only sequential calls to G; i.e., there is at most a single call to G per round, and no other mes-
sages are sent during any round in which G is called.

Let G be a functionality and let ⇡ be a two-party protocol for computing some func-
tionality F , where ⇡ includes real messages between the parties as well as calls to G. Let
A be a non-uniform probabilistic polynomial-time machine with auxiliary input z. We let
HYBRIDG

⇡,A(z)(x, y,) be the random variable consisting of the view of the adversary and the
output of the honest party, following an execution of ⇡ (with ideal calls to G) where P

1

be-
gins by holding 1

 and input x and P
2

begins by holding 1

 and input y. Both security with
complete fairness and security with abort can be defined via the natural modifications of Def-
initions 2.3.1 and 2.4.1.

The hybrid model gives a powerful tool for proving the security of protocols. Specifically,
we may design a real-world protocol for securely computing some functionality F by first
constructing a protocol for computing F in the G-hybrid model. Letting ⇡ denote the protocol
thus constructed (in the G-hybrid model), we denote by ⇡⇢ the real-world protocol in which
calls to G are replaced by sequential execution of a real-world protocol ⇢ that computes G.
(“Sequential” here implies that only one execution of ⇢ is carried out at any time, and no
other ⇡-protocol messages are sent during execution of ⇢.) The results of [20] then imply that
if ⇡ securely computes F in the G-hybrid model, and ⇢ securely computes G with abort, we
can conclude that the composed protocol ⇡⇢ securely computes F (in the real world). For
completeness, we state this formally in the form we will use in this work:

Proposition 2.7.1 Let ⇢ be a protocol that securely computes G with abort, and let ⇡ be a protocol that
securely computes F with complete fairness in the G-hybrid model (where G is computed according to
the ideal world with abort). Then protocol ⇡⇢ securely computes F with complete fairness.

32

In Section 2.8 we will describe a functionality that we call ShareGen. This functionality
will be very useful in the results presented in later chapters, as almost all of our protocols will
begin by having the players perform some known, general protocol for the secure computa-
tion of ShareGen. In our proofs of security, we will make use of the preceding proposition,
and rather than proving that the execution of ShareGen was secure, we will compare the ideal
world to the hybrid world where the parties have ideal access to ShareGen.

2.8 A Canonical Form for Fair Two-Party Computation

We present here a general format that will be used in many of the results presented in this
thesis. It is general enough that any protocol for two-party computation can be compiled to
fit this format, and, in addition to simplifying the description of our protocols, it also makes it
far easier to analyze their fairness properties. The protocol format first formally appeared in
our work on complete fairness [49] which is described in Chapter 3, however a very similar
idea was used even in our earlier work on rational secret sharing [51], presented in Chapter
6.

The basic format is as follows. To compute F(x, y), the players begin by using their inputs
to F to compute a different functionality we call ShareGen. This will be done unfairly (i.e., us-
ing a protocol that achieves security with abort, as defined in Section 2.4) using known results
for secure two-party computation [88, 45, 42]. Instead of returning F(x, y), ShareGen(x, y) re-
turns to each player two sequences of secret shares, where the secrets are related to F(x, y)
in some way. Exactly how the secrets are related to F(x, y) will depend on the particular
function F , and will have to be specified each time we present a new protocol. However, we
will only need to redefine a small (isolated) component, and the remainder of the protocol
will remain according to the template presented here. For now, it suffices to think of the out-
put of ShareGen as secret shares of sequences of plausible outputs from F . The description of
ShareGen appears in Figure 2.1. We note that although the computation of ShareGen will be
unfair, the output of ShareGen does not reveal anything about the output F(x, y) (due to the
randomness of the secret sharings).

ShareGen

Inputs: Let the inputs to ShareGen be x and y. If one of the received inputs is not in the correct
domain, it is replaced with a default value. The security parameter is .
Computation:

1. Choose the values a1, . . . , am and b1, . . . , bm.
(Exact instructions for how to do this depend on the function F being computed.)

2. For 1  i  m, choose (a
(1)
i , a

(2)
i) and (b

(1)
i , b

(2)
i) as random secret sharings of ai and bi,

respectively. (I.e., a(1)i is random and a
(1)
i � a

(2)
i = ai.)

3. Compute ka, kb Gen(1). For 1  i  m, let tai = Macka(ika
(2)
i) and tbi = Mackb(ikb

(1)
i).

Output:

1. P1 receives the values a(1)1 , . . . , a
(1)
m and (b

(1)
1 , tb1), . . . , (b

(1)
m , tbm), and the MAC-key ka.

2. P2 receives the values (a(2)1 , ta1), . . . , (a
(2)
m , tam) and b

(2)
1 , . . . , b

(2)
m , and the MAC-key kb.

Figure 2.1: Functionality ShareGen with parameter m = m().

33

⇧F

Inputs: Party P1 has input x and party P2 has input y. The security parameter is .
The protocol:

1. Preliminary phase:
(a) Let ŷ be some default input value for P2 and x̂ some default input for P1. We

define a0 = f1(x, ŷ) and b0 = f2(x̂, y).
(b) Parties P1 and P2 run some (unfair) protocol ⇡ for computing ShareGen, using their

respective inputs x, y, and security parameter .
(c) If P1 receives ? from the above computation (because P2 aborts the computation

or uses an invalid input in ⇡) she outputs a0 and halts. Likewise, if P2 receives ?,
he outputs b0 and halts. Otherwise, the parties proceed.

(d) Denote the output of P1 from ⇡ by a
(1)
1 , . . . , a

(1)
m , (b(1)1 , tb1), . . . , (b

(1)
m , tbm), and ka.

(e) Denote the output of P2 from ⇡ by (a
(2)
1 , ta1), . . . , (a

(2)
m , tam), b(2)1 , . . . , b

(2)
m , and kb.

2. For i = 1, . . . ,m do:
P2 sends the next share to P1:

(a) P2 sends (a(2)i , tai) to P1.

(b) P1 receives (a
(2)
i , tai) from P2. If Vrfyka

(ika(2)i , tai) = 0 (or if P1 received an invalid
message, or no message), then P1 outputs ai�1 and halts

(c) If Vrfyka
(ika(2)i , tai) = 1, P1 computes and stores the value ai = a

(1)
i � a

(2)
i and

continues running the protocol.

P1 sends the next share to P2:
(a) P1 sends (b(1)i , tbi) to P2.

(b) P2 receives (b
(1)
i , tbi) from P1. If Vrfykb

(ikb(1)i , tbi) = 0 (or if P2 received an invalid
message, or no message), then P2 outputs bi�1 and halts.

(c) If Vrfykb
(ikb(1)i , tbi) = 1, P2 computes and stores the value bi = b

(1)
i � b

(2)
i and

continues running the protocol.

Outputs: P1 outputs am and P2 outputs bm.

Figure 2.2: Protocol for computing F , using ShareGen.

Once the players have each obtained their two sequences of secret shares, they alternate
exchanging them for r rounds. Player two begins round i by sending a

(2)

i , enabling player one
to compute ai = a

(1)

i � a
(2)

i . Player one then responds by sending b
(1)

i , which enables player
two to compute bi = b

(1)

i � b
(2)

i . We note that the way the values (a
1

, . . . , ar) and (b
1

, . . . , br)
are chosen will depend on the particular function F being computed. If some player aborts in
round i, the other player simply outputs the value they computed in the prior round: e.g., if
player two fails to send a

(2)

i , then player one outputs ai�1 and halts. The formal description of
how this is done is presented in Figure 2.2. We also use message authentication codes (MACs)
to prevent a player from sending an incorrect share; if a player sends a share that does not
correctly verify, this is treated as an abort. Effectively, then, the only option for a malicious
player is to play honestly, or choose to abort.

Note that the format is quite general. Although we will not prove this formally, it is not
too hard to see that any two-party protocol ⇡ for computing F can be compiled into a protocol

34

with the above format. Intuitively, we simply view ShareGen as simulating the protocol “in
its head”, determining the outputs of each player at each round should their opponent abort,
and setting the values of ai and bi to be exactly these output values.

35

Chapter 3

Complete Fairness in Secure Two-Party
Computation

As we have discussed in Chapter 1, it has been known since the early 1980’s that fairly
computing certain functions is impossible, including the natural example of signature ex-
change, and even the far simpler function of bit exchange. Although the security model at
that time was not yet standardized, it is easy to see that the impossibility results extend to
the definition of fairness implied by Defintion 2.3.1. In this chapter, we demonstrate several
surprising results that show how to compute certain interesting functions with complete fair-
ness according to Definition 2.3.1. We begin with a fairly simple protocol for the Millionaire’s
problem, and then proceed to give a slightly more involved protocol that computes a wider
class of functions. The work in this Chapter first appeared at STOC 2008 [49].

3.1 Fair Computation of the Millionaires’ Problem (and More)

In this section, we describe a protocol for securely computing the millionaires’ problem
(and related functionalities) with complete fairness. Specifically, we look at functions defined
by a lower-triangular matrix, as in the following table:

y
1

y
2

y
3

y
4

y
5

y
6

x
1

0 0 0 0 0 0
x
2

1 0 0 0 0 0
x
3

1 1 0 0 0 0
x
4

1 1 1 0 0 0
x
5

1 1 1 1 0 0
x
6

1 1 1 1 1 0

Let F = {fm()}2N denote a function of the above form, where m = m() denotes the
size of the domain of each input which we assume have the same size. (Handling the case
where they are unequal involves a trivial technical change to the protocol. The details are
described in the original work [49].) Let Xm = {x

1

, . . . , xm} denote the valid inputs for the
first party and let Ym = {y

1

, . . . , ym} denote the valid inputs for the second party. By suitably
ordering these elements, we may write fm as follows:

fm(xi, yj) =

⇢

1 if i > j
0 if i  j

. (3.1)

36

Viewed in this way, fm is exactly the millionaires’ problem or, equivalently, the “greater than”
function. The remainder of this section is devoted to a proof of the following theorem:

Theorem Let m = poly(). Assuming the existence of constant-round general secure two-party
computation with abort, there exists an ⇥(m)-round protocol that securely computes F = {fm} with
complete fairness.

Constant-round protocols for general secure two-party computation with abort can be
constructed based on enhanced trapdoor permutations or any constant-round protocol for
oblivious transfer [68]. (The assumption of a constant-round protocol is only needed for the
claim regarding round complexity.) The fact that our protocol requires (at least) ⇥(m) rounds
explains why we require m = poly(). When m = 2, we obtain a constant-round protocol
for computing boolean AND with complete fairness and, by symmetry, we also obtain a pro-
tocol for boolean OR. We remark further that our results extend to variants of fm such as
the “greater than or equal to” function, or the “greater than” function where the sizes of the
domains X and Y are unequal, and most generally, to any function without an “embedded
XOR” (defined in Section 3.2); see [49] for a full discussion.

3.1.1 The Protocol

In this section, we write f in place of fm, and X and Y in place of Xm and Ym.

Intuition. At a high level, our protocol works as follows. Say the input of P
1

is xi, and the
input of P

2

is yj . Following a constant-round “pre-processing” phase, the protocol proceeds
in a series of m iterations, where P

1

learns the output — namely, the value f(xi, yj) — in
iteration i, and P

2

learns the output in iteration j. (That is, in contrast to standard protocols,
the iteration in which a party learns the output depends on the value of its own input.) If one
party (say, P

1

) aborts after receiving its iteration-k message, and the second party (say, P
2

)
has not yet received its output, then P

2

“assumes” that P
1

learned its output in iteration k,
and computes f on its own using input xk for P

1

. (In this case, that means that P
2

would
output f(xk, yj).) We stress that a malicious P

1

may, of course, abort in any iteration it likes
(and not necessarily in the iteration in which it learns its output); the foregoing is only an
intuitive explanation.

The key observation for why this yields a fair protocol is as follows. If P
1

aborts before
he learns anything then the protocol is still fair. On the other hand, if he aborts after he has
learned the output, then he has also revealed an upper bound on his input! We therefore
assume that he has learned something, and use the information that this provides to ensure
fairness. More specifically, say P

1

is malicious and uses xi as its effective input. Let yj denote
the input of P

2

. There are two possibilities: P
1

either aborts in iteration k < i, or iteration k �
i. (If P

1

never aborts then fairness is trivially achieved.) In the first case, P
1

never learns
the correct output and so fairness is achieved. In the second case, P

1

does obtain the output
f(xi, yj) (in iteration i) and then aborts in some iteration k � i. Here we consider two sub-
cases depending on the value of P

2

’s input yj :

• If j < k then P
2

has already received its output in a previous iteration and fairness is
achieved.

• If j � k then P
2

has not yet received its output. Since P
1

aborts in iteration k, the
protocol directs P

2

to output f(xk, yj). However, since j � k � i, we have f(xk, yj) =
0 = f(xi, yj) (relying on the specifics of f), and so the output of P

2

is equal to the output

37

obtained by P
1

(and thus fairness is achieved). This is the key observation that enables
us to obtain fairness for this function.

We formalize the above intuition in our proof, where we demonstrate an ideal-world simula-
tor corresponding to the actions of any malicious P

1

. Of course, we also consider the case of
a malicious P

2

.

Formal description of the protocol. Technically, the protocol proceeds according to the tem-
plate described in Section 2.8. All we need to do is to specify how the values (a

1

, . . . , am)

and (b
1

, . . . , bm) are set within ShareGen. (Recall, this is the only component of the canonical
form that is function specific.) To aid the reader, however, we also include an outline of the
complete protocol here, ignoring some of the details that were elaborated in Section 2.8 (such
as the message authentication). Recall that the parties first execute ShareGen(xi, yj) in order
to receive secret shares of the values a

1

, . . . , am and b
1

, . . . , bm. We set:

ak =

⇢

f(xi, yk) if k < i
f(xi, yj) if k � i

bk =

⇢

f(xk+1

, yj) if k < j
f(xi, yj) if k � j

The players then exchange their secret shares one-by-one in a sequence of m iterations. Specif-
ically, in iteration i party P

2

will send a
(2)

i to P
1

, thus allowing P
1

to reconstruct the value ai
def

=

a
(1)

i � a
(2)

i , and then P
1

will send b
(1)

i to P
2

, thus allowing P
2

to learn the value bi
def

= b
(2)

i � b
(1)

i .

ShareGen

Inputs: Let the inputs to ShareGen be xi and yj . If one of the received inputs is not in the
correct domain, then both parties are given output ?. The security parameter is .
Computation:

1. Define values a1, . . . , am and b1, . . . , bm in the following way:

ak =

⇢

f(xi, yk) if i > k
f(xi, yj) if i  k

bk =

⇢

f(xk+1, yj) if j > k
f(xi, yj) if j  k

2. For 1  k  m, choose (a
(1)
k , a

(2)
k) and (b

(1)
k , b

(2)
k) as random secret sharings of ak and bk,

respectively. (I.e., a(1)k is random and a
(1)
k � a

(2)
k = ak.)

Output:

1. P1 receives the values a(1)1 , . . . , a
(1)
m , b

(1)
1 , . . . , b

(1)
m .

2. P2 receives the values a(2)1 , . . . , a
(2)
m , b

(2)
1 , . . . , b

(2)
m .

Figure 3.1: Functionality ShareGen.

Theorem 3.1.1 If (Gen,Mac,Vrfy) is an information-theoretically secure m-time MAC, and ⇡ se-
curely computes ShareGen with abort, then the protocol in Figure 3.2 securely computes {fm} with
complete fairness.

38

⇧mill

Inputs: Party P1 has input xi and party P2 has input yj . The security parameter is .
The protocol:

1. Preliminary phase:
(a) We define a0 = f(xi, y0) and b0 = f(x1, yj).
(b) Parties P1 and P2 run some (unfair) protocol ⇡ for computing ShareGen, using their

respective inputs xi, yj , and security parameter .
(c) If P1 receives ? from the above computation she outputs a0 and halts. Likewise, if

P2 receives ?, he outputs b0 and halts. Otherwise, the parties proceed.

(d) Denote the output of P1 from ⇡ by a
(1)
1 , . . . , a

(1)
m , b

(1)
1 , . . . , b

(1)
m .

(e) Denote the output of P2 from ⇡ by a
(2)
1 , . . . , a

(2)
m , b

(2)
1 , . . . , b

(2)
m .

2. For i = 1, . . . ,m do:
P2 sends the next share to P1:

(a) P2 sends a(2)i to P1.
(b) If P1 received an invalid message, or no message, then P1 outputs ai�1 and halts.

P1 sends the next share to P2:
(a) P1 sends b(1)i to P2.
(b) If P2 received an invalid message, or no message, then P2 outputs bi�1 and halts.

Outputs: P1 outputs am and P2 outputs bm.

Figure 3.2: Protocol for computing the Millionaire problem, using ShareGen.

Proof: Let ⇧mill denote the protocol in Figure 3.2. We analyze ⇧mill in a hybrid model where
there is a trusted party computing ShareGen. (Note: since ⇡ is only guaranteed to securely
compute ShareGen with abort, the adversary in the hybrid model is allowed to abort the
trusted party computing ShareGen before output is sent to the honest party.) We prove that
an execution of ⇧mill in this hybrid model is statistically close to an evaluation of f in the ideal
model (with complete fairness), where the only difference occurs due to MAC forgeries. Ap-
plying Proposition 2.7.1 then implies the theorem.

We separately analyze corruption of P
1

and P
2

, beginning with P
1

:

Claim 3.1.2 For every non-uniform, polynomial-time adversary A corrupting P
1

and running ⇧mill

in a hybrid model with access to an ideal functionality computing ShareGen (with abort), there exists a
non-uniform, probabilistic polynomial-time adversary S corrupting P

1

and running in the ideal world
with access to an ideal functionality computing f (with complete fairness), such that

�

IDEALf,S(z)(x, y,)

(x,y)2X
m

⇥Y
m

,z2{0,1}⇤,2N
s⌘
n

HYBRIDShareGen
⇧mill,A(z)(x, y,)

o

(x,y)2X
m

⇥Y
m

,z2{0,1}⇤,2N

Proof: Let P
1

be corrupted by A. We construct a simulator S given black-box access to A:

1. S invokes A on the input x, the auxiliary input z, and the security parameter .

2. S receives the input x0 of A to the computation of the functionality ShareGen.

(a) If x0 /2 X (this includes the case when x0 = ? since A aborts), then S hands ? to
A as its output from the computation of ShareGen, sends x

1

to the trusted party
computing f , outputs whatever A outputs, and halts.

39

(b) Otherwise, if the input is some x0 2 X , then S chooses uniformly-distributed
shares a(1)

1

, . . . , a
(1)

m and b
(1)

1

, . . . , b
(1)

m . In addition, it generates keys ka, kb Gen(1)

and computes tbi = Mack
b

(ikb(1)i) for every i. Finally, it hands A the strings a(1)
1

, . . . , a
(1)

m ,
(b

(1)

1

, tb
1

), . . . , (b
(1)

m , tbm), and ka as its output from the computation of ShareGen.

3. If A sends abort to the trusted party computing ShareGen (signalling that P
2

should
receive ? as output from ShareGen), then S sends x

1

to the trusted party computing f ,
outputs whatever A outputs, and halts. Otherwise (i.e., if A sends continue), S proceeds
as below.

4. Let i (with 1  i  m) be the index such that x0 = xi (such an i exists since x0 2 X).

5. To simulate iteration j, for j < i, simulator S works as follows:

(a) S chooses a
(2)

j such that a(1)j � a
(2)

j = f(xi, yj) = 1, and computes the tag taj =

Mack
a

(jka(2)j). Then S gives A the message (a
(2)

j , taj).

(b) S receives A’s message (

ˆb
(1)

j , ˆtbj) in the jth iteration:

i. If Vrfyk
b

(jkˆb(1)j , ˆtbj) = 0 (or the message is invalid, or A aborts), then S sends xj
to the trusted party computing f , outputs whatever A outputs, and halts.

ii. If Vrfyk
b

(jkˆb(1)j , ˆtbj) = 1, then S proceeds to the next iteration.

6. To simulate iteration i, simulator S works as follows:

(a) S sends xi to the trusted party computing f , and receives back the output z =

f(xi, y).

(b) S chooses a
(2)

i such that a(1)i � a
(2)

i = z, and computes the tag tai = Mack
a

(ika(2)i).
Then S gives A the message (a

(2)

i , tai).

(c) S receives A’s message (

ˆb
(1)

i , ˆtbi). If Vrfyk
b

(ikˆb(1)i , ˆtbi) = 0 (or the message is invalid,
or A aborts), then S outputs whatever A outputs, and halts. If Vrfyk

b

(jkˆb(1)j , ˆtbj) = 1,
then S proceeds to the next iteration.

7. To simulate iteration j, for i < j  m, simulator S works as follows:

(a) S chooses a
(2)

j such that a(1)j � a
(2)

j = z, and computes the tag taj = Mack
a

(jka(2)j).
Then S gives A the message (a

(2)

j , taj).

(b) S receives A’s message (

ˆb
(1)

j , ˆtbj). If Vrfyk
b

(jkˆb(1)j , ˆtbj) = 0 (or the message is invalid,
or A aborts), then S outputs whatever A outputs, and halts. If Vrfyk

b

(jkˆb(1)j , ˆtbj) = 1,
then S proceeds to the next iteration.

8. If S has not halted yet, at this point it halts and outputs whatever A outputs.

We analyze the simulator S described above. In what follows we assume that if
Vrfyk

b

(jkˆb(1)j , ˆtbj) = 1 then ˆb
(1)

j = b
(1)

j (meaning that A sent the same share that it received).
Under this assumption, we show that the distribution generated by S is identical to the

distribution in a hybrid execution between A and an honest P
2

. Since this assumption holds
with all but negligible probability (by security of the information-theoretic MAC), this proves
statistical closeness as stated in the claim.

40

Let y denote the input of P
2

. It is clear that the view of A in an execution with S is
identical to the view of A in a hybrid execution with P

2

; the only difference is that the initial
shares given to A are generated by S without knowledge of z = f(x0, y), but since these shares
are uniformly distributed the view of A is unaffected. Therefore, what is left to demonstrate
is that the joint distribution of A’s view and P

2

’s output is identical in the hybrid world and
the ideal world. We show this now by separately considering three different cases:

1. Case 1: S sends x
1

to the trusted party because x0 62 X , or because A aborted the computation
of ShareGen: In the hybrid world, P

2

would have received ? from ShareGen, and would
have then output f(x

1

, y) as instructed by protocol ⇧mill. This is exactly what P
2

out-
puts in the ideal execution with S because, in this case, S sends x

1

to the trusted party
computing f .

If Case 1 does not occur, let xi be defined as in the description of the simulator.
2. Case 2: S sends xj to the trusted party, for some j < i: This case occurs when A aborts

the protocol in some iteration j < i (either by refusing to send a message, sending an
invalid message, or sending an incorrect share). There are two sub-cases depending on
the value of P

2

’s input y. Let ` be the index such that y = y`. Then:

(a) If ` � j then, in the hybrid world, P
2

would not yet have determined its output
(since it only determines its output once it receives a valid message from P

1

in
iteration `). Thus, as instructed by the protocol, P

2

would output f(xj , y). This is
exactly what P

2

outputs in the ideal world, because S sends xj to the trusted party
in this case.

(b) If ` < j then, in the hybrid world, P
2

would have already determined its output
f(x0, y) = f(xi, y`) in the `th iteration. In the ideal world, P

2

will output f(xj , y`)
since S sends xj to the trusted party. Since j < i we have ` < j < i and so
f(xj , y`) = f(xi, y`) = 1. Thus, P

2

’s output f(xi, y) in the hybrid world is equal to
its output f(xj , y) in the ideal execution with S .

3. Case 3: S sends xi to the trusted party: Here, P
2

outputs f(xi, y) in the ideal execution. We
show that this is identical to what P

2

would have output in the hybrid world. There are
two sub-cases depending on P

2

’s input y. Let ` be the index such that y = y`. Then:

(a) If ` < i, then P
2

would have already determined its output f(x0, y) = f(xi, y) in
the `th iteration. (The fact that we are in Case 3 means that A could not have sent
an incorrect share prior to iteration i.)

(b) If ` � i, then P
2

would not yet have determined its output. There are two sub-cases:
i. A sends correct shares in iterations j = i, . . . , ` (inclusive). Then P

2

would
determine its output as b

(1)

` � b
(2)

` = f(x0, y) = f(xi, y), exactly as in the ideal
world.

ii. A sends an incorrect share in iteration ⇣, where i  ⇣  `. In this case, by
the specification of the protocol, party P

2

would output f(x⇣ , y) = f(x⇣ , y`).
However, since i  ⇣  ` we have f(x⇣ , y`) = 0 = f(xi, y`). Thus, P

2

outputs
the same value in the hybrid and ideal executions.

This concludes the proof of the claim.
The following claim, dealing with a corrupted P

2

, completes the proof of the theorem:

41

Claim 3.1.3 For every non-uniform, polynomial-time adversary A corrupting P
2

and running ⇧mill

in a hybrid model with access to an ideal functionality computing ShareGen (with abort), there exists a
non-uniform, probabilistic polynomial-time adversary S corrupting P

2

and running in the ideal world
with access to an ideal functionality computing f (with complete fairness), such that

�

IDEALf,S(z)(x, y,)

(x,y)2X
m

⇥Y
m

,z2{0,1}⇤,2N
s⌘
n

HYBRIDShareGen
⇧mill,A(z)(x, y,)

o

(x,y)2X
m

⇥Y
m

,z2{0,1}⇤,2N
.

Proof: Say P
2

is corrupted by A. We construct a simulator S given black-box access to A:

1. S invokes A on the input y, the auxiliary input z, and the security parameter .

2. S receives the input y0 of A to the computation of the functionality ShareGen.

(a) If y0 /2 Y (this includes the case when y0 = ? since A aborts), then S hands ? to
A as its output from the computation of ShareGen, sends y

1

to the trusted party
computing f , outputs whatever A outputs, and halts.

(b) Otherwise, if the input is some y0 2 Y , then S chooses uniformly-distributed shares
a
(2)

1

, . . . , a
(2)

m and b
(2)

1

, . . . , b
(2)

m . In addition, it generates keys ka, kb Gen(1) and
computes tai = Mack

a

(ika(2)i) for every i. Finally, it hands A the strings b(2)
1

, . . . , b
(2)

m ,
(a

(2)

1

, ta
1

), . . . , (a
(2)

m , tam), and kb as its output from the computation of ShareGen.

3. If A sends abort to the trusted party computing ShareGen, then S sends y
1

to the trusted
party computing f , outputs whatever A outputs, and halts. Otherwise (i.e., if A sends
continue), S proceeds as below.

4. Let i (with 1  i  m) be the index such that y0 = yi (such an i exists since y0 2 Y).

5. To simulate iteration j, for j < i, simulator S works as follows:

(a) S receives A’s message (â
(2)

j , ˆtaj) in the jth iteration:

i. If Vrfyk
a

(jkâ(2)j , ˆtaj) = 0 (or the message is invalid, or A aborts), then S sends
yj�1 to the trusted party computing f (if j = 1, then S sends y

1

), outputs
whatever A outputs, and halts.

ii. If Vrfyk
a

(jkâ(2)j , ˆtaj) = 1, then S proceeds.

(b) Choose b(1)j such that b(1)j �b
(2)

j = f(xj+1

, yi), and compute the tag tbj = Mack
b

(jkb(1)j).
Then give to A the message (b

(1)

j , tbj).

6. To simulate iteration i, simulator S works as follows:

(a) S receives A’s message (â
(2)

i , ˆtai).

i. If Vrfyk
a

(ikâ(2)i , ˆtai) = 0 (or the message is invalid, or A aborts), then S sends
yi�1 to the trusted party computing f (if i = 1 then S sends y

1

), outputs what-
ever A outputs, and halts.

ii. If Vrfyk
a

(ikâ(2)i , ˆtai) = 1, then S sends yi to the trusted party computing f ,
receives the output z = f(x, yi), and proceeds.

(b) Choose b
(1)

i such that b(1)i � b
(2)

i = z, and compute the tag tbi = Mack
b

(ikb(1)i). Then
give to A the message (b

(1)

i , tbi).

42

7. To simulate iteration j, for i < j  m, simulator S works as follows:

(a) S receives A’s message (â
(2)

j , ˆtaj). If Vrfyk
a

(jkâ(2)j , ˆtaj) = 0 (or the message is invalid,
or A aborts), then S outputs whatever A outputs, and halts. If Vrfyk

a

(jkâ(2)j , ˆtaj) =
1, then S proceeds.

(b) Choose b
(1)

j such that b(1)j � b
(2)

j = z, and compute the tag tbj = Mack
b

(jkb(1)j). Then
give to A the message (b

(1)

j , tbj).

8. If S has not halted yet, at this point it halts and outputs whatever A outputs.

As in the proof of the previous claim, we assume in what follows that if
Vrfyk

a

(jkâ(2)j , ˆtaj) = 1 then â
(2)

j = a
(2)

j (meaning that A sent P
1

the same share that it received).
Under this assumption, we show that the distribution generated by S is identical to the dis-
tribution in a hybrid execution between A and an honest P

1

. Since this assumptions holds
with all but negligible probability (by security of the MAC), this proves statistical closeness
as stated in the claim.

Let x denote the input of P
1

. Again, it is clear that the view of A in an execution with S
is identical to the view of A in a hybrid execution with P

1

. What is left to demonstrate is that
the joint distribution of A’s view and P

1

’s output is identical. We show this by considering
four different cases:

1. Case 1: S sends y
1

to the trusted party because y0 62 Y , or because A aborted the computation
of ShareGen: In such a case, the protocol instructs P

1

to output f(x, y
1

), exactly what P
1

outputs in the ideal world.

2. Case 2: S sends y
1

to the trusted party because A sends an incorrect share in the first iteration:
In this case, the simulator sends y

1

to the trusted party computing f , and so the output
of P

1

in the ideal world is f(x, y
1

). In the hybrid world, P
1

will also output f(x, y
1

) as
instructed by the protocol.

If Cases 1 and 2 do not occur, let yi be defined as in the description of the simulator.
3. Case 3: S sends yj�1 to the trusted party, for some 1  j � 1 < i, because A sends an incorrect

share in the jth iteration:
The output of P

1

in the ideal world is f(x, yj�1). There are two sub-cases here, depend-
ing on the value of P

1

’s input x. Let ` be the index such that x = x`. Then:

(a) If ` < j then, in the hybrid world, P
1

would have already determined its output
f(x, y0) = f(x`, yi). But since `  j � 1 < i we have f(x`, yi) = 0 = f(x`, yj�1), and
so P

1

’s output is identical in both the hybrid and ideal worlds.
(b) If ` � j then, in the hybrid world, P

1

would not yet have determined its output.
Therefore, as instructed by the protocol, P

1

will output f(x, yj�1) in the hybrid
world, which is exactly what it outputs in the ideal execution with S .

4. Case 4: S sends yi to the trusted party: This case occurs when A sends correct shares up
through and including iteration i. The output of P

1

in the ideal world is f(x, yi). There
are again two sub-cases here, depending on the value of P

1

’s input x. Let ` be the index
such that x = x`. Then:

(a) If `  i, then P
1

would have already determined its output f(x, y0) = f(x`, yi) in
the `th iteration. This matches what P

1

outputs in the ideal execution with S .

43

(b) If ` > i, then P
1

would not have yet have determined its output. There are two
sub-cases:

i. A sends correct shares in iterations j = i + 1, . . . , ` (inclusive). This implies
that, in the hybrid world, P

1

would determine its output to be a
(1)

` � a
(2)

` =

f(x, y0) = f(x, yi), exactly as in the ideal execution.
ii. A sends an incorrect share in iteration ⇣, where i < ⇣  `. In this case, by the

specification of the protocol, party P
1

would output f(x, y⇣�1) = f(x`, y⇣�1) in
the hybrid world. But since i  ⇣ � 1 < ` we have f(x`, y⇣�1) = 1 = f(x`, yi),
and so P

1

’s output is identical in both the hybrid and ideal worlds.

This completes the proof of the claim.
The preceding claims along with Proposition 2.7.1 imply the theorem.

3.2 Fair Computation of Functions with an Embedded XOR

We say that a function F has an embedded XOR if there exist inputs x
0

, x
1

, y
0

, y
1

such
that f(xi, yj) = i � j. We prove in [49] that the protocol presented in the preceding section
can be used to compute any boolean function without an embedded XOR, providing com-
plete security and fairness. Essentially, it is not hard to see that any such function can be
“rearranged” to fit the description of the greater than function given in Section 3.1.

Recall that Cleve’s result showing impossibility of completely-fair coin tossing implies
the impossibility of completely-fair computation of boolean XOR. More generally, it implies
the impossibility of completely-fair computation of any function f that enables coin tossing.
Furthermore, note that the protocol from the previous section relies heavily on the property
that function does not contain an embedded XOR; specifically, we require that for j � k � i,
we have f(xk, yj) = f(xi, yj) and this property does not hold if yj is part of an embedded XOR
with xk and xi, regardless of how we order the inputs. It is tempting to conclude, therefore,
that no function containing an embedded XOR can be computed with complete fairness. In
this section, we show that this is not the case — that there exist functions with an embedded
XOR that can be computed with complete fairness. Interestingly, however, such functions
appear to be “more difficult” to compute with complete fairness; specifically, we refer the
reader to Section 3.3 where we prove a lower bound of !(log ) on the round complexity
of any protocol for completely-fair computation of any function having an embedded XOR.
(Note that, in general, this bound is incomparable to the result of the previous section, where
the round complexity was linear in the domain size.)

It will be instructive to see why Cleve’s impossibility result does not immediately rule
out complete fairness for all functions containing an embedded XOR. Consider the following
function f (which is the example for which we will later prove feasibility):

y
1

y
2

x
1

0 1
x
2

1 0
x
3

1 1

If the parties could be forced to choose their inputs from {x
1

, x
2

} and {y
1

, y
2

}, respec-
tively, then it would be easy to generate a fair coin toss from any secure computation of f
(with complete fairness) by simply instructing both parties to choose their inputs uniformly
from the stated domains. (This results in a fair coin toss since the output is uniform as long as

44

either party chooses their input at random.) Unfortunately, a protocol for securely computing
f does not restrict the first party to choosing its input in {x

1

, x
2

}, and cannot prevent that
party from choosing input x

3

and thus biasing the result toward 1 with certainty. (Naive so-
lutions, such as modifying the protocol to require the first party to provide a zero-knowledge
proof that it chose its input in {x

1

, x
2

}, do not work. The reason is that we still need a way for
the second party to decide on their output in case the zero-knowledge proof of the first party
fails. The original fair protocol for computing f may specify (and rely upon the fact) that P

2

with input y should default to outputting f(x
3

, y) when P
1

cheats.)
Of course, this only shows that Cleve’s impossibility result does not apply, but it does

not prove that a completely-fair protocol for computing f exists. In this section we present
a generic protocol for computing a boolean function F = {f : X ⇥ Y ! {0, 1}}. (For
convenience, we write X and Y and drop the explicit dependence on  in what follows.)
The protocol is parameterized by a function ↵ = ↵(), and the number of rounds is set to
m = !(↵�1 log ) in order for correctness to hold with all but negligible probability. (We thus
must have ↵ noticeable to ensure that the number of rounds is polynomial in .)

We do not claim that the protocol is completely-fair for arbitrary functions F and arbi-
trary settings of ↵. Rather, we claim that for some functions F there exists a corresponding
↵ for which the protocol is completely fair. In Section 3.2.1, we prove this for one specific
function that contains an embedded XOR. In Section 3.2.2 we generalize the proof and show
that the protocol can be used for completely-fair computation of a wider class of functions.
We categorize the class of functions there.

Overview and intuition. As before, the parties begin by executing an unfair computation of
ShareGen (cf. Figure 3.3) and receive as output secret shares of a

1

, b
1

, . . . , am, bm. As always,
these values are generated based on the parties’ respective inputs x and y, and it remains only
to describe how these values are fixed.

In contrast to our earlier protocol, however, the values a
1

, b
1

, . . . , am, bm are now gener-
ated probabilistically in the following way: first, a value i⇤ 2 {1, . . . ,m} is chosen according to a
geometric distribution with parameter ↵ (see below). For i < i⇤, the value ai (resp., bi) is cho-
sen in a manner that is independent of P

2

’s (resp., P
1

’s) input; specifically, we set ai = f(x, ŷ)
for randomly-chosen ŷ 2 Y (and analogously for bi). For all i � i⇤, the values ai and bi are set
equal to f(x, y). More formally,

ai =

⇢

f(x, ŷ) if i < i⇤ | where ŷ
r Y

f(x, y) if i � i⇤

bi =

⇢

f(x̂, y) if i < i⇤ | where x̂
r X

f(x, y) if i � i⇤

We note that fresh randomness is used in selecting x̂ and ŷ each time. Note that if m =

!(log ), we have am = bm = f(x, y) with all but negligible probability and so correctness
holds. (The protocol could also be modified so that am = bm = f(x, y) with probability 1,
thus giving perfect correctness. But the analysis is easier without this modification.)

Fairness is more difficult to see and, of course, cannot hold for all functions f , since
some functions cannot be computed fairly. But as intuition for why the protocol achieves
fairness for certain functions, we observe that: (1) if a malicious party (say, P

1

) aborts in some
iteration i < i⇤, then P

1

has not yet obtained any information about P
2

’s input and so fairness
is trivially achieved. On the other hand, (2) if P

1

aborts in some iteration i > i⇤ then both
P
1

and P
2

have received the correct output f(x, y) and fairness is obtained. The worst case,

45

ShareGen

Inputs: Let the inputs to ShareGen be x 2 X and y 2 Y . (If one of the received inputs is not in
the correct domain, then both parties are given output ?.)
Computation:

1. Define values a1, . . . , am and b1, . . . , bm in the following way:
• Choose i⇤ according to a geometric distribution with parameter ↵ (see text).
• For i = 1 to i⇤ � 1 do:

– Choose ŷ Y and set ai = f(x, ŷ).
– Choose x̂ X and set bi = f(x̂, y).

• For i = i⇤ to m, set ai = bi = f(x, y).

2. For 1  i  m, choose (a
(1)
i , a

(2)
i) and (b

(1)
i , b

(2)
i) as random secret sharings of ai and bi,

respectively. (E.g., a(1)i is random and a
(1)
i � a

(2)
i = ai.)

Output:
1. Send to P1 the values (a(1)1 , . . . , a

(1)
m , b

(1)
1 , . . . , b

(1)
m)

2. Send to P2 the values (a(2)1 , . . . , a
(2)
m , b

(2)
1 , . . . , b

(2)
m)

Figure 3.3: Functionality ShareGen for functions with embedded XOR.

then, occurs when P
1

aborts exactly in iteration i⇤, as it has then learned the correct value of
f(x, y) while P

2

has not (since P
2

has only seen values b
1

, . . . bi⇤�1, which are independent
of P

1

’s input). However, P
1

cannot identify iteration i⇤ with certainty (this holds even if it
knows the other party’s input y) and, even though it may guess i⇤ correctly with noticeable
probability, the fact that it can never be sure whether its guess is correct will suffice to ensure
fairness. Recall that fairness is defined only through an indistinguishability requirement; if
P
1

outputs the correct output while P
2

does not, this fact by itself does not violate fairness.1
This point will play a key role when we prove security: the simulator will rely on the fact that
any malicious P

1

that aborts in round i⇤ must also, with noticeable probability, abort in some
round i < i⇤. Furthermore, we will use the fact that one case is indistinguishable from the
other.

Formal description of the protocol. The protocol is parameterized by a value ↵ = ↵() which
is assumed to be noticeable. Let m = !(↵�1 log ). As usual, we use an m-time MAC with
information-theoretic security, however to ease the reading we ignore these details and refer
the reader to Section 2.8 for technical details.

As described above, ShareGen generates a value i⇤ according to a geometric distribution
with parameter ↵. This is the probability distribution on N = {1, 2, . . .} given by repeating
a Bernoulli trial (with parameter ↵) until the first success. In other words, i⇤ is determined
by tossing a biased coin (that is heads with probability ↵) until the first head appears, and
letting i⇤ be the number of tosses performed. We remark that, as far as ShareGen is concerned,
if i⇤ > m then the exact value of i⇤ is unimportant, and so ShareGen can be implemented in
strict (rather than expected) polynomial time. In any case, our choice of m ensures that i⇤  m
with all but negligible probability.

Again, as before, the protocol for computing f begins by calling ShareGen as a subroutine
1If this is unsettling, consider a different adversary that aborts the protocol before it begins, and attempts to

guess the output. This adversary may also output the correct value alone, but intuitively, there is nothing unfair
in his action.

46

and then has the parties exchange their shares. A formal description of the protocol is given
in Figure 3.4. Note that the players do not know the value of i⇤, as this was selected inside the
(secure) randomized protocol for ShareGen.

⇧EXOR

Inputs: Party P1 has input x and party P2 has input y. The security parameter is .
The protocol:

1. Preliminary phase:
(a) P1 chooses ŷ 2 Y uniformly at random, and sets a0 = f(x, ŷ). Similarly, P2 chooses

x 2 X uniformly at random, and sets b0 = f(x̂, y).
(b) Parties P1 and P2 run protocol ⇡ for computing ShareGen, using their respective

inputs x and y, and security parameter .
(c) If P1 receives ? from the above computation, it outputs a0 and halts. Likewise, if

P2 receives ? then it outputs b0 and halts. Otherwise, the parties proceed to the
next step.

(d) Denote the output of P1 from ⇡ by a
(1)
1 , . . . , a

(1)
m , b

(1)
1 , . . . , b

(1)
m .

(e) Denote the output of P2 from ⇡ by a
(2)
1 , . . . , a

(2)
m , b

(2)
1 , . . . , b

(2)
m .

2. For i = 1, . . . ,m do:
P2 sends the next share to P1:

(a) P2 sends a(2)i to P1.

(b) P1 receives a(2)i from P2. If P1 received an invalid message, or no message, then P1

outputs ai�1 and halts.

P1 sends the next share to P2:
(a) P1 sends b(1)i to P2.

(b) P2 receives b
(1)
i from P1. If P2 received an invalid message, or no message), then

P2 outputs bi�1 and halts.

Outputs: P1 outputs am and P2 outputs bm.

Figure 3.4: Protocol for computing a function f .

3.2.1 Proof of Security for a Particular Function

Protocol ⇧EXOR cannot guarantee complete fairness for all functions f . Rather, what we
claim is that for certain functions f and particular associated values of ↵, the protocol provides
complete fairness. In this section, we prove security for the following function f :

y
1

y
2

x
1

0 1
x
2

1 0
x
3

1 1

This function has an embedded XOR, and is defined over a finite domain so that X = X =

{x
1

, x
2

, x
3

} and Y = Y = {y
1

, y
2

}. For this f , we set ↵ = 1/5 in Protocol ⇧EXOR.

Theorem 3.2.1 If (Gen,Mac,Vrfy) is an information-theoretically secure m-time MAC, and ⇡ se-
curely computes ShareGen with abort, then the protocol in Figure 3.4, with ↵ = 1/5, securely com-

47

putes f with complete fairness.

Proof: Let ⇧ denote the protocol in Figure 3.4 with ↵ = 1/5. We analyze ⇧ in a hybrid model
where there is a trusted party computing ShareGen. (One again, we stress that since ⇡ is only
guaranteed to securely compute ShareGen with abort, the adversary is allowed to abort the
trusted party computing ShareGen before it sends output to the honest party.) We will prove
that an execution of Protocol ⇧EXOR in this hybrid model is statistically close to an evaluation
of f in the ideal model with complete fairness, where the only differences can occur due to
MAC forgeries. Applying Proposition 2.7.1 then implies the theorem.

In the two claims that follow, we separately analyze corruption of P
2

and P
1

. The case of
a corrupted P

2

is relatively easy to analyze since P
1

always “gets the output first” (because,
in every iteration — and iteration i⇤ in particular — P

2

sends its share first). The proof of
security when P

1

is corrupted is much more challenging, and is given second.

Claim 3.2.2 For every non-uniform, polynomial-time adversary A corrupting P
2

and running ⇧ in
a hybrid model with access to an ideal functionality computing ShareGen (with abort), there exists a
non-uniform, probabilistic polynomial-time adversary S corrupting P

2

and running in the ideal world
with access to an ideal functionality computing f (with complete fairness), such that

�

IDEALf,S(z)(x, y,)

(x,y)2X⇥Y,z2{0,1}⇤,2N
s⌘
n

HYBRIDShareGen0
⇧,A(z) (x, y,)

o

(x,y)2X⇥Y,z2{0,1}⇤,2N
.

Proof: Let P
2

be corrupted by A. We construct a simulator S given black-box access to A:

1. S invokes A on the input y, the auxiliary input z, and the security parameter . The
simulator also chooses ŷ 2 Y uniformly at random. (It will send ŷ to the trusted party,
if needed.)

2. S receives the input y0 of A to the computation of the functionality ShareGen.

(a) If y0 /2 Y (this includes the case when y0 = ? since A aborts), then S hands ? to
A as its output from the computation of ShareGen and sends ŷ to the trusted party
computing f . It then halts and outputs whatever A outputs.

(b) Otherwise, if the input is some y0 2 Y , then S chooses uniformly-distributed shares
a
(2)

1

, . . . , a
(2)

m and b
(2)

1

, . . . , b
(2)

m . In addition, it generates keys ka, kb Gen(1) and
computes tai = Mack

a

(ika(2)i) for every i. Finally, it hands A the strings b(2)
1

, . . . , b
(2)

m ,
(a

(2)

1

, ta
1

), . . . , (a
(2)

m , tam), and kb as its output from the computation of ShareGen.

3. If A sends abort to the trusted party computing ShareGen, then S sends ŷ to the trusted
party computing f . It then halts and outputs whatever A outputs. Otherwise (i.e., if A
sends continue), S proceeds as below.

4. S chooses i⇤ according to a geometric distribution with parameter ↵.

5. For i = 1 to i⇤ � 1:

(a) S receives A’s message (â
(2)

i , ˆtai) in the ith iteration. If Vrfyk
a

(ikâ(2)i , ˆtai) = 0 (or the
message is invalid, or A aborts), then S sends ŷ to the trusted party computing f ,
outputs whatever A outputs, and halts. Otherwise, S proceeds.

48

(b) S chooses x̂ 2 X uniformly at random, computes bi = f(x̂, y0), sets b(1)i = b
(2)

i � bi,
and computes tbi = Mack

b

(ikb(1)i). It gives A the message (b
(1)

i , tbi). (Note that a fresh
x̂ is chosen in every iteration.)

6. For i = i⇤:

(a) S receives A’s message (â
(2)

i⇤ , ˆtai⇤). If Vrfyk
a

(i⇤kâ(2)i⇤ , ˆtai⇤) = 0 (or the message is in-
valid, or A aborts), then S sends ŷ to the trusted party computing f , outputs what-
ever A outputs, and halts. Otherwise, S sends y0 to the trusted party computing f ,
receives the output z = f(x, y0), and proceeds.

(b) S sets b
(1)

i⇤ = b
(2)

i⇤ � z, and computes tbi⇤ = Mack
b

(i⇤kb(1)i⇤). It gives A the message
(b

(1)

i⇤ , tbi⇤).

7. For i = i⇤ + 1 to m:

(a) S receives A’s message (â
(2)

i , ˆtai) in the ith iteration. If Vrfyk
a

(ikâ(2)i , ˆtai) = 0 (or the
message is invalid, or A aborts), then S outputs whatever A outputs, and halts.

(b) S sets b
(1)

i = b
(2)

i � z, and computes tbi = Mack
b

(ikb(1)i). It gives A the message
(b

(1)

i , tbi).

8. If S has not halted yet, at this point it outputs whatever A outputs and halts.

We assume that if Vrfyk
a

(ikâ(2)i , ˆtai) = 1, then â
(2)

i = a
(2)

i (meaning that A sent the same
share that it received). It is straightforward to prove that this is the case with all but negligible
probability based on the information-theoretic security of the MAC. Under this assumption,
the distribution generated by S in an ideal-world execution with a trusted party computing f
is identical to the distribution in a hybrid execution between A and an honest P

1

. To see this,
first note that the view of A is identical in both worlds. As for the output of P

1

, if A aborts (or
sends an invalid message) before sending its first-iteration message, then P

1

outputs f(x, ŷ)
for a random ŷ 2 Y in both the hybrid and ideal worlds. If A aborts after sending a valid
iteration-i message then, conditioned on A’s view at that point, the distribution of i⇤ is identi-
cal in the hybrid and ideal worlds. Moreover, in both worlds, P

1

outputs f(x, ŷ) (for a random
ŷ 2 Y) if i < i⇤ and outputs f(x, y0) if i � i⇤. This concludes the proof of this case.

We remark that the proof of the preceding claim did not depend on the value of ↵ or the
particular function f . The value of ↵ and the specific nature of f will become important when
we deal with a malicious P

1

in the proof of the following claim.

Claim 3.2.3 For every non-uniform, polynomial-time adversary A corrupting P
1

and running ⇧ in
a hybrid model with access to an ideal functionality computing ShareGen (with abort), there exists a
non-uniform, probabilistic polynomial-time adversary S corrupting P

1

and running in the ideal world
with access to an ideal functionality computing f (with complete fairness), such that

�

IDEALf,S(z)(x, y,)

(x,y)2X⇥Y,z2{0,1}⇤,2N
s⌘
n

HYBRIDShareGen0
⇧,A(z) (x, y,)

o

(x,y)2X⇥Y,z2{0,1}⇤,2N
.

Proof Sketch: The proof of the above claim is the most technical part of this section. We begin
by giving some intuition before proceeding with the proof. Consider first the simulator from
the proof of Claim 3.2.2 (adapted in the natural way for P

1

). The simulation succeeds as long
as the adversary aborts before or after round i⇤. However, if the adversary aborts exactly in

49

round i⇤, the simulation fails. As before, the simulator will have to send x0 to the trusted party
at the beginning of this round in order to learn the correct output value. Then, because the
ideal world is fair, P

2

also receives correct output. In contrast, in the real world protocol, if P
1

aborts in round i⇤, P
2

outputs bi⇤�1, which is a random output value, and is not necessarily
correct.

The key to fixing this problem comes from the following crucial observation: the adver-
sary does not know for certain that he aborted in round i⇤! In particular, the exact same view
that caused P

1

to abort in round i⇤ is nearly as likely to occur when i⇤ happens to be set to
some larger value. Since P

1

’s view is identical when this occurs, his actions must also be iden-
tical, leading him to abort now in some round prior to i⇤. When the adversary aborts prior
to i⇤, the simulator in the proof of Claim 3.2.2 submits a random value x̂ 2 X to the trusted
party, resulting in random output for P

2

, just as in the real world. However, in the following
proof, we will not submit a uniformly chosen value on behalf of P

1

in this case. As we have
just described, if P

1

aborts exactly in round i⇤, our simulation fails because it yields correct
output for P

2

too often. When P
1

aborts the protocol in some round prior to i⇤, we will com-
pensate for the above fact by choosing x̂ from a distribution that yields correct output for P

2

with smaller probability than does the uniform distribution. By choosing x̂ from just the right
distribution, we can guarantee that the overall probability that P

2

outputs the correct value
(conditioned on the view of P

1

) is the same in both the ideal and real worlds. Of course, the
probabilities are split differently when we condition on whether P

1

aborts in round i⇤, but
this fact is unrecognizable when observing only the transcript. The technical proof follows.

Proof: Say P
1

is corrupted by an adversary A. We construct a simulator S that is given black-
box access to A. For readability in what follows, we ignore the presence of the MAC-tags and keys.
That is, we do not mention the fact that S computes MAC-tags for messages it gives to A, nor
do we mention the fact that S must verify the MAC-tags on the messages sent by A. When
we say that A “aborts”, we include in this the event that A sends an invalid message, or a
message whose tag does not pass verification.

1. S invokes A on the input2 x0, auxiliary input z, and the security parameter . The
simulator also chooses x̂ 2 X uniformly at random (it will send x̂ to the trusted party, if
needed).

2. S receives the input x of A to the computation of the functionality ShareGen.

(a) If x /2 X (this includes the case when x = ? since A aborts), then S hands ?
to A as its output from the computation of ShareGen, sends x̂ to the trusted party
computing f , outputs whatever A outputs, and halts.

(b) Otherwise, if the input is some x 2 X , then S chooses uniformly-distributed shares
a
(1)

1

, . . . , a
(1)

m and b
(1)

1

, . . . , b
(1)

m . Then, S gives these shares to A as its output from
the computation of ShareGen.

3. If A sends abort to the trusted party computing ShareGen, then S sends x̂ to the trusted
party computing f , outputs whatever A outputs, and halts. Otherwise (i.e., if A sends
continue), S proceeds as below.

4. Choose i⇤ according to a geometric distribution with parameter ↵. We now branch
depending on the value of x.

2To simplify readability later, we reserve x for the value input by A to the computation of ShareGen.

50

If x = x
3

:

5. For i = 1 to m:

(a) S sets a(2)i = a
(1)

i � 1 and gives a(2)i to A. (Recall that f(x
3

, y) = 1 for any y.)
(b) If A aborts and i  i⇤, then S sends x̂ to the trusted party computing f . If A aborts

and i > i⇤ then S sends x = x
3

to the trusted party computing f . In either case, S
then outputs whatever A outputs, and halts.
If A does not abort, then S proceeds to the next iteration.

6. If S has not halted yet, then if i⇤  m it sends x
3

to the trusted party computing f while
if i⇤ > m it sends x̂. Finally, S outputs whatever A outputs and halts.

If x 2 {x
1

, x
2

}:

7. Let x̄ be the “other” value in {x
1

, x
2

}; i.e., if x = xc then x̄ = x
3�c.

8. For i = 1 to i⇤ � 1:

(a) S chooses ŷ 2 Y uniformly at random, computes ai = f(x, ŷ), and sets a
(2)

i =

a
(1)

i � ai. It gives a(2)i to A. (Note that a fresh ŷ is chosen in every iteration.)
(b) If A aborts:

i. If ai = 0, then with probability 1/3 send x̄ to the trusted party computing f ,
and with probability 2/3 send x

3

.
ii. If ai = 1, then with probability 1/3 send x to the trusted party computing f ;

with probability 1/2 send x̄; and with probability 1/6 send x
3

.
In either case, S then outputs whatever A outputs, and halts.
If A does not abort, then S proceeds.

9. For i = i⇤ to m:

(a) If i = i⇤ then S sends x to the trusted party computing f and receives z = f(x, y).

(b) S sets a(2)i = a
(1)

i � z and gives a(2)i to A.
(c) If A aborts, then S then outputs whatever A outputs, and halts. If A does not abort,

then S proceeds.

10. If S has not yet halted, and has not yet sent anything to the trusted party computing f
(this can only happen if i⇤ > m and A has never aborted), then it sends x̂ to the trusted
party. Then S outputs whatever A outputs and halts.

We will show that the distribution generated by S in an ideal-world execution with a
trusted party computing f is identical to the distribution in a hybrid execution between A and
an honest P

2

. (As always, we are ignoring here the possibility that A can forge a valid MAC-
tag; once again, this introduces only a negligible statistical difference.) We first observe that
the case of x = x

3

is straightforward since in this case S does not need to send anything to
the trusted party until after A aborts. (This is because ai = 1 for all i since f(x

3

, y) = 1 for
all y 2 Y ; note that this is the first time in the proof we rely on specific properties of f .) For
the remainder of the proof, we therefore focus our attention on the case when x 2 {x

1

, x
2

}.

51

Let VIEWhyb(x, y) be the random variable denoting the view of A in the hybrid world
(i.e., running ⇧ with a trusted party computing ShareGen) when P

2

holds input y and A uses
input x in the computation of ShareGen. Let VIEWideal(x, y) be the random variable denoting
the view of A in the ideal world (i.e., where S runs A as a black-box and interacts with a
trusted party computing f) with x, y similarly defined. Finally, let OUThyb(x, y), OUTideal(x, y)
be random variables denoting the output of the honest player P

2

in the hybrid and ideal
worlds, respectively, for the given x and y. We will show that for any x 2 {x

1

, x
2

} and y 2 Y ,
�

VIEWhyb(x, y), OUThyb(x, y)
�

⌘
�

VIEWideal(x, y), OUTideal(x, y)
�

. (3.2)

(We stress that the above assumes A never forges a valid MAC-tag, and therefore the security
parameter  can be ignored and perfect equivalence obtained. Taking into account this possi-
bility, the above distributions would then have statistical difference negligible in the security
parameter .) It is immediate from the description of S that VIEWhyb(x, y) ⌘ VIEWideal(x, y) for
any x, y; the difficulty lies in arguing about the joint distribution of A’s view and P

2

’s output,
as above.

We prove Eq. (3.2) by showing that for any x, y as above and any view v and bit b, it holds
that:

Pr

⇥�

VIEWhyb(x, y), OUThyb(x, y)
�

= (v, b)
⇤

= Pr

⇥�

VIEWideal(x, y), OUTideal(x, y)
�

= (v, b)
⇤

. (3.3)

Clearly, if v represents a view that does not correspond to the actions of A (e.g., v contains ai,
but given view v the adversary would have aborted prior to iteration i; or v does not contain
ai, but given view v the adversary would not have aborted prior to iteration i), then both
probabilities in Eq. (3.3) are identically 0 (regardless of b). Going forward, we therefore only
consider views that correspond to actions of A.

A’s view consists of its initial inputs, the values a(1)
1

, b
(1)

1

, . . . , a
(1)

m , b
(1)

m that A receives from
computation of ShareGen, and — if A does not abort before the first iteration — a sequence
of values a

1

, . . . , ai where i is the iteration in which A aborts (if any). (Technically A receives
a
(2)

1

, . . . , a
(2)

i but we equivalently consider the reconstructed values a
1

, . . . , ai instead.) Look-
ing at the description of S , it is easy to see that if v represents a view in which A aborts before
the first iteration, or in which A never aborts (i.e., A runs the protocol to completion), then
Eq. (3.3) holds for either choice of b. Thus, the “difficult” cases to analyze are exactly those in
which A aborts in some iteration i.

Let v be a view in which A aborts in iteration i (i.e., after receiving its iteration-i message).
We will let A’s initial inputs and its outputs from ShareGen be implicit, and focus on the vector
of values ~ai = (a

1

, . . . , ai) that A sees before it aborts in iteration i, We will show that for any
x, y as above, any ~ai, and any bit b it holds that

Pr

⇥�

VIEWhyb(x, y), OUThyb(x, y)
�

= (~ai, b)
⇤

= Pr

⇥�

VIEWideal(x, y), OUTideal(x, y)
�

= (~ai, b)
⇤

. (3.4)

We stress that we are considering exactly those views ~ai = (a
1

, . . . , ai) in which A aborts
after receiving its iteration-i message; there is thus no possibility that A might abort given the
sequence of values a

1

, . . . , aj (with j < i).
Toward proving Eq. (3.4), we first prove:

52

Claim 3.2.4 For any x 2 {x
1

, x
2

} and y 2 Y ,

Pr

h

�

VIEWhyb(x, y), OUThyb(x, y)
�

= (~ai, b)
^

i⇤ < i
i

= Pr

h

�

VIEWideal(x, y), OUTideal(x, y)
�

= (~ai, b)
^

i⇤ < i
i

. (3.5)

Proof: A proof of this claim follows easily from the observation that, conditioned on i⇤ < i,
the “true” input of P

1

is used to compute P
2

’s output in both the hybrid and ideal worlds.
Formally, fix some x, y and let these be implicit in what follows. To prove the claim, note

that

Pr

h

�

VIEWhyb, OUThyb

�

= (~ai, b)
^

i⇤ < i
i

= Pr

h

OUThyb = b | VIEWhyb = ~ai
^

i⇤ < i
i

· Pr
h

VIEWhyb = ~ai
^

i⇤ < i
i

and

Pr

h

�

VIEWideal, OUTideal

�

= (~ai, b)
^

i⇤ < i
i

= Pr

h

OUTideal = b | VIEWideal = ~ai
^

i⇤ < i
i

· Pr
h

VIEWideal = ~ai
^

i⇤ < i
i

.

It follows from the description of S that

Pr

h

VIEWhyb = ~ai
^

i⇤ < i
i

= Pr

h

VIEWideal = ~ai
^

i⇤ < i
i

.

Furthermore, conditioned on i⇤ < i the output of P
2

is the correct output f(x, y) in both the
hybrid and ideal worlds. We conclude that Eq. (3.5) holds.

To complete the proof of Eq. (3.4), we prove that for any x 2 {x
1

, x
2

} and y 2 Y , any
~ai 2 {0, 1}i, and all b 2 {0, 1} it holds that

Pr

h

�

VIEWhyb(x, y), OUThyb(x, y)
�

= (~ai, b)
^

i⇤ � i
i

= Pr

h

�

VIEWideal(x, y), OUTideal(x, y)
�

= (~ai, b)
^

i⇤ � i
i

. (3.6)

This is the crux of the proof. Write~ai = (~ai�1, a), VIEWhyb = (VIEWi�1
hyb , VIEWi

hyb), and VIEWideal =

(VIEWi�1
ideal, VIEWi

ideal). (In what follows, we also often leave x and y implicit in the interests of
readability.) Then

Pr

h

�

VIEWhyb, OUThyb

�

= (~ai, b)
^

i⇤ � i
i

= Pr

h

�

VIEWi
hyb, OUThyb

�

= (a, b) | VIEWi�1
hyb = ~ai�1

^

i⇤ � i
i

· Pr
h

VIEWi�1
hyb = ~ai�1

^

i⇤ � i
i

and

Pr

h

�

VIEWideal, OUTideal

�

= (~ai, b)
^

i⇤ � i
i

= Pr

h

�

VIEWi
ideal, OUTideal

�

= (a, b) | VIEWi�1
ideal = ~ai�1

^

i⇤ � i
i

· Pr
h

VIEWi�1
ideal = ~ai�1

^

i⇤ � i
i

.

53

Once again, it follows readily from the description of S that

Pr

h

VIEWi�1
hyb = ~ai�1

^

i⇤ � i
i

= Pr

h

VIEWi�1
ideal = ~ai�1

^

i⇤ � i
i

.

Moreover, conditioned on the event that i⇤ � i, the random variables of VIEWi
hyb and OUThyb

(resp., VIEWi
ideal and OUTideal) are independent of VIEWi�1

hyb (resp., VIEWi�1
ideal) for fixed x and y.

Thus, Eq. (3.6) is proved once we show that

Pr

⇥�

VIEWi
hyb, OUThyb

�

= (a, b) | i⇤ � i
⇤

= Pr

⇥�

VIEWi
ideal, OUTideal

�

= (a, b) | i⇤ � i
⇤

(3.7)

for all x, y, a, b as above. We prove this via case-by-case analysis. For convenience, we recall
the table for f :

y
1

y
2

x
1

0 1
x
2

1 0
x
3

1 1

Case 1: x = x1 and y = y1. We analyze the hybrid world first, followed by the ideal world.

Hybrid world. We first consider the hybrid world where the parties are running protocol ⇧. If
A aborts after receiving its iteration-i message, P

2

will output OUThyb = bi�1. Since i⇤ �
i, we have bi�1 = f(x̂, y

1

) where x̂ is chosen uniformly from X . So Pr[OUThyb = 0] =

Prx̂ X [f(x̂, y
1

) = 0] = 1/3 and Pr[OUThyb = 1] = 2/3.
Since i⇤ � i, the value of VIEWi

hyb = ai is independent of the value of bi�1. Conditioned
on the event that i⇤ � i, we have Pr[i⇤ = i] = ↵ = 1/5 and Pr[i⇤ > i] = 4/5. If i⇤ = i, then
ai = f(x, y) = f(x

1

, y
1

) = 0. If i⇤ > i, then ai = f(x
1

, ŷ) where ŷ is chosen uniformly from Y .
So Pr[ai = 1] = Prŷ Y [f(x1, ŷ) = 1] = 1/2 and Pr[ai = 0] = 1/2. Overall, then, we have

Pr[VIEWi
hyb(x1, y1) = 0 | i⇤ � i] = ↵ · 1 + (1� ↵) · 1

2

=

3

5

Pr[VIEWi
hyb(x1, y1) = 1 | i⇤ � i] = ↵ · 0 + (1� ↵) · 1

2

=

2

5

.

Putting everything together gives

Pr

⇥�

VIEWi
hyb(x1, y1), OUThyb(x1, y1)

�

= (a, b) | i⇤ � i
⇤

=

8

>

>

>

>

<

>

>

>

>

:

3

5

· 1

3

=

1

5

(a, b) = (0, 0)
3

5

· 2

3

=

2

5

(a, b) = (0, 1)
2

5

· 1

3

=

2

15

(a, b) = (1, 0)
2

5

· 2

3

=

4

15

(a, b) = (1, 1)

(3.8)

Ideal world. We now turn our attention to the ideal world. Since we are conditioning on i⇤ � i,
here it is also the case that Pr[i⇤ = i] = ↵ = 1/5 and Pr[i⇤ > i] = 4/5. Furthermore, if i⇤ = i
then VIEWi

ideal = ai = f(x
1

, y
1

) = 0. Now, however, if i⇤ = i then S has already sent x
1

to
the trusted party computing f (in order to learn the value f(x

1

, y
1

)) and so P
2

will also output
f(x

1

, y
1

) = 0, rather than some independent value bi�1.
When i⇤ > i, then (by construction of S) we have Pr[ai = 0] = Prŷ Y [f(x1, ŷ) = 0] = 1/2

and Pr[ai = 1] = 1/2. Now, however, the output of P
2

depends on the value sent to the
trusted party following an abort by A, which in turn depends on ai (cf. step 8(b) of S). In

54

particular, we have:

Pr[OUTideal(x1, y1) = 0 | ai = 0

^

i⇤ > i]

= Pr[S sends x
1

to the trusted party | ai = 0

^

i⇤ > i] = 0,

and

Pr[OUTideal(x1, y1) = 0 | ai = 1

^

i⇤ > i]

= Pr[S sends x
1

to the trusted party | ai = 1

^

i⇤ > i] = 1/3

(in calculating the above, recall that x = x
1

). Putting everything together, we obtain

Pr

⇥�

VIEWi
ideal(x1, y1), OUTideal(x1, y1)

�

= (0, 0) | i⇤ � i
⇤

= ↵ · Pr
⇥�

VIEWi
ideal(x1, y1), OUTideal(x1, y1)

�

= (0, 0) | i⇤ = i
⇤

+ (1� ↵) · Pr
⇥�

VIEWi
ideal(x1, y1), OUTideal(x1, y1)

�

= (0, 0) | i⇤ > i
⇤

= ↵+ (1� ↵) · 0 =

1

5

. (3.9)

Similarly,

Pr

⇥�

VIEWi
ideal(x1, y1), OUTideal(x1, y1)

�

= (0, 1) | i⇤ � i
⇤

= (1� ↵) · 1
2

· 1 =

2

5

(3.10)

Pr

⇥�

VIEWi
ideal(x1, y1), OUTideal(x1, y1)

�

= (1, 0) | i⇤ � i
⇤

= (1� ↵) · 1
2

· 1
3

=

2

15

(3.11)

Pr

⇥�

VIEWi
ideal(x1, y1), OUTideal(x1, y1)

�

= (1, 1) | i⇤ � i
⇤

= (1� ↵) · 1
2

· 2
3

=

4

15

, (3.12)

in exact agreement with Eq. (3.8).

Case 2: x = x2 and y = y1. In all the remaining cases, the arguments are the same as before;
just the numbers differ. Therefore, we will allow ourselves to be more laconic.

In the hybrid world, conditioned on i⇤ � i, the values of OUThyb = bi�1 and VIEWi
hyb = ai

are again independent. The distribution of bi�1 is given by: Pr[bi�1 = 0] = Prx̂ X [f(x̂, y
1

) =

0] = 1/3 and Pr[bi�1 = 1] = 2/3. As for the distribution of ai, we have

Pr[ai = 1 | i⇤ � i] = ↵ · Pr[ai = 1 | i⇤ = i] + (1� ↵) · Pr[ai = 1 | i⇤ > i]

= ↵ · 1 + (1� ↵) · Prŷ Y [f(x1, ŷ) = 1]

=

1

5

+

4

5

· 1
2

=

3

5

,

and so Pr[ai = 0 | i⇤ � i] = 2/5. Putting everything together gives

Pr

⇥�

VIEWi
hyb(x2, y1), OUThyb(x2, y1)

�

= (a, b) | i⇤ � i
⇤

=

8

>

>

>

>

<

>

>

>

>

:

2

5

· 1

3

=

2

15

(a, b) = (0, 0)
2

5

· 2

3

=

4

15

(a, b) = (0, 1)
3

5

· 1

3

=

1

5

(a, b) = (1, 0)
3

5

· 2

3

=

2

5

(a, b) = (1, 1)

(3.13)

55

In the ideal world, if i⇤ = i then OUTideal = VIEWi
ideal = f(x

2

, y
1

) = 1. If i⇤ > i, then
the distribution of VIEWi

ideal = ai is given by Pr[ai = 1] = Prŷ Y [f(x1, ŷ) = 1] = 1/2 and
Pr[ai = 0] = 1/2. The value of OUTideal is now dependent on the value of ai (cf. step 8(b) of S);
specifically:

Pr[OUTideal(x2, y1) = 0 | ai = 0

^

i⇤ > i]

= Pr[S sends x
1

to the trusted party | ai = 0

^

i⇤ > i] = 1/3,

and

Pr[OUTideal(x2, y1) = 0 | ai = 1

^

i⇤ > i]

= Pr[S sends x
1

to the trusted party | ai = 1

^

i⇤ > i] = 1/2

(using the fact that x = x
2

). Putting everything together, we obtain

Pr

⇥�

VIEWi
ideal(x2, y1), OUTideal(x2, y1)

�

= (0, 0) | i⇤ � i
⇤

= (1� ↵) · 1
2

· 1
3

=

2

15

(3.14)

Pr

⇥�

VIEWi
ideal(x2, y1), OUTideal(x2, y1)

�

= (0, 1) | i⇤ � i
⇤

= (1� ↵) · 1
2

· 2
3

=

4

15

(3.15)

Pr

⇥�

VIEWi
ideal(x2, y1), OUTideal(x2, y1)

�

= (1, 0) | i⇤ � i
⇤

= (1� ↵) · 1
2

· 1
2

=

1

5

(3.16)

Pr

⇥�

VIEWi
ideal(x2, y1), OUTideal(x2, y1)

�

= (1, 1) | i⇤ � i
⇤

= ↵+ (1� ↵) · 1
2

· 1
2

=

2

5

, (3.17)

in exact agreement with Eq. (3.13).

Case 3: x = x1 and y = y2. In the hybrid world, this case is exactly symmetric to the case
when x = x

2

and y = y
1

. Thus we obtain the same distribution as in Eq. (3.13).
In the ideal world, if i⇤ = i then OUTideal = VIEWi

ideal = f(x
1

, y
2

) = 1. If i⇤ > i, then
the distribution of VIEWi

ideal = ai is given by Pr[ai = 1] = Prŷ Y [f(x2, ŷ) = 1] = 1/2 and
Pr[ai = 0] = 1/2. The value of OUTideal is dependent on the value of ai (cf. step 8(b) of S);
specifically:

Pr[OUTideal(x1, y2) = 0 | ai = 0

^

i⇤ > i]

= Pr[S sends x
2

to the trusted party | ai = 0

^

i⇤ > i] = 1/3,

and

Pr[OUTideal(x1, y2) = 0 | ai = 1

^

i⇤ > i]

= Pr[S sends x
2

to the trusted party | ai = 1

^

i⇤ > i] = 1/2

(using the fact that x = x
1

). Putting everything together, we obtain the same distribution as
in Eqs. (3.14)–(3.17). The distributions in the hybrid and ideal worlds are, once again, in exact
agreement.

Case 4: x = x2 and y = y2. In the hybrid world, this case is exactly symmetric to the case
when x = x

1

and y = y
1

. Thus we obtain the same distribution as in Eq. (3.8).
In the ideal world, if i⇤ = i then OUTideal = VIEWi

ideal = f(x
2

, y
2

) = 0. If i⇤ > i, then
the distribution of VIEWi

ideal = ai is given by Pr[ai = 1] = Prŷ Y [f(x2, ŷ) = 1] = 1/2 and

56

Pr[ai = 0] = 1/2. The value of OUTideal is dependent on the value of ai (cf. step 8(b) of S);
specifically:

Pr[OUTideal(x2, y2) = 0 | ai = 0

^

i⇤ > i]

= Pr[S sends x
2

to the trusted party | ai = 0

^

i⇤ > i] = 0,

and

Pr[OUTideal(x2, y2) = 0 | ai = 1

^

i⇤ > i]

= Pr[S sends x
2

to the trusted party | ai = 1

^

i⇤ > i] = 1/3

(using the fact that x = x
2

). Putting everything together, we obtain the same distribution as
in Eqs. (3.9)–(3.12). The distributions in the hybrid and ideal worlds are, once again, in exact
agreement. This completes the proof of Claim 3.2.3.

The preceding claims along with Proposition 2.7.1 conclude the proof of Theorem 3.2.1.

3.2.2 Extending the Protocol to Other Functions

Before specifying the more general functions for which Protocol ⇧EXOR (cf. Figure 3.4)
can be applied, we briefly discuss how we chose the value ↵ = 1/5 for the specific f of
Section 3.2.1. This will provide some intuition that will be helpful in the section that follows.
It should be clear that our entire discussion in this subsection assumes the specific simulation
strategy described in the proof of Theorem 3.2.1. It may be the case that a different simulation
strategy would allow for other values of ↵, or there may exist a different protocol altogether
for computing f .

Consider the case of a malicious P
1

who aborts after receiving its iteration-i message, and
let the parties’ inputs be x = x

1

, y = y
1

(note f(x
1

, y
1

) = 0). We use the notation as in the
proof of Claim 3.2.3, so that VIEWi

hyb denotes the value ai that P
1

reconstructs in iteration i
and OUThyb denote the output of the honest P

2

. The protocol itself ensures that in the hybrid
world we have

Pr[

�

VIEWi
hyb(x1, y1), OUThyb(x1, y1)

�

= (0, 0) | i⇤ � i]

= Pr[VIEWi
hyb(x1, y1) = 0 | i⇤ � i] · Pr[OUThyb(x1, y1) = 0 | i⇤ � i],

since OUThyb = bi�1 is independent of VIEWi
hyb = ai when i⇤ � i. We have

Pr[OUThyb(x1, y1) = 0 | i⇤ � i] = Pr

x̂ X
[f(x̂, y

1

) = 0] = 1/3

and

Pr[VIEWi
hyb(x1, y1) = 0 | i⇤ � i]

= ↵ · Pr[VIEWi
hyb(x1, y1) = 0 | i⇤ = i] + (1� ↵) · Pr[VIEWi

hyb(x1, y1) = 0 | i⇤ > i]

= ↵+ (1� ↵) · Prŷ Y [f(x1, ŷ) = 0]

= ↵+ (1� ↵) · 1
2

,

57

where the first equality holds since Pr[i⇤ = i | i⇤ � i] = ↵. Putting everything together we see
that

Pr[

�

VIEWi
hyb(x1, y1), OUThyb(x1, y1)

�

= (0, 0) | i⇤ � i] =
1

3

·
✓

↵+ (1� ↵) · 1
2

◆

.

In the ideal world, our simulation strategy ensures that, conditioned on i⇤ � i, the simu-
lator S sends x = x

1

to the trusted party with probability ↵; when this occurs, the simulator
will then set VIEWi

ideal = ai = f(x
1

, y
1

) = 0, and the honest party P
2

will output f(x
1

, y
1

) = 0.
Therefore, regardless of anything else the simulator might do,

Pr[

�

VIEWi
ideal(x1, y1), OUTideal(x1, y1)

�

= (0, 0) | i⇤ � i] � ↵.

If we want the ideal-world and hybrid-world distributions to be equal, then this requires

↵ 
✓

↵+ (1� ↵) · 1
2

◆

· 1
3

,

which is equivalent to requiring ↵  1/5. A similar argument applied to the other possible
values for x, y shows that ↵  1/5 suffices for all of them. Setting ↵ = 1/5 minimizes the
number of rounds of the protocol.

Having fixed the value of ↵, we now explain how we determined the simulator’s actions
(for a malicious P

1

) in step 8(b). We begin by introducing some notation that we will also use
in the following section.

Define px
i

def

= Prŷ Y [f(xi, ŷ) = 1] and, similarly, define py
i

def

= Prx̂ X [f(x̂, yi) = 1].
Let x0 be as in the description of S in the proof of Claim 3.2.3. If A aborts in round i < i⇤

after receiving the bit ai, then we denote the event that S sends xi to the ideal functionality
computing f by X

(a
i

)

x0!x
i

. Using this notation, we have from step 8(b) of S that:

Pr[X(1)

x1!x1
] =

1

3

Pr[X(1)

x1!x2
] =

1

2

Pr[X(1)

x1!x3
] =

1

6

.

Consider once again the case x = x
1

and y = y
1

. In the hybrid world, by construction of
Protocol ⇧EXOR, we have

Pr[

�

VIEWi
hyb(x1, y1), OUThyb(x1, y1)

�

= (1, 1) | i⇤ � i]

= Pr[VIEWi
hyb(x1, y1) = 1 | i⇤ � i] · Pr[OUThyb(x1, y1) = 1 | i⇤ � i]

= (1� ↵) · px1 · py1 .

(Note that if i⇤ = i, which occurs with probability ↵, then ai = f(x
1

, y
1

) = 0.) Because of the
way S is defined, in the ideal world we have

Pr[

�

VIEWi
ideal(x1, y1), OUTideal(x1, y1)

�

= (1, 1) | i⇤ � i]

= Pr[VIEWi
ideal(x1, y1) = 1 | i⇤ � i] · Pr[OUTideal(x1, y1) = 1 | VIEWi

ideal(x1, y1) = 1

^

i⇤ � i]

= (1� ↵) · px1 ·
⇣

Pr[X(1)

x1!x2
] + Pr[X(1)

x1!x3
]

⌘

.

If we want these to be equal, this requires Pr[X(1)

x1!x2] + Pr[X
(1)

x1!x3] = py1 =

2

3

.
Proceeding similarly for the case when x = x

1

and y = y
2

and looking at the probability

58

that ai = 0 and the output of P
2

is 1, we derive

Pr[X(1)

x1!x1
] + Pr[X(1)

x1!x3
] =

↵ · (py2 � 1)

(1� ↵)(1� px1)
+ py2 =

1

2

.

Combining the above with the constraint that Pr[X(1)

x1!x1] + Pr[X
(1)

x1!x2] + Pr[X
(1)

x1!x3] = 1 we
obtain the unique feasible values used in step 8(b) of S (for the case x = x

1

). The case of
x = x

2

follows via a similar analysis.
Looking at the problem more generally, we observe that for certain functions f (e.g.,

the boolean XOR function), the problem is over-constrained and no feasible solution exists
(regardless of the choice of ↵). In the following section we will argue that our protocol can
be applied to any function f for which the above constraints can be satisfied for all possible
inputs x, y.

3.2.3 A Characterization of When Protocol ⇧EXOR is Secure

In this section we characterize a class of functions that can be securely computed with
complete fairness using Protocol ⇧EXOR. The proof is a generalization of the proof from
Section 3.2.1.

Notation. We assume a single-output, boolean function f : X ⇥ Y ! {0, 1} defined over a
finite domain, where X = {x

1

, . . . x`} and Y = {y
1

, . . . , ym}. We let Mf denote the `⇥m matrix
whose entry at position (i, j) is f(xi, yj), and let vy denote the column of Mf corresponding
to the input y of P

2

. For every input x 2 X of player P
1

we define

px
def

= Prŷ Y [f(x, ŷ) = 1],

where ŷ is chosen uniformly from the domain Y of player P
2

. Equivalently, px =

P
y2Y

f(x,y)

m .

We define py, for y 2 Y , symmetrically. In addition, let p̄x
def

= 1� px and p̄y
def

= 1� py.
We set ↵ as follows:

↵
def

= min

(i,j)

(

�

�

1� f(xi, yj)� px
i

�

� ·
�

�

1� f(xi, yj)� py
j

�

�

�

�

1� f(xi, yj)� px
i

�

� ·
�

�

1� f(xi, yj)� py
j

�

�

+

�

�f(xi, yj)� py
j

�

�

)

, (3.18)

where the minimum is taken over 1  i  ` and 1  j  m. By simple calculation, one
can show that 0 < ↵  1 and, in fact, ↵ < 1 unless f is a constant function (in which case
completely-fair computation of f is trivial). Using this value of ↵ we define, for x 2 X , the
m-dimensional row vector ~C

(0)

x , indexed by y 2 Y , as follows:

~C(0)

x (y)
def

=

8

<

:

py if f(x, y) = 1

↵·p
y

(1�↵)·p̄
x

+ py if f(x, y) = 0

.

Similarly, we define ~C
(1)

x via:

~C(1)

x (y)
def

=

8

<

:

↵·(p
y

�1)
(1�↵)·p

x

+ py if f(x, y) = 1

py if f(x, y) = 0

59

(The denominators, above, are never 0.)
A row vector (p

1

, . . . , p`) of real numbers is a probability vector if 0  pi  1 for all i, and
P

i pi = 1. We are now ready to prove the following:

Theorem 3.2.5 Let f be a single-output, boolean function, and let Mf and ~C
(b)
x
i

be as defined above.
If for all b 2 {0, 1} and x 2 X there exists a probability vector ~X

(b)
x = (p

1

, . . . , p`) such that

~X(b)
x ·Mf =

~C(b)
x ,

then there exists a protocol that securely computes f with complete fairness.

Proof: We take Protocol ⇧EXOR with ↵ computed as in Eq. (3.18). Simulation for a cor-
rupted P

2

follows exactly along the lines of the proof of Claim 3.2.2; recall that the simulator
in that case did not rely on any specific properties of the function f or the value of ↵. We
therefore focus our attention on the case when the adversary A corrupts P

1

. In this case, our
simulator S is almost identical to the simulator described in the proof of Claim 3.2.3 (except,
of course, that it uses the appropriate value of ↵); the only significant change is how we deal
with an abort in iteration i < i⇤ (this corresponds to step 8(b) in the simulator from the proof
of Claim 3.2.3). For completeness, we describe the modified simulator in its entirety, although
we once again ignore the presence of the MAC-tags and keys for simplicity.

1. S invokes A on the input x0, the auxiliary input, and the security parameter n. The
simulator also chooses x̂ 2 X uniformly at random.

2. S receives the input x of A to the computation of the functionality ShareGen0.

(a) If x /2 X , then S hands ? to A as its output from the computation of ShareGen0,
sends x̂ to the trusted party computing f , outputs whatever A outputs, and halts.

(b) Otherwise, if the input is some x 2 X , then S chooses uniformly-distributed shares
a
(1)

1

, . . . , a
(1)

m and b
(1)

1

, . . . , b
(1)

m . Then, S gives these shares to A as its output from
the computation of ShareGen0.

3. If A sends abort to the trusted party computing ShareGen0, then S sends x̂ to the trusted
party computing f , outputs whatever A outputs, and halts. Otherwise (i.e., if A sends
continue), S proceeds as below.

4. Choose i⇤ according to a geometric distribution with parameter ↵.

5. For i = 1 to i⇤ � 1:

(a) S chooses ŷ 2 Y uniformly at random, computes ai = f(x, ŷ), and sets a
(2)

i =

a
(1)

i � ai. It gives a(2)i to A.

(b) If A aborts, then S chooses x0 according to the distribution defined by3 ~X
(a

i

)

x , and
sends x0 to the trusted party computing f . It then outputs whatever A outputs,
and halts.
If A does not abort, then S proceeds.

6. For i = i⇤ to m:
3This is understood in the natural way; i.e., x

j

is chosen with probability ~

X

(ai)
x

(j).

60

(a) If i = i⇤ then S sends x to the trusted party computing f and receives z = f(x, y).

(b) S sets a(2)i = a
(1)

i � z and gives a(2)i to A.
(c) If A aborts, then S then outputs whatever A outputs, and halts. If A does not abort,

then S proceeds.

7. If S has not yet halted, and has not yet sent anything to the trusted party computing f
(this can only happen if i⇤ > m and A has not aborted), then it sends x̂ to the trusted
party. Then S outputs whatever A outputs and halts.

(The simulator constructed in Claim 3.2.3 branched depending on the value of x, but this
was only a simplification due to the fact that the input x

3

, there, completely determined the
output. In general there need not be any such input.)

We borrow the same notation as in our proof of Claim 3.2.3. Examining that proof, we
see that the proof here will proceed identically up to the point where we need to show that,
for all inputs x, y and all a, b 2 {0, 1}:

Pr

⇥�

VIEWi
hyb, OUThyb

�

= (a, b) | i⇤ � i
⇤

= Pr

⇥�

VIEWi
ideal, OUTideal

�

= (a, b) | i⇤ � i
⇤

(3.19)

(This is Eq. (3.7) there. As was done there, we suppress explicit mention of the inputs when
the notation becomes cumbersome.) We now fix arbitrary x, y and show that the above holds.
We consider two sub-cases depending on the value of f(x, y).

Case 1: x and y are such that f(x, y) = 0. In the hybrid world, when A aborts after receiv-
ing its iteration-i message, then P

2

outputs OUThyb = bi�1 and the value of VIEWi
hyb = ai is

independent of the value of bi�1. By definition of the protocol, we have

Pr[bi�1 = 0 | i⇤ � i] = p̄y and Pr[bi�1 = 1 | i⇤ � i] = py,

since bi�1 = f(x̂, y) for x̂ chosen uniformly from X . As for ai, we have

Pr

⇥

ai = 0 | i⇤ � i
⇤

= ↵+ (1� ↵) · p̄x and Pr

⇥

ai = 1 | i⇤ � i
⇤

= (1� ↵) · px .

Since bi�1 and ai are independent, we conclude that

Pr

⇥�

VIEWi
hyb(x, y), OUThyb(x, y)

�

= (a, b) | i⇤ � i
⇤

=

8

>

>

>

>

<

>

>

>

>

:

(↵+ (1� ↵) · p̄x) · p̄y (a, b) = (0, 0)

(↵+ (1� ↵) · p̄x) · py (a, b) = (0, 1)

(1� ↵) · px · p̄y (a, b) = (1, 0)

(1� ↵) · px · py (a, b) = (1, 1)

In the ideal world, if i⇤ = i then OUTideal = VIEWi
ideal = f(x, y) = 0. If i⇤ > i, then the

distribution of VIEWi
ideal = ai is given by Pr[ai = 0] = p̄x. The value of OUTideal is now depen-

dent on the value of ai (cf. step 5(b) of the simulator described in this section); specifically, we
have:

Pr[OUTideal(x, y) = 0 | ai = 0

^

i⇤ > i]

= Pr[S sends x0 to the trusted party s.t. f(x0, y) = 0 | ai = 0

^

i⇤ > i]

=

X

x̄: f(x̄,y)=0

Pr

x0 ~X
(0)
x

[x0 = x̄]

61

and, in the general case,

Pr[OUTideal(x, y) = b | ai = a
^

i⇤ > i] =

X

x̄: f(x̄,y)=b

Pr

x0 ~X
(a)
x

[x0 = x̄].

We therefore have, for example,

Pr

⇥�

VIEWi
ideal(x, y), OUTideal(x, y)

�

= (0, 0) | i⇤ � i
⇤

= ↵+ (1� ↵) · p̄x ·
X

x̄: f(x̄,y)=0

Pr

x0 ~X
(0)
x

[x0 = x̄]

= ↵+ (1� ↵) · p̄x ·
⇣

1� ~X(0)

x · vy

⌘

= ↵+ (1� ↵) · p̄x ·
⇣

1� ~C(0)

x (y)
⌘

= ↵+ (1� ↵) · p̄x ·
✓

1� ↵ · py
(1� ↵) · p̄x

� py

◆

= (↵+ (1� ↵) · p̄x) · p̄y, = Pr

⇥�

VIEWi
hyb(x, y), OUThyb(x, y)

�

= (0, 0) | i⇤ � i
⇤

.

(The second equality uses the definitions of ~X
(0)

x and vy; the third equality uses the assump-
tion, from the theorem, that ~X

(0)

x · vy =

~C
(0)

x (y). We then use the definition of ~C
(0)

x (y) and
re-arrange using algebra.) This is equal to the associated probability in the hybrid world, as
computed above.

For completeness, we include the calculations for the remaining cases:

Pr

⇥�

VIEWi
ideal(x, y), OUTideal(x, y)

�

= (0, 1) | i⇤ � i
⇤

= (1� ↵) · p̄x ·
X

x̄: f(x̄,y)=1

Pr

x0 ~X
(0)
x

[x0 = x̄]

= (1� ↵) · p̄x ·
⇣

~X(0)

x · vy

⌘

= (1� ↵) · p̄x · ~C(0)

x (y)

= (1� ↵) · p̄x ·
✓

↵ · py
(1� ↵) · p̄x

+ py

◆

= (↵+ (1� ↵) · p̄x) · py = Pr

⇥�

VIEWi
hyb(x, y), OUThyb(x, y)

�

= (0, 1) | i⇤ � i
⇤

.

Pr

⇥�

VIEWi
ideal(x, y), OUTideal(x, y)

�

= (1, 0) | i⇤ � i
⇤

= (1� ↵) · px ·
X

x̄: f(x̄,y)=0

Pr

x0 ~X
(1)
x

[x0 = x̄]

= (1� ↵) · px ·
⇣

1� ~X(1)

x · vy

⌘

= (1� ↵) · px ·
⇣

1� ~C(1)

x (y)
⌘

= (1� ↵) · px · (1� py)

= (1� ↵) · px · p̄y = Pr

⇥�

VIEWi
hyb(x, y), OUThyb(x, y)

�

= (1, 0) | i⇤ � i
⇤

.

62

Pr

⇥�

VIEWi
ideal(x, y), OUTideal(x, y)

�

= (1, 1) | i⇤ � i
⇤

= (1� ↵) · px ·
X

x̄: f(x̄,y)=1

Pr

x0 ~X
(1)
x

[x0 = x̄]

= (1� ↵) · px ·
⇣

~X(1)

x · vy

⌘

= (1� ↵) · px · ~C(1)

x (y)

= (1� ↵) · px · py = Pr

⇥�

VIEWi
hyb(x, y), OUThyb(x, y)

�

= (1, 1) | i⇤ � i
⇤

.

Equality holds, in all cases, between the corresponding probabilities in the ideal and hybrid
worlds. We thus conclude that Eq. (3.19) holds for all x, y with f(x, y) = 0.

Case 2: x and y are such that f(x, y) = 1. We provide the calculations with limited discus-
sion. In the hybrid world, we have

Pr

⇥�

VIEWi
hyb(x, y), OUThyb(x, y)

�

= (a, b) | i⇤ � i
⇤

=

8

>

>

>

>

<

>

>

>

>

:

((1� ↵) · p̄x) · p̄y (a, b) = (0, 0)

((1� ↵) · p̄x) · py (a, b) = (0, 1)

(↵+ (1� ↵) · px) · p̄y (a, b) = (1, 0)

(↵+ (1� ↵) · px) · py (a, b) = (1, 1)

In the ideal world, if i⇤ = i then OUTideal = VIEWi
ideal = f(x, y) = 1. If i⇤ > i, then the

distribution of VIEWi
ideal = ai is given by Pr[ai = 0] = p̄x, and the value of OUTideal is now

dependent on the value of ai. Working out the details, we have:

Pr

⇥�

VIEWi
ideal(x, y), OUTideal(x, y)

�

= (0, 0) | i⇤ � i
⇤

= (1� ↵) · p̄x ·
X

x̄: f(x̄,y)=0

Pr

x0 ~X
(0)
x

[x0 = x̄]

= (1� ↵) · p̄x ·
⇣

1� ~X(0)

x · vy

⌘

= (1� ↵) · p̄x ·
⇣

1� ~C(0)

x (y)
⌘

= (1� ↵) · p̄x · p̄y.

Pr

⇥�

VIEWi
ideal(x, y), OUTideal(x, y)

�

= (0, 1) | i⇤ � i
⇤

= (1� ↵) · p̄x ·
X

x̄: f(x̄,y)=1

Pr

x0 ~X
(0)
x

[x0 = x̄]

= (1� ↵) · p̄x ·
⇣

~X(0)

x · vy

⌘

= (1� ↵) · p̄x ·
⇣

~C(0)

x (y)
⌘

= (1� ↵) · p̄x · py.

63

Pr

⇥�

VIEWi
ideal(x, y), OUTideal(x, y)

�

= (1, 0) | i⇤ � i
⇤

= (1� ↵) · px ·
X

x̄: f(x̄,y)=0

Pr

x0 ~X
(1)
x

[x0 = x̄]

= (1� ↵) · px ·
⇣

1� ~X(1)

x · vy

⌘

= (1� ↵) · px ·
⇣

1� ~C(1)

x (y)
⌘

= (1� ↵) · px ·
✓

1� ↵ · (py � 1)

(1� ↵) · px
� py

◆

= (↵+ (1� ↵) · px) · p̄y.

Pr

⇥�

VIEWi
ideal(x, y), OUTideal(x, y)

�

= (1, 1) | i⇤ � i
⇤

= ↵+ (1� ↵) · px ·
X

x̄: f(x̄,y)=1

Pr

x0 ~X
(1)
x

[x0 = x̄]

= ↵+ (1� ↵) · px ·
⇣

~X(1)

x · vy

⌘

= ↵+ (1� ↵) · px ·
⇣

~C(1)

x (y)
⌘

= ↵+ (1� ↵) · px ·
✓

↵ · (py � 1)

(1� ↵) · px
+ py

◆

= (↵+ (1� ↵) · px) · py.

Once again, equality holds between the corresponding probabilities in the ideal and hybrid
worlds in all cases. This concludes the proof of the theorem.

3.3 A Lower Bound for Functions Containing an Embedded XOR

In the previous section we have shown a protocol that enables completely fair computa-
tion of certain functions that contain an embedded XOR. That protocol, however, has round
complexity !(log ). (The round complexity may be worse, depending on ↵, but if ↵ is con-
stant then the round complexity is m = !(log ).) In this section we prove that this is inherent
for any function that has an embedded XOR.

3.3.1 Preliminaries

Let f be a single-output, boolean function with an embedded XOR; that is, a function
for which there exist inputs x

0

, x
1

, y
0

, y
1

such that f(xi, yj) = i � j. Let ⇧ be an r()-round
protocol that securely computes f with complete fairness. Here we denote the two parties
executing the protocol by A and B. We present some basic conventions below, as well as the
specification of a series of fail-stop adversaries that we will use in our proof.

Notation and conventions: We assume that A sends the first message in protocol ⇧, and B
sends the last message. A round of ⇧ consists of a message from A followed by a message
from B. If A aborts before sending its ith-round message (but after sending the first i � 1

messages), then we denote by bi�1 the value output by B (so B outputs b
0

if A sends nothing).
If B aborts before sending its ith-round message (but after sending the first i � 1 messages),

64

then we denote by ai the value output by A (so A outputs a
1

if B sends nothing). If neither
party aborts, then B outputs br and A outputs ar+1

.

Proof overview. We consider executions of ⇧ in which each party begins with input dis-
tributed uniformly in {x

0

, x
1

} or {y
0

, y
1

}, respectively. We describe a series of 4r fail-stop
adversaries {Ai1, Ai0, Bi1, Bi0}ri=1

where, intuitively, the aim of adversary Aib is to guess B’s
input while simultaneously biasing B’s output toward the bit b. (The aim of adversary Bib is
exactly analogous.) We show that if r = O(log ), then one of these adversaries succeeds with
“high” probability even though, as explained next, this is not possible in the ideal world.

In the ideal world evaluation of f (when B chooses its input at random in {y
0

, y
1

}), it is
certainly possible for an adversary corrupting A to learn B’s input with certainty (this follows
from the fact that f contains an embedded XOR), and it may be possible, depending on f , to
bias B’s output with certainty. It is not possible, however, to do both simultaneously with high
probability. (We formally state and prove this below.) This gives us our desired contradiction
whenever r = O(log ), and shows that no protocol with this many rounds can be completely
fair.

Descriptions of the adversaries. Before giving the formal specification of the adversaries, we
provide an intuitive description of adversary Ai1. (The other adversaries rely on the same
intuition.) Ai1 chooses a random input x 2 {x

0

, x
1

} and runs the protocol honestly for i � 1

rounds. It then computes the value it would output if B aborted the protocol at the current
point, i.e., it computes ai. If ai = 1, then Ai1 continues the protocol for one more round
(hoping that this will cause B to output 1 also) and halts. If ai = 0, then Ai1 halts immediately
(hoping that B’s output does not yet “match” Ai1’s, and that B will still output 1). In addition
to this behavior during the protocol, Ai1 also guesses B’s input, in the natural way, based on
its own input value x and the value of ai it computed. In particular, if x = x� then Ai1 guesses
that B’s input is ya

i

�� (since f(x�, ya
i

��) = ai).
Say B’s input is y. Intuitively, because the protocol is completely fair, if the output that

Ai1 computes in round i is biased toward the correct value of f(x, y), it must be that the last
message sent by Ai1 has relatively limited relevance (i.e., that B would output the same bit
whether Ai1 sends its ith round message or not). In particular, in the case of Ar1, the com-
puted output must be equal to f(x, y) (with all but negligible probability), and therefore the
last message of the protocol is, in some sense, unnecessary. Using induction (for a logarith-
mic number of steps) we will demonstrate that the same holds for each of the prior rounds,
and conclude that a protocol running in O(log ) rounds can be transformed into an empty
protocol in which neither party sends anything. This is, of course, impossible; therefore, no
such protocol exists.

We now formally describe the adversaries.

Adversary Ai1:
1. Choose x 2R {x

0

, x
1

}.

2. Run the honest A for the first i� 1 rounds (using input x) and compute ai:

(a) If ai = 1 and x = x
0

, then output guess(y = y
1

), send the ith round message, and
halt.

(b) If ai = 1 and x = x
1

, then output guess(y = y
0

), send the ith round message, and
halt.

(c) If ai = 0 and x = x
0

, then output guess(y = y
0

) and halt immediately.
(d) If ai = 0 and x = x

1

, then output guess(y = y
1

) and halt immediately.

65

Adversary Ai0:

1. Choose x 2R {x
0

, x
1

}.

2. Run the honest A for the first i� 1 rounds (using input x) and compute ai:

(a) If ai = 0 and x = x
0

, then output guess(y = y
0

), send the ith round message and
halt.

(b) If ai = 0 and x = x
1

, then output guess(y = y
1

), send the ith round message and
halt.

(c) If ai = 1 and x = x
0

, then output guess(y = y
1

) and halt immediately.
(d) If ai = 1 and x = x

1

, then output guess(y = y
0

) and halt immediately.

Adversary Bi1:

1. Choose y 2R {y
0

, y
1

}.

2. Run the honest B for the first i�1 rounds (using input y), receive A’s ith round message,
and compute bi:

(a) If bi = 1 and y = y
0

, then output guess(x = x
1

), send the ith round message, and
halt.

(b) If bi = 1 and y = y
1

, then output guess(x = x
0

), send the ith round message, and
halt.

(c) If bi = 0 and y = y
0

, then output guess(x = x
0

) and halt immediately.
(d) If bi = 0 and y = y

1

, then output guess(x = x
1

) and halt immediately.

Adversary Bi0:

1. Choose y 2R {y
0

, y
1

}.

2. Run the honest B for the first i�1 rounds (using input y), receive A’s ith round message,
and compute bi:

(a) If bi = 0 and y = y
0

, then output guess(x = x
0

), send the ith round message, and
halt.

(b) If bi = 0 and y = y
1

, then output guess(x = x
1

), send the ith round message, and
halt.

(c) If bi = 1 and y = y
0

, then output guess(x = x
1

) and halt immediately.
(d) If bi = 1 and y = y

1

, then output guess(X = x
0

) and halt immediately.

Success probability for Ai1: As preparation for the proof that follows, we calculate the prob-
ability that Ai1 succeeds in simultaneously guessing B’s input y correctly, and having B out-
put 1. By construction, if (say) Ai1 uses x = x

0

as input and obtains ai = 0, then it guesses
correctly iff y = y

0

. Furthermore, since it received ai = 0 it does not send its ith round mes-
sage; thus, by our notation, B outputs 1 if bi�1 = 1. There are three other possible ways for
this to occur as well:

Pr[Ai1 guesses y ^B outputs 1]
= Pr[x = x

0

^ y = y
0

^ ai = 0 ^ bi�1 = 1] + Pr[x = x
0

^ y = y
1

^ ai = 1 ^ bi = 1]

+ Pr[x = x
1

^ y = y
1

^ ai = 0 ^ bi�1 = 1] + Pr[x = x
1

^ y = y
0

^ ai = 1 ^ bi = 1].

66

The calculations are similar for Ai0, Bi1, and Bi0 so we present them with no further explana-
tion.

Success probability for Ai0:

Pr[Ai0 guesses y ^B outputs 0]
= Pr[x = x

0

^ y = y
0

^ ai = 0 ^ bi = 0] + Pr[x = x
0

^ y = y
1

^ ai = 1 ^ bi�1 = 0]

+ Pr[x = x
1

^ y = y
1

^ ai = 0 ^ bi = 0] + Pr[x = x
1

^ y = y
0

^ ai = 1 ^ bi�1 = 0].

Success probability for Bi1:

Pr[Bi1 guesses x ^A outputs 1]
= Pr[y = y

0

^ x = x
0

^ bi = 0 ^ ai = 1] + Pr[y = y
0

^ x = x
1

^ bi = 1 ^ ai+1

= 1]

+ Pr[y = y
1

^ x = x
1

^ bi = 0 ^ ai = 1] + Pr[y = y
1

^ x = x
0

^ bi = 1 ^ ai+1

= 1].

Success probability for Bi0:

Pr[Bi0 guesses x ^A outputs 0]
= Pr[y = y

0

^ x = x
0

^ bi = 0 ^ ai+1

= 0] + Pr[y = y
0

^ x = x
1

^ bi = 1 ^ ai = 0]

+ Pr[y = y
1

^ x = x
1

^ bi = 0 ^ ai+1

= 0] + Pr[y = y
1

^ x = x
0

^ bi = 1 ^ ai = 0].

3.3.2 The Proof

We begin by showing that, in the ideal model, it is impossible for an adversary to bias
the output of the honest party while simultaneously guessing the honest party’s input, with
probability greater than 1/2. Note that an adversary can certainly do one or the other. For
example, if the honest B uses input y 2R {y

0

, y
1

} and an adversarial A uses input x
0

, then
A learns the input of B (by observing if the output is 0 or 1). Furthermore, if there exists a
value x0 for which f(x0, y

0

) = f(x0, y
1

) = 1 then A can completely bias the output of B to
be 1.4 In the first case, however, B’s output is a random bit; in the second case, A learns no
information about B’s input. The following claim proves that these two extremes represent,
in some sense, the best possible strategies:

Claim 3.3.1 Consider an ideal-world evaluation of f (with complete fairness), where the honest party
B chooses its input y uniformly from {y

0

, y
1

} and the corrupted A⇤ outputs a guess for y following its
interaction with the trusted party. For any A⇤ and any � 2 {0, 1}, it holds that

Pr[A⇤ guesses y ^B outputs �]  1

2

.

An analogous claim holds for the case when A is honest.

Proof: We consider the case of an honest B. Let X
0

def

= {x | f(x, y
0

) = f(x, y
1

) = 0}, and
likewise X

1

def

= {x | f(x, y
0

) = f(x, y
1

) = 1}. Let X� = {x | f(x, y
0

) 6= f(x, y
1

)}. Note
that X

0

, X
1

, and X� partition the set of all inputs for A⇤. In the following, when we say “A⇤

4We stress that this is different from the case of boolean XOR, where it is impossible to bias the honest party’s
output at all in the ideal model (when the honest party uses a random input).

67

sends x” we mean that it sends x to the trusted party in the ideal model. For any � 2 {0, 1}
we have:

Pr[A⇤ guesses y ^B outputs �]
= Pr[A⇤ guesses y ^B outputs � ^A⇤ sends x 2 X�̄]

+ Pr[A⇤ guesses y ^B outputs � ^A⇤ sends x 2 X�]

+ Pr[A⇤ guesses y ^B outputs � ^A⇤ sends x 2 X�]
= Pr[A⇤ guesses y ^B outputs � | A⇤ sends x 2 X�̄] · Pr[A⇤ sends x 2 X�̄]

+ Pr[A⇤ guesses y ^B outputs � | A⇤ sends x 2 X�] · Pr[A⇤ sends x 2 X�]

+ Pr[A⇤ guesses y ^B outputs � | A⇤ sends x 2 X�] · Pr[A⇤ sends x 2 X�].

Clearly Pr[A⇤ guesses y ^B outputs � | A⇤ sends x 2 X�̄] = 0 since B always outputs �̄ when
A⇤ sends x 2 X�̄. Also,

Pr[A⇤ guesses y ^B outputs � | A⇤ sends x 2 X�] = Pr[A⇤ guesses y | A⇤ sends x 2 X�] =
1

2

,

where the first equality is because party B always outputs � when A⇤ sends x 2 X�, and
the second equality is because A learns no information about B’s input (which was chosen
uniformly from {y

0

, y
1

}). Finally,

Pr[A⇤ guesses y ^B outputs 1 | A⇤ sends x 2 X�]  Pr[B outputs 1 | A⇤ sends x 2 X�] =
1

2

,

because B’s input is chosen uniformly from {y
0

, y
1

}. Combining the above proves the claim.

The above claim, along with the assumed security of ⇧ (with complete fairness), implies
that for every inverse polynomial µ = 1/poly we have

Pr[Bi0 guesses x ^A outputs 0]  1

2

+ µ() (3.20)

Pr[Bi1 guesses x ^A outputs 1]  1

2

+ µ() (3.21)

Pr[Ai0 guesses y ^B outputs 0]  1

2

+ µ() (3.22)

Pr[Ai1 guesses y ^B outputs 1]  1

2

+ µ() (3.23)

for sufficiently-large  and all 1  i  r().
We now prove a claim that states, informally, that if both parties can compute the correct

output with high probability after running i rounds of ⇧, then they can also compute the
correct output with high probability even when B does not send its ith-round message.

Claim 3.3.2 Fix a function µ and a value of  for which Equations (3.20)–(3.23) hold for

68

1  i  r(), and let µ = µ(). For any 1  i  r(), if the following inequalities hold:
�

�

�

�

Pr[y = y
0

^ x = x
1

^ bi = 1 ^ ai+1

= 1]� 1

4

�

�

�

�

 µ (3.24)
�

�

�

�

Pr[y = y
1

^ x = x
0

^ bi = 1 ^ ai+1

= 1]� 1

4

�

�

�

�

 µ (3.25)
�

�

�

�

Pr[y = y
0

^ x = x
0

^ bi = 0 ^ ai+1

= 0]� 1

4

�

�

�

�

 µ (3.26)
�

�

�

�

Pr[y = y
1

^ x = x
1

^ bi = 0 ^ ai+1

= 0]� 1

4

�

�

�

�

 µ (3.27)

when x is chosen uniformly from {x
0

, x
1

} and y is chosen uniformly from {y
0

, y
1

}, then:
�

�

�

�

Pr[y = y
0

^ x = x
1

^ bi = 1 ^ ai = 1]� 1

4

�

�

�

�

 4µ (3.28)
�

�

�

�

Pr[y = y
1

^ x = x
0

^ bi = 1 ^ ai = 1]� 1

4

�

�

�

�

 4µ (3.29)
�

�

�

�

Pr[y = y
0

^ x = x
0

^ bi = 0 ^ ai = 0]� 1

4

�

�

�

�

 4µ (3.30)
�

�

�

�

Pr[y = y
1

^ x = x
1

^ bi = 0 ^ ai = 0]� 1

4

�

�

�

�

 4µ (3.31)

when x and y are chosen in the same way.

The first four equations represent the probability with which both parties receive correct
output after executing the first i rounds of ⇧ (i.e., after B sends its message in round i), for all
possible choices of their inputs. The last four equations consider the same event, but when
B does not send its message in round i. The claim asserts that the fact that B does not send
its message in round i has a limited effect on the probability with which the parties obtain
correct outputs.

Proof: We first prove Equation (3.28). That Pr[y = y
0

^ x = x
1

^ bi = 1 ^ ai = 1]  1

4

+ 4µ is
immediate, since Pr[y = y

0

^ x = x
1

] =

1

4

. We must therefore prove the corresponding lower
bound. Combining Equations (3.20), (3.26), and (3.27), and using our earlier calculation for
the success probability for Bi0, we obtain

1

2

+ µ � Pr[Bi0 guesses x ^A outputs 0]

= Pr[y = y
0

^ x = x
0

^ bi = 0 ^ ai+1

= 0] + Pr[y = y
0

^ x = x
1

^ bi = 1 ^ ai = 0]

+ Pr[y = y
1

^ x = x
1

^ bi = 0 ^ ai+1

= 0] + Pr[y = y
1

^ x = x
0

^ bi = 1 ^ ai = 0]

� 1

4

� µ+ Pr[y = y
0

^ x = x
1

^ bi = 1 ^ ai = 0]

+

1

4

� µ+ Pr[y = y
1

^ x = x
0

^ bi = 1 ^ ai = 0]

= Pr[y = y
0

^ x = x
1

^ bi = 1 ^ ai = 0] + Pr[y = y
1

^ x = x
0

^ bi = 1 ^ ai = 0]

+

1

2

� 2µ ,

69

implying
Pr[y = y

0

^ x = x
1

^ bi = 1 ^ ai = 0]  3µ . (3.32)

We also have

Pr[y = y
0

^ x = x
1

^ bi = 1 ^ ai = 0] + Pr[y = y
0

^ x = x
1

^ bi = 1 ^ ai = 1]

= Pr[y = y
0

^ x = x
1

^ bi = 1]

� Pr[y = y
0

^ x = x
1

^ bi = 1 ^ ai+1

= 1] � 1

4

� µ ,

using Equation (3.24) for the final inequality. Combined with (3.32), we conclude that

Pr[y = y
0

^ x = x
1

^ bi = 1 ^ ai = 1] � 1

4

� 4µ,

proving Equation (3.28).
Using a symmetric argument, we can similarly prove Equation (3.29). Using an exactly

analogous argument, but with adversary Bi1 in place of Bi0, we can prove Equations (3.30)
and (3.31).

The proof of the following claim exactly parallels the proof of the preceding claim, but
using adversaries Ai0 and Ai1 instead of adversaries Bi0 and Bi1.

Claim 3.3.3 Fix a function µ and a value of  for which Equations (3.20)–(3.23) hold for 1  i 
r(), and let µ = µ(). For any 1  i  r(), if the following inequalities hold:

�

�

�

�

Pr[y = y
0

^ x = x
1

^ bi = 1 ^ ai = 1]� 1

4

�

�

�

�

 µ

�

�

�

�

Pr[y = y
1

^ x = x
0

^ bi = 1 ^ ai = 1]� 1

4

�

�

�

�

 µ

�

�

�

�

Pr[y = y
0

^ x = x
0

^ bi = 0 ^ ai = 0]� 1

4

�

�

�

�

 µ

�

�

�

�

Pr[y = y
1

^ x = x
1

^ bi = 0 ^ ai = 0]� 1

4

�

�

�

�

 µ

when x is chosen uniformly from {x
0

, x
1

} and y is chosen uniformly from {y
0

, y
1

}, then:
�

�

�

�

Pr[y = y
0

^ x = x
1

^ bi�1 = 1 ^ ai = 1]� 1

4

�

�

�

�

 4µ

�

�

�

�

Pr[y = y
1

^ x = x
0

^ bi�1 = 1 ^ ai = 1]� 1

4

�

�

�

�

 4µ

�

�

�

�

Pr[y = y
0

^ x = x
0

^ bi�1 = 0 ^ ai = 0]� 1

4

�

�

�

�

 4µ

�

�

�

�

Pr[y = y
1

^ x = x
1

^ bi�1 = 0 ^ ai = 0]� 1

4

�

�

�

�

 4µ

when x and y are chosen in the same way.
We now prove the following theorem.

Theorem 3.3.4 Let f be a two-party function containing an embedded XOR. Then any protocol se-
curely computing f with complete fairness (assuming one exists) requires !(log ) rounds.

70

Proof: Let ⇧ be a protocol computing f with complete fairness using r = r() rounds. Set
µ = 1/poly() for some polynomial to be fixed later. By correctness of ⇧, we have that for 
sufficiently large

�

�

�

�

Pr[y = y
0

^ x = x
1

^ br = 1 ^ ar+1

= 1]� 1

4

�

�

�

�

 µ()

�

�

�

�

Pr[y = y
1

^ x = x
0

^ br = 1 ^ ar+1

= 1]� 1

4

�

�

�

�

 µ()

�

�

�

�

Pr[y = y
0

^ x = x
0

^ br = 0 ^ ar+1

= 0]� 1

4

�

�

�

�

 µ()

�

�

�

�

Pr[y = y
1

^ x = x
1

^ br = 0 ^ ar+1

= 0]� 1

4

�

�

�

�

 µ()

when x and y are chosen uniformly from {x
0

, x
1

} and {y
0

, y
1

}, respectively. Taking  large
enough so that Equations (3.20)–(3.23) also hold for 1  i  r(), we see that Claim 3.3.2 may
be applied with i = r. Since the conclusion of Claim 3.3.2 is the assumption of Claim 3.3.3
and vice versa, the claims can be repeatedly applied r times, yielding:

�

�

�

�

Pr[y = y
0

^ x = x
1

^ b
0

= 1 ^ a
1

= 1]� 1

4

�

�

�

�

 4

2r() · µ()
�

�

�

�

Pr[y = y
1

^ x = x
0

^ b
0

= 1 ^ a
1

= 1]� 1

4

�

�

�

�

 4

2r() · µ()
�

�

�

�

Pr[y = y
0

^ x = x
0

^ b
0

= 0 ^ a
1

= 0]� 1

4

�

�

�

�

 4

2r() · µ()
�

�

�

�

Pr[y = y
1

^ x = x
1

^ b
0

= 0 ^ a
1

= 0]� 1

4

�

�

�

�

 4

2r() · µ() .

If r = O(log ), then p(n)
def

= 4

2r() is polynomial. Taking µ() = 1/16p() implies that, for 
sufficiently large, A and B can both correctly compute (with probability at least 3/4) the value
f(x, y), for all x 2 {x

0

, x
1

} and y 2 {y
0

, y
1

}, without any interaction at all. This is impossible,
and so we conclude that r = !(log ).

71

Chapter 4

Complete Fairness in Secure
Multi-Party Computation

4.1 Fair Computation of Majority for Three Players

In this section we describe a completely-fair protocol for computing the majority func-
tion, maj, over boolean inputs, for the case of n = 3 parties. The high-level structure of our
protocol follows the protocols of the prior chapters. However, we need to make some natural
changes to the protocols to extend them to the multi-party setting. In particular, ShareGen has
to be modified to output secret shares of 3 sequences of bits. Notationally, then, instead of
values ai and bi representing outputs in round i, we define 3 values, b(i)

1

, b
(i)
2

and b
(i)
3

. Note,
though, b(i)j does not represent the output of Pj if the other players abort. Rather, it will de-
note the outputs of both players Pj�1 and Pj+1

(where addition is done mod 3) in case player
Pj aborts in round i. The reason for this notational switch relates to the need for two honest
players to agree on a single output when the third player aborts; this concern was not an issue
in the two-party case. As before, the output of ShareGen is sequences of secret shares of these
b
(i)
j values, but now the secret shares are random three-way shares; any b

(i)
j can only be recon-

structed given all three shares, denoted by b
(i)
j|1, b

(i)
j|2, b

(i)
j|3. The values b

(i)
j are computed proba-

bilistically, in the same manner as they were in Section 3.2 (cf. Figure 3.3). That is, a round i⇤ is
first chosen according to a geometric distribution with parameter ↵ = 1/5. (As before, we will
set the round complexity m such that i⇤  m with all but negligible probability.) Then, for
i < i⇤ the value of b(i)j is computed using the true inputs of Pj�1 and Pj+1

but a random input
for Pj ; for i � i⇤ the value b

(i)
j is set equal to the correct output (i.e., it is computed using the

true inputs of all parties). Note that even an adversary who knows all the parties’ inputs and
learns, sequentially, the values (say) b(1)

1

, b
(2)

1

, . . . cannot determine definitively when round i⇤

occurs. We choose the protocol ⇡ computing ShareGen to be secure-with-designated-abort for
P
1

, according to Definition 2.6.1
The second phase of the protocol proceeds in a sequence of m = !(log n) iterations. (See

Figure 4.2.) In each iteration i, each party Pj broadcasts its share of b(i)j . (We stress that we
allow rushing, and do not assume synchronous broadcast.) Observe that, after this is done,
parties Pj�1 and Pj+1

jointly have enough information to reconstruct b(i)j , but neither party
has any information about b(i)j on its own. If all parties behave honestly until the end of the
protocol, then in the final iteration all parties reconstruct b

(m)

1

and output this value. If a

72

ShareGen

Inputs: Let the inputs to ShareGen be x1, x2, x3 2 {0, 1}. (If one of the received inputs is not in
the correct domain, then a default value of 1 is used for that player.)
Computation:

1. Define values b(1)1 , . . . , b
(m)
1 , b(1)2 , . . . , b

(m)
2 and b

(1)
3 , . . . , b

(m)
3 in the following way:

• Choose i⇤ � 1 according to a geometric distribution with parameter ↵ = 1/5 (see
text).

• For i = 0 to i⇤ � 1 and j 2 {1, 2, 3} do:
– Choose x̂j {0, 1} at random.

– Set b(i)j = maj(xj�1, x̂j , xj+1).

• For i = i⇤ to m and j 2 {1, 2, 3}, set b(i)j = maj(x1, x2, x3).

2. For 0  i  m and j 2 {1, 2, 3}, choose b
(i)
j|1, b(i)j|2 and b

(i)
j|3 as random three-way shares of

b
(i)
j . (E.g., b(i)j|1 and b

(i)
j|2 are random and b

(i)
j|3 = b

(i)
j|1 � b

(i)
j|2 � b

(i)
j .)

3. Let (pk, sk) Gen(1). For 0  i  m, and j, j0 2 {1, 2, 3}, let �
(i)
j|j0 =

Signsk(ikjkj0kb
(i)
j|j0).

Output:

1. Send to each Pj the public key pk and the values
n

(b
(i)
1|j ,�

(i)
1|j), (b

(i)
2|j ,�

(i)
2|j), (b

(i)
3|j ,�

(i)
3|j)

om

i=0
.

Additionally, for each j 2 {1, 2, 3} parties Pj�1 and Pj+1 receive the value b
(0)
j|j .

Figure 4.1: Functionality ShareGen.

single party Pj aborts in some iteration i, then the remaining players Pj�1 and Pj+1

jointly
reconstruct the value b

(i�1)
j and output this value. (Recall that these two parties jointly have

enough information to do this.) If two parties abort in some iteration i (whether at the same
time, or one after the other) then the remaining party simply outputs its own input.

One other technical difference in this protocol as compared to the general protocol given
in Section 2.8 is that we have to switch from using information theoretic MACs to digital
signatures. This is because we now have to worry about collusion. Suppose, for example,
that Pj+1

holds a key that allows him to verify the value b
(i)
j sent by Pj . If they are both

corrupt, Pj+1

can simply give this key to Pj and allow him to forge MACs on incorrect values.
Instead, we use digital signatures, which separate the ability to verify from the ability to sign
(see Figure 4.1).

We refer to Figures 4.1 and 4.2 for the formal specification of the protocol. We now prove
that this protocol securely computes maj with complete fairness.

Theorem 4.1.1 Assume that (Gen, Sign,Vrfy) is a secure signature scheme, that ⇡ securely computes
ShareGen with designated abort, and that ⇡OR securely computes OR with complete fairness.1 Then
the protocol in Figure 4.2 securely computes maj with complete fairness.

Proof: Let ⇧maj denote the protocol of Figure 4.2. Observe that ⇧maj yields the correct output
with all but negligible probability when all players are honest. This is because, with all but
negligible probability, i⇤  m, and then b

(m)

j = maj(x
1

, x
2

, x
3

). We thus focus on security
of ⇧maj.

1It is shown in Chapter 3 that such a protocol exists under standard assumptions.

73

⇧maj

Inputs: Party Pi has input xi 2 {0, 1}.
The protocol:

1. Preliminary phase:
(a) Parties P1, P2 and P3 run a protocol ⇡ for computing ShareGen. Each player uses

their respective inputs, x1, x2 and x3, and security parameter .
(b) If P2 and P3 receive? from this execution, then P2 and P3 run a two-party protocol

⇡OR to compute the logical-or of their inputs.
Otherwise, continue to the next stage.

In what follows, parties always verify signatures; invalid signatures are treated as an
abort.

2. For i = 1, . . . ,m � 1 do:
Broadcast shares:

(a) Each Pj broadcasts (b(i)j|j ,�
(i)
j|j).

(b) If (only) Pj aborts:
i. Pj�1 and Pj+1 broadcast (b(i�1)

j|j�1,�
(i�1)
j|j�1) and (b

(i�1)
j|j+1,�

(i�1)
j|j+1), respectively.

ii. If one of Pj�1, Pj+1 aborts in the previous step, the remaining player outputs
its own input value. Otherwise, Pj�1 and Pj+1 both output b(i�1)

j = b
(i�1)
j|1 �

b
(i�1)
j|2 � b

(i�1)
j|3 . (Recall that if i = 1, parties Pj�1 and Pj+1 received b

(0)
j|j as

output from ⇡.)
(c) If two parties abort, the remaining player outputs its own input value.

3. In round i = m do:
(a) Each Pj broadcasts b(m)

1|j ,�
(m)
1|j .

(b) If no one aborts, then all players output b(m)
1 = b

(m)
1|1 �b

(m)
1|2 �b

(m)
1|3 . If (only) Pj aborts,

then Pj�1 and Pj+1 proceed as in step 2b. If two players abort, the remaining
player outputs its own input value as in step 2c.

Figure 4.2: A protocol for computing majority.

We note that when no parties are corrupt, the proof of security is straightforward, since
we assume the existence of a private broadcast channel. We therefore consider separately
the cases when a single party is corrupted and when two parties are corrupted. Since the
entire protocol is symmetric except for the fact that P

1

may choose to abort ⇡, without loss
of generality we may analyze the case when the adversary corrupts P

1

and the case when
the adversary corrupts {P

1

, P
2

}. In each case, we prove security of ⇧maj in a hybrid world
where there is an ideal functionality computing ShareGen (with abort) as well as an ideal
functionality computing OR (with complete fairness). Applying the composition theorem
of [20] then gives the desired result.

Claim 4.1.2 For every non-uniform, poly-time adversary A corrupting P
1

and running ⇧maj in a
hybrid model with access to ideal functionalities computing ShareGen (with abort) and OR (with com-
plete fairness), there exists a non-uniform, poly-time adversary S corrupting P

1

and running in the
ideal world with access to an ideal functionality computing maj (with complete fairness), such that

�

IDEALmaj,S(x1, x2, x3,)

x
i

2{0,1},2N
s⌘
n

HYBRIDShareGen,OR
⇧maj,A (x

1

, x
2

, x
3

,)
o

x
i

2{0,1},2N

74

Proof:
Fix some polynomial-time adversary A corrupting P

1

. We now describe a simulator S
that also corrupts P

1

and runs A as a black box.

1. S invokes A on the input x
1

, the auxiliary input z, and the security parameter .

2. S receives input x0
1

2 {0, 1} on behalf of P
1

as input to ShareGen.

3. S computes (sk, pk) Gen(1), and gives to A the public key pk and values b
(0)

2|2, b(0)
3|3,

and
n

b
(i)
1|1, b

(i)
2|1, b

(i)
3|1
om

i=0

(along with their appropriate signatures) chosen uniformly at
random.

4. If A aborts execution of ShareGen, then S sends 1 to the trusted party computing maj,
outputs whatever A outputs, and halts. Otherwise, S picks a value i⇤ according to a
geometric distribution with parameter ↵ =

1

5

.

For simplicity in what follows, we ignore the presence of signatures and leave the fol-
lowing implicit from now on: (1) S always computes an appropriate signature when
sending any value to A; (2) S treats an incorrect signature as an abort; and (3) if S ever
receives a valid signature on a previously unsigned message, then S outputs fail and
halts.

5. S now simulates the rounds of the protocol one-by-one: for i = 1 to m�1, the simulator
chooses random b

(i)
2|2 and b

(i)
3|3 and sends these to A. During this step, an abort by A (on

behalf of P
1

) is treated as follows:

(a) If P
1

aborts in round i  i⇤, then S chooses a random value x̂
1

and sends it to the
trusted party computing maj.

(b) If P
1

aborts in round i > i⇤, then S submits x0
1

to the trusted party computing maj.

In either case, S then outputs whatever A outputs and halts.

6. If P
1

has not yet aborted, S then simulates the final round of the protocol. S sends x0
1

to the trusted party, receives bout = maj(x0
1

, x
2

, x
3

), and chooses b(m)

1|2 and b
(m)

1|3 at random

subject to b
(m)

1|2 � b
(m)

1|3 � b
(m)

1|1 = bout. S then gives these values to A, outputs whatever A
outputs, and halts.

Due to the security of the underlying signature scheme, the probability that S outputs
fail is negligible in . Note that the view of P

1

is otherwise statistically close in both worlds.
Indeed, until round m the view of P

1

is independent of the inputs of the other parties in both
the real and ideal worlds. In round m itself, P

1

learns the (correct) output bout in the ideal
world and learns this value with all but negligible probability in the real world.

We therefore only have to argue that outputs of the two honest parties in the real and
ideal worlds are statistically close. Clearly this is true if P

1

never aborts. As for the case when
P
1

aborts at some point during the protocol, we divide our analysis into the following cases:

• If P
1

aborts the execution of ShareGen in step 4, then S submits ‘1’ on behalf of P
1

to the
trusted party computing maj. Thus, in the ideal world, the outputs of P

2

and P
3

will be
maj(1, x

2

, x
3

). In the real world, if P
1

aborts computation of ShareGen, the honest parties
output OR(x

2

, x
3

). Since maj(1, x
2

, x
3

) = OR(x
2

, x
3

), their outputs are the same.

75

• If P
1

aborts in round i of the protocol (cf. step 5), then in both the real and ideal worlds
the following holds:

– If i  i⇤, then P
2

and P
3

output maj(x̂
1

, x
2

, x
3

) where x̂
1

is chosen uniformly at
random.

– If i > i⇤, then P
2

and P
3

output maj(x0
1

, x
2

, x
3

)

Since i⇤ is identically distributed in both worlds, the outputs of P
2

and P
3

in this case
are identically distributed as well.

• If P
1

aborts in round m (cf. step 6), then in the ideal world the honest parties will output
maj(x0

1

, x
2

, x
3

). In the real world the honest parties output maj(x0
1

, x
2

, x
3

) as long as
i⇤  m� 1, which occurs with all but negligible probability.

This completes the proof.

Claim 4.1.3 For every non-uniform, poly-time adversary A corrupting P
1

and P
2

and running ⇧maj

in a hybrid model with access to ideal functionalities computing ShareGen (with abort) and OR (with
completes fairness), there exists a non-uniform, poly-time adversary S corrupting P

1

and P
2

and run-
ning in the ideal world with access to an ideal functionality computing maj (with complete fairness),
such that

�

IDEALmaj,S(x1, x2, x3,)

x
i

2{0,1},2N
s⌘
n

HYBRIDShareGen,OR
⇧maj,A (x

1

, x
2

, x
3

,)
o

x
i

2{0,1},2N
.

Proof: This case is significantly more complex than the case when only a single party is
corrupted, since here A learns b

(i)
3

in each iteration i of the second phase. As in Section 3.2.1,
we must deal with the fact that A might abort exactly in iteration i⇤, after learning the correct
output but before P

3

has enough information to compute the correct output.
We now describe a simulator S who corrupts P

1

and P
2

and runs A as a black-box. For
ease of exposition in what follows, we sometimes refer to the actions of P

1

and P
2

when more
formally we mean the action of A on behalf of those parties.

1. S invokes A on the inputs x
1

and x
2

, the auxiliary input z, and the security parameter .

2. S receives x0
1

and x0
2

from P
1

and P
2

, respectively, as input to ShareGen. If x0
1

/2 {0, 1}
(resp., x0

2

/2 {0, 1}), then S sets x0
1

= 1 (resp., x0
2

= 1).

3. S computes (sk, pk) Gen(1), and then generates shares as follows:

(a) Choose
n

b
(i)
1|1, b

(i)
2|1, b

(i)
3|1, b

(i)
1|2, b

(i)
2|2, b

(i)
3|2
om

i=0

uniformly at random.

(b) Choose x̂
3

 {0, 1} and set b(0)
3

= maj(x0
1

, x0
2

, x̂
3

). Set b(0)
3|3 = b

(0)

3

� b
(0)

3|1 � b
(0)

3|2.

S then hands A the public key pk, the values
n

b
(i)
1|1, b

(i)
2|1, b

(i)
3|1, b

(i)
1|2, b

(i)
2|2, b

(i)
3|2
om

i=0

(along with

their appropriate signatures), and the value b(0)
3|3 as the outputs of P

1

and P
2

from ShareGen.

4. If P
1

aborts execution of ShareGen, then S extracts x00
2

from P
2

as its input to OR. It
then sends (1, x00

2

) to the trusted party computing maj, outputs whatever A outputs, and
halts.

76

5. Otherwise, if P
1

does not abort, then S picks a value i⇤ according to a geometric distri-
bution with parameter ↵ =

1

5

.

In what follows, for ease of description, we will use x
1

and x
2

in place of x0
1

and x0
2

,
keeping in mind that that A could of course have used substituted inputs. We also
ignore the presence of signatures from now on, and leave the following implicit in what
follows: (1) S always computes an appropriate signature when sending any value to A;
(2) S treats an incorrect signature as an abort; and (3) if S ever receives a valid signature
on a previously unsigned message (i.e., a forgery), then S outputs fail and halts.

Also, from here on we will say that S sends b to A in round i if S sends a value b
(i)
3|3 such

that b(i)
3|3 � b

(i)
3|1 � b

(i)
3|2 = b

(i)
3

= b.

6. For round i = 1, . . . , i⇤ � 1, the simulator S computes and then sends b(i)
3

as follows:

(a) Select x̂
3

 {0, 1} at random.

(b) b
(i)
3

= maj(x
1

, x
2

, x̂
3

).

7. If P
1

aborts in round i < i⇤, then S sets x̂
2

= x
2

and assigns a value to x̂
1

according to
the following rules that depend on the values of (x

1

, x
2

) and on the value of b(i)
3

:

(a) If x
1

= x
2

, then S sets x̂
1

= x
1

with probability 3

8

(and sets x̂
1

= x̄
1

otherwise).

(b) If x
1

6= x
2

and b
(i)
3

= x
1

, then S sets x̂
1

= x
1

with probability 1

4

(and sets x̂
1

= x̄
1

otherwise).

(c) If x
1

6= x
2

and b
(i)
3

= x
2

, then S sets x̂
1

= x
1

with probability 1

2

(and sets x̂
1

= x̄
1

otherwise).

S then finishes the simulation as follows:

(a) If x̂
1

6= x̂
2

, then S submits (x̂
1

, x̂
2

) to the trusted party computing maj. Denote the
output it receives from the trusted party by bout. Then S sets b(i�1)

1

= bout, computes
b
(i�1)
1|3 = b

(i�1)
1

�b
(i�1)
1|1 �b

(i�1)
1|2 , sends b(i�1)

1|3 to P
2

(on behalf of P
3

), outputs whatever
A outputs, and halts.

(b) If x̂
1

= x̂
2

, then S sets b
(i�1)
1

= x̂
1

= x̂
2

, computes b
(i�1)
1|3 = b

(i�1)
1

� b
(i�1)
1|1 � b

(i�1)
1|2 ,

and sends b
(i�1)
1|3 to P

2

(on behalf of P
3

). (We stress that this is done before sending
anything to the trusted party computing maj.) If P

2

aborts, then S sends (0, 1) to
the trusted party computing maj. Otherwise, it sends (x̂

1

, x̂
2

) to the trusted party
computing maj. In both cases it outputs whatever A outputs, and then halts.

If P
2

aborts in round i < i⇤, then S acts analogously but swapping the roles of P
1

and
P
2

as well as x
1

and x
2

.

If both parties abort simultaneously in round i < i⇤, then S sends (0, 1) to the trusted
party computing maj, outputs whatever A outputs, and halts.

8. In round i⇤:

(a) If x
1

6= x
2

, then S submits (x
1

, x
2

) to the trusted party. Let bout = maj(x
1

, x
2

, x
3

)

denote the output.

77

(b) If x
1

= x
2

, then S simply sets bout = x
1

= x
2

without querying the trusted party
and continues. (Note that in this case, bout = maj(x

1

, x
2

, x
3

) even though S did not
query the trusted party.)

9. In rounds i⇤, . . . ,m� 1, the simulator S sends bout to A.

If A aborts P
1

and P
2

simultaneously, then S submits (1, 0) to the trusted party (if he
hasn’t already done so in step 8a), outputs whatever A outputs, and halts.

If A aborts P
1

(only), then S sets b
(i�1)
1

= bout, computes b
(i�1)
1|3 = b

(i�1)
1

� b
(i�1)
1|1 � b

(i�1)
1|2 ,

and sends b(i�1)
1|3 to P

2

(on behalf of P
3

). Then:

Case 1: x1 6= x2. Here S has already sent (x
1

, x
2

) to the trusted party. So S simply
outputs whatever A outputs and ends the simulation.

Case 2: x1 = x2. If P
2

does not abort, then S sends (x
1

, x
2

) to the trusted party. If
P
2

aborts, then S sends (0, 1) to the trusted party. In both cases S then outputs
whatever A outputs and halts.

If A aborts P
2

(only), then S acts as above but swapping the roles of P
1

, P
2

and x
1

, x
2

. If
A does not abort anyone through round m, then S sends (x

1

, x
2

) to the trusted party (if
he hasn’t already done so), outputs what A outputs, and halts.

We first note that the probability S outputs fail is negligible, due to the security of the
underling signature scheme. We state the following claim:

Claim 4.1.4 If P
1

and P
2

both abort, then S always sends (0, 1) or (1, 0) to the trusted party.

We leave verification to the reader. We must prove that for any set of inputs, the joint dis-
tribution over the possible views of A and the output of P

3

is equal in the ideal and hybrid
worlds:

(VIEWhyb(x1, x2, x3), OUThyb(x1, x2, x3)) ⌘ (VIEWideal(x1, x2, x3), OUTideal(x1, x2, x3)) (4.1)

We begin by noting that this is trivially true when no players ever abort. It is also easy to
verify that this is true when P

1

aborts during the execution of ShareGen. From here forward,
we therefore assume that A aborts player P

1

at some point after the execution of ShareGen.
We consider what happens when A aborts P

2

as well, but for simplicity we will only analyze
the cases where P

1

is aborted first, and when they are aborted at the same time. The analysis
when A aborts only P

2

, or when he aborts P
1

after P
2

is symmetric and is not dealt with here.
We will break up the view of A into two parts: the view before P

1

aborts, where a particular
instance of this view is denoted by ~ai, and the single message intended for P

2

that A receives
after P

1

aborts, denoted by b
(i�1)
1

. Letting i denote the round in which P
1

aborts, and bout the
value output by P

3

, we wish to prove:

Pr

h

(VIEWhyb, OUThyb) = (~ai, b
(i�1)
1

, bout)
i

= Pr

h

(VIEWideal, OUTideal) = (~ai, b
(i�1)
1

, bout)
i

(we drop explicit mention of the inputs to improve readability). Towards proving this, we
first prove the following two claims.

78

Claim 4.1.5 For all inputs and all feasible adversarial views (~ai, b
(i�1)
1

),

Pr

h

(VIEWhyb, OUThyb) = (~ai, b
(i�1)
1

, bout)
^

i > i⇤
i

= Pr

h

(VIEWideal, OUTideal) = (~ai, b
(i�1)
1

, bout)
^

i > i⇤
i

Proof: We denote by P?
2

the event that P
2

aborts the protocol (either at the same time as
P
1

, or after P
1

aborts, during the exchange of the shares of b(i�1)
1

). We also denote the event
⇣

VIEWhyb = (~ai, b
(i�1)
1

)

V

i > i⇤
⌘

by Ehyb, and the event
⇣

VIEWideal = (~ai, b
(i�1)
1

)

V

i > i⇤
⌘

by
Eideal in order to shorten notation. We have the following:

Pr

h

(VIEWhyb, OUThyb) = (~ai, b
(i�1)
1

, bout)
^

i > i⇤
i

= Pr
h

OUThyb = bout
^

P?
2

^

Ehyb

i

+ Pr

h

OUThyb = bout
^

¬P?
2

^

Ehyb

i

= Pr

h

OUThyb = bout | P?
2

^

Ehyb

i

· Pr
h

P?
2

^

Ehyb

i

+Pr

h

OUThyb = bout | ¬P?
2

^

Ehyb

i

· Pr
h

¬P?
2

^

Ehyb

i

and the same is true in the ideal world. It follows from the descriptions of the protocol and
the simulator that

Pr

h

P?
2

^

VIEWhyb = (~ai, b
(i�1)
1

)

^

i > i⇤
i

= Pr

h

P?
2

^

VIEWideal = (~ai, b
(i�1)
1

)

^

i > i⇤
i

and similarly that

Pr

h

¬P?
2

^

VIEWhyb = (~ai, b
(i�1)
1

)

^

i > i⇤
i

= Pr

h

¬P?
2

^

VIEWideal = (~ai, b
(i�1)
1

)

^

i > i⇤
i

.

The above two equalities hold because the protocol is designed such that any view ~ai oc-
curs with the same probability in both worlds. Furthermore, given that i > i⇤, it holds that
b
(i�1)
1

= f(x
1

, x
2

, x
3

), independent of ~ai. P2

decides whether to abort based only on these two
variables, so the decision is the same in both worlds. We therefore need only to prove that

Pr

h

OUThyb = bout | P?
2

^

VIEWhyb = (~ai, b
(i�1)
1

)

^

i > i⇤
i

= Pr

h

OUTideal = bout | P?
2

^

VIEWideal = (~ai, b
(i�1)
1

)

^

i > i⇤
i

(4.2)

and that

Pr

h

OUThyb = bout | ¬P?
2

^

VIEWhyb = (~ai, b
(i�1)
1

)

^

i > i⇤
i

= Pr

h

OUTideal = bout | ¬P?
2

^

VIEWideal = (~ai, b
(i�1)
1

)

^

i > i⇤
i

(4.3)

Both equations follow easily again from the protocol and simulator descriptions. To see Equa-
tion 4.2, note that in the hybrid world when both P

1

and P
2

abort, P
3

always outputs his own
input, bout = x

3

. In the ideal world, recall from claim 4.1.4 that anytime P
1

and P
2

both abort,
and in particular in round i > i⇤, S submits either (0, 1) or (1, 0) to the trusted party, resulting
in bout = x

3

. For Equation 4.3, note that in the hybrid world when P
1

aborts in round i > i⇤,
and P

2

does not, P
3

outputs bout = f(x
1

, x
2

, x
3

). In the ideal world, this is also true, as S

79

submits (x
1

, x
2

) to the trusted party (either in step 8a or in step 9).
We proceed now to the more difficult claim, in the case when i  i⇤:

Claim 4.1.6 For all inputs, for all outputs bout, and for all feasible adversarial views (~ai, b
(i�1)
1

),

Pr

h

(VIEWhyb, OUThyb) = (~ai, b
(i�1)
1

, bout)
^

i  i⇤
i

= Pr

h

(VIEWideal, OUTideal) = (~ai, b
(i�1)
1

, bout)
^

i  i⇤
i

Proof: We denote by P?
2

, as before, the event that P
2

aborts the protocol. We now replace the
event

⇣

VIEWhyb = (~ai, b
(i�1)
1

)

V

i  i⇤
⌘

by Ehyb, and the event
⇣

VIEWideal = (~ai, b
(i�1)
1

)

V

i  i⇤
⌘

by Eideal to shorten notation. We again have that

Pr

h

(VIEWhyb, OUThyb) = (~ai, b
(i�1)
1

, bout)
^

i  i⇤
i

= Pr

h

OUThyb = bout
^

P?
2

^

Ehyb

i

+ Pr

h

OUThyb = bout
^

¬P?
2

^

Ehyb

i

= Pr

h

OUThyb = bout | P?
2

^

Ehyb

i

· Pr
h

P?
2

^

Ehyb

i

+Pr

h

OUThyb = bout | ¬P?
2

^

Ehyb

i

· Pr
h

¬P?
2

^

Ehyb

i

and again, the same probabilistic argument holds in the ideal world. Rewriting the above,
therefore, we equivalently must prove that

Pr

h

OUThyb = bout | P?
2

^

Ehyb

i

· Pr
h

P?
2

| Ehyb

i

· Pr [Ehyb]

+Pr

h

OUThyb = bout | ¬P?
2

^

Ehyb

i

· Pr
h

¬P?
2

| Ehyb

i

· Pr [Ehyb]

= Pr

h

OUTideal = bout | P?
2

^

Eideal

i

· Pr
h

P?
2

| Eideal

i

· Pr [Eideal]

+Pr

h

OUTideal = bout | ¬P?
2

^

Eideal

i

· Pr
h

¬P?
2

| Eideal

i

· Pr [Eideal] .

Note that trivially we have

Pr

h

¬P?
2

| Ehyb

i

= Pr

h

¬P?
2

| Eideal

i

and

Pr

h

P?
2

| Ehyb

i

= Pr

h

P?
2

| Eideal

i

.

Furthermore, by the definition of the protocol, if P
2

aborts, P
3

outputs bout = x
3

(just as in the
previous claim). It is easy to see that this is true in the ideal world as well, so we have

Pr

h

OUThyb = bout | P?
2

^

Ehyb

i

= Pr

h

OUTideal = bout | P?
2

^

Eideal

i

.

When P
2

does not abort, in both worlds bout = b
(i�1)
1

. So as long as we can prove that

Pr [Ehyb] = Pr [Eideal] (4.4)

80

it will then follow that

Pr

h

OUTideal = bout | ¬P?
2

^

Eideal

i

= Pr

h

OUThyb = bout | ¬P?
2

^

Ehyb

i

which will complete the proof of our claim. Before proceeding, we make one final simplifica-
tion of Equation 4.4. Recall that any view ~ai of A (after the completion of ShareGen) consists
simply of the values b

(1)

3

, . . . , b
(i)
3

, b
(i�1)
1

. Letting VIEWi�1
hyb (respectively VIEWi�1

ideal) denote the
values received by A in the first i� 1 rounds of the protocol in the hybrid (resp. ideal) world,
and VIEWi

hyb (resp. VIEWi
ideal) denote the round i message, along with the following final

message received by A after it aborts P
1

in round i, we note that:

Pr [Ehyb]

= Pr

h

VIEWi
hyb = (b

(i)
3

, b
(i�1)
1

) | VIEWi�1
hyb = ~ai�1

^

i  i⇤
i

· Pr
h

VIEWi�1
hyb = ~ai�1

^

i  i⇤
i

and, equivalently in the ideal world:

Pr [Eideal]

= Pr

h

VIEWi
ideal = (b

(i)
3

, b
(i�1)
1

) | VIEWi�1
ideal = ~ai�1

^

i  i⇤
i

· Pr
h

VIEWi�1
ideal = ~ai�1

^

i  i⇤
i

It is trivially true from the protocol and simulator descriptions that

Pr

h

VIEWi�1
hyb = ~ai�1

^

i  i⇤
i

= Pr

h

VIEWi�1
ideal = ~ai�1

^

i  i⇤
i

Furthermore, conditioned i  i⇤, we know that VIEWi
hyb (resp., VIEWi

ideal) is independent of
VIEWi�1

hyb (resp., VIEWi�1
ideal). Therefore, to prove Equation 4.4, and thus Theorem 4.1.1, it suffices

to prove that

Pr

h

VIEWi
hyb = (b

(i)
3

, b
(i�1)
1

) | i  i⇤
i

= Pr

h

VIEWi
ideal = (b

(i)
3

, b
(i�1)
1

) | i  i⇤
i

We proceed now to do this by looking at every possible set of inputs (x
1

, x
2

, x
3

).

Case 1: if (x1 = x2 = x3), then

Pr

h

(b
(i)
3

, b
(1)

i�1)ideal = (x
1

, x
1

)

i

= Pr

h

(b
(i)
3

, b
(1)

i�1)hyb = (x
1

, x
1

)

i

= 1.

In both worlds, b(i)
3

is always x
1

. When P
1

aborts in the ideal world, in accordance with step
7a, S chooses x̂

1

= x
1

= x
2

with probability 3

8

and sends b
(i�1)
1

= x
1

to A. If S chooses
x̂
1

6= x
1

, then it submits (x̂
1

, x
2

) for x̂
1

6= x
2

to the trusted party, and bout = x
3

= x
1

, so again
b
(i�1)
1

= x
1

. The analysis is even simpler in the hybrid world, as both values are always x
1

.

Case 2: if (x1 = x2 6= x3), then

81

Pr

h

(b
(i)
3

, b
(1)

i�1)ideal = (x
1

, x
1

)

i

=

✓

(1� ↵) · 3
8

◆

+ ↵ =

1

2

Pr

h

(b
(i)
3

, b
(1)

i�1)hyb = (x
1

, x
1

)

i

=

✓

(1� ↵) · 1
2

◆

+

✓

↵ · 1
2

◆

=

1

2

Pr

h

(b
(i)
3

, b
(1)

i�1)ideal = (x
1

, x
1

)

i

= (1� ↵) · 5
8

=

1

2

Pr

h

(b
(i)
3

, b
(1)

i�1)hyb = (x
1

, x
1

)

i

=

✓

(1� ↵) · 1
2

◆

+

✓

↵ · 1
2

◆

=

1

2

.

Case 3: if (x3 = x1 6= x2), then

Pr

h

(b
(i)
3

, b
(1)

i�1)ideal = (x
1

, x
1

)

i

=

✓

1

2

(1� ↵) · 1
4

◆

+ ↵ =

3

10

Pr

h

(b
(i)
3

, b
(1)

i�1)hyb = (x
1

, x
1

)

i

=

✓

1

2

(1� ↵) · 1
2

◆

+

✓

↵ · 1
2

◆

=

3

10

Pr

h

(b
(i)
3

, b
(1)

i�1)ideal = (x
1

, x
1

)

i

=

1

2

(1� ↵) · 3
4

=

3

10

Pr

h

(b
(i)
3

, b
(1)

i�1)hyb = (x
1

, x
1

)

i

=

✓

1

2

(1� ↵) · 1
2

◆

+

✓

↵ · 1
2

◆

=

3

10

Pr

h

(b
(i)
3

, b
(1)

i�1)ideal = (x
1

, x
1

)

i

= Pr

h

(b
(i)
3

, b
(1)

i�1)hyb = (x
1

, x
1

)

i

=

Pr

h

(b
(i)
3

, b
(1)

i�1)ideal = (x
1

, x
1

)

i

= Pr

h

(b
(i)
3

, b
(1)

i�1)hyb = (x
1

, x
1

)

i

=

1

2

(1� ↵) · 1
2

=

1

5

.

Case 4: if (x1 6= x2 = x3), then

Pr

h

(b
(i)
3

, b
(1)

i�1)ideal = (x
1

, x
1

)

i

= Pr

h

(b
(i)
3

, b
(1)

i�1)hyb = (x
1

, x
1

)

i

= 0

Pr

h

(b
(i)
3

, b
(1)

i�1)ideal = (x
1

, x
1

)

i

= Pr

h

(b
(i)
3

, b
(1)

i�1)hyb = (x
1

, x
1

)

i

=

1

2

(1� ↵) =
2

5

Pr

h

(b
(i)
3

, b
(1)

i�1)ideal = (x
1

, x
1

)

i

= Pr

h

(b
(i)
3

, b
(1)

i�1)hyb = (x
1

, x
1

)

i

= 0

Pr

h

(b
(i)
3

, b
(1)

i�1)ideal = (x
1

, x
1

)

i

= Pr

h

(b
(i)
3

, b
(1)

i�1)hyb = (x
1

, x
1

)

i

=

1

2

(1� ↵) + ↵ =

3

5

.

The key observation with this last set of inputs is that when x
2

= x
3

, and i < i⇤, regardless of
what value S chooses for x̂

1

, b(i�1)
1

= x
2

= x
3

, just as in the hybrid world.

4.2 A Lower Bound on the Round Complexity of Majority

In this section we prove that any fair protocol for three-party majority must have a round
complexity of !(log ). In addition to providing evidence that the protocol of Section 4.1 is

82

optimal, this result also suggests that achieving fairness in the multi-party setting is qualita-
tively harder than achieving it in the two-party setting. More formally, consider a function
f : {0, 1} ⇥ · · · ⇥ {0, 1} ! {0, 1} taking n boolean inputs. For any subset ; ⇢ I ⇢ [n], we can
define the partition fI of f to be the two-input function fI : {0, 1}|I| ⇥ {0, 1}n�|I| defined as

fI(y, z) = f(x),

where x 2 {0, 1}n is such that xI = y and x
¯I = z. It is not hard to see that if there exists

an I for which fI cannot be computed with complete fairness in the two-party setting, then
f cannot be computed with complete fairness in the multi-party setting. Similarly, the round
complexity for computing f with complete fairness in the multi-party case must be at least
the round complexity of fairly computing each fI . But what about the converse? Note that
any partition of the majority function (maj) is just (isomorphic to) the greater-than-or-equal-to
function, where the domain of one input can be viewed as {0, 1, 2} and the domain of the other
input can be viewed as {0, 1} (in each case, representing the number of ‘1’ inputs held). We
have already demonstrated in Chapter 3 that under suitable cryptographic assumptions, the
greater-than-or-equal-to function on constant-size domains can be securely computed with
complete fairness in O(1) rounds. Since the majority function cannot be computed in constant
rounds, it seems our protocol from Section 3.1 can not be easily extended to the multi-party
setting through a “partition-based” approach.

4.2.1 Proof Overview

We prove our lower bound by arguing that if ⇧maj is some protocol for securely com-
puting maj, then eliminating the last round of ⇧maj results in a protocol ⇧0maj that still com-
putes maj correctly “with high probability”. Specifically, if the error probability in ⇧maj is at
most µ (that we will eventually set to some negligible function of ), then the error probabil-
ity in ⇧

0
maj is at most c · µ for some constant c. If the original protocol ⇧maj has m = O(log )

rounds, then applying this argument inductively m times gives a protocol that computes maj
correctly on all inputs with probability significantly better than guessing without any interac-
tion at all. This gives the desired contradiction.

To prove that eliminating the last round of ⇧maj cannot affect correctness “too much”, we
consider a constraint that holds for the ideal-world evaluation of maj. (Recall, we are working
in the ideal world where complete fairness holds.) Consider an adversary who corrupts two
parties, and let the input of the honest party P be chosen uniformly at random. The adversary
can learn P ’s input by submitting (0, 1) or (1, 0) to the trusted party. The adversary can also
try to bias the output of maj to be the opposite of P ’s choice by submitting (0, 0) or (1, 1); this
will succeed in biasing the result half the time. But the adversary cannot both learn P ’s input
and simultaneously bias the result. (If the adversary submits (0, 1) or (1, 0), the output of maj
is always equal to P ’s input; if the adversary submits (0, 0) or (1, 1) then the output of maj
reveals nothing about P ’s input.) Concretely, for any ideal-world adversary the sum of the
probability that the adversary guesses P ’s input and the probability that the output of maj
is not equal to P ’s input is at most 1. In our proof, we show that if correctness holds with
significantly lower probability when the last round of ⇧maj is eliminated, then there exists a
real-world adversary violating this constraint.

83

4.2.2 Proof Details

We number the parties P
1

, P
2

, P
3

, and work modulo 3 in the subscript. The input of
Pj is denoted by xj . The following claim formalizes the ideal-world constraint described
informally above.

Claim 4.2.1 For all j 2 {1, 2, 3} and any adversary A corrupting Pj�1 and Pj+1

in an ideal-world
computation of maj, we have

Pr [A correctly guesses xj] + Pr [OUTj 6= xj]  1,

where the probabilities are taken over the random coins of A and random choice of xj 2 {0, 1}.

Proof: Consider an execution in the ideal world, where Pj ’s input xj is chosen uniformly
at random. Let EQUAL be the event that A submits two equal inputs (i.e., xj�1 = xj+1

) to
the trusted party. In this case, A learns nothing about Pj ’s input and so can guess xj with
probability at most 1/2. It follows that:

Pr [A correctly guesses xj] 
1

2

Pr [EQUAL] + Pr [EQUAL] .

Moreover, Pr [OUTj 6= xj] =
1

2

Pr [EQUAL] since OUTj 6= xj occurs only if A submits xj�1 =

xj+1

= x̄j to the trusted party. Therefore:

Pr [A correctly guesses xj] + Pr [OUTj 6= xj]

 1

2

Pr [EQUAL] + Pr [EQUAL] +
1

2

Pr [EQUAL]

= Pr [EQUAL] + Pr [EQUAL] = 1,

proving the claim.

Let ⇧maj be a protocol that securely computes maj using m = m() rounds. Consider an
execution of ⇧maj in which all parties run the protocol honestly except for possibly aborting
in some round. We denote by b

(i)
j the value that Pj�1 and Pj+1

both2 output if Pj aborts the
protocol after sending its round-i message (and then Pj�1 and Pj+1

honestly run the protocol
to completion). Similarly, we denote by b

(i)
j�1 (resp., b(i)j+1

) the value output by Pj and Pj+1

(resp., Pj and Pj�1) when Pj�1 (resp., Pj+1

) aborts after sending its round-i message. Note
that an adversary who corrupts, e.g., both Pj�1 and Pj+1

can compute b
(i)
j immediately after

receiving the round-i message of Pj .
Since ⇧maj securely computes maj with complete fairness, the ideal-world constraint from

the previous claim implies that for all j 2 {1, 2, 3}, any inverse polynomial µ(), and any
poly-time adversary A controlling players Pj�1 and Pj+1

, we have:

Pr

x
j

 {0,1}
[A correctly guesses xj] + Pr

x
j

 {0,1}
[OUTj 6= xj]  1 + µ() (4.5)

for  sufficiently large. Security of ⇧maj also guarantees that if the inputs of the honest par-
ties agree, then with all but negligible probability their output must be their common input

2Security of ⇧maj implies that the outputs of P
j�1 and P

j+1 in this case must be equal with all but negligible
probability. For simplicity we assume this to hold with probability 1 but our proof can be modified easily to
remove this assumption.

84

regardless of when a malicious Pj aborts. That is, for  large enough we have

xj+1

= xj�1) Pr

h

b
(i)
j = xj+1

= xj�1
i

� 1� µ() (4.6)

for all j 2 {1, 2, 3} and all i 2 {0, . . . ,m()}.
The following claim represents the key step in our lower bound.

Claim 4.2.2 Fix a protocol ⇧maj, a function µ, and a value  such that Equations (4.5) and (4.6) hold,
and let µ = µ(). Say there exists an i, with 1  i  m(), such that for all j 2 {1, 2, 3} and all
c
1

, c
2

, c
3

2 {0, 1} it holds that:

Pr

h

b
(i)
j = maj(c

1

, c
2

, c
3

) | (x
1

, x
2

, x
3

) = (c
1

, c
2

, c
3

)

i

� 1� µ. (4.7)

Then for all j 2 {1, 2, 3} and all c
1

, c
2

, c
3

2 {0, 1} it holds that:

Pr

h

b
(i�1)
j = maj(c

1

, c
2

, c
3

) | (x
1

, x
2

, x
3

) = (c
1

, c
2

, c
3

)

i

� 1� 5µ. (4.8)

Proof: When j = 1 and c
2

= c
3

, the desired result follows from Equation (4.6); this is
similarly true for j = 2, c

1

= c
3

as well as j = 3, c
1

= c
2

.
Consider the real-world adversary A that corrupts P

1

and P
3

and sets x
1

= 0 and x
3

= 1.
Then:

• A runs the protocol honestly until it receives the round-i message from P
2

.

• A then locally computes the value of b(i)
2

.

– If b(i)
2

= 0, then A aborts P
1

without sending its round-i message and runs the protocol
(honestly) on behalf of P

3

until the end. By definition, the output of P
2

will be
b
(i�1)
1

.

– If b(i)
2

= 1, then A aborts P
3

without sending its round-i message and runs the protocol
(honestly) on behalf of P

1

until the end. By definition, the output of P
2

will be
b
(i�1)
3

.

• After completion of the protocol, A outputs b(i)
2

as its guess for the input of P
2

.

Consider an experiment in which the input x
2

of P
2

is chosen uniformly at random, and
then A runs protocol ⇧maj with P

2

. Using Equation (4.7), we have:

Pr [A correctly guesses x
2

] = Pr

h

b
(i)
2

= x
2

i

= Pr

h

b
(i)
2

= f(0, x
2

, 1)
i

� 1� µ . (4.9)

85

We also have:

Pr [OUT
2

6= x
2

] =

1

2

· Pr [OUT
2

= 1 | (x
1

, x
2

, x
3

) = (0, 0, 1)] (4.10)

+

1

2

· Pr [OUT
2

= 0 | (x
1

, x
2

, x
3

) = (0, 1, 1)]

=

1

2

⇣

Pr

h

b
(i�1)
1

= 1 ^ b
(i)
2

= 0 | (x
1

, x
2

, x
3

) = (0, 0, 1)
i

+ Pr

h

b
(i�1)
3

= 1 ^ b
(i)
2

= 1 | (x
1

, x
2

, x
3

) = (0, 0, 1)
i

+ Pr

h

b
(i�1)
3

= 0 ^ b
(i)
2

= 1 | (x
1

, x
2

, x
3

) = (0, 1, 1)
i

+ Pr

h

b
(i�1)
1

= 0 ^ b
(i)
2

= 0 | (x
1

, x
2

, x
3

) = (0, 1, 1)
i⌘

.

From Equation (4.5), we know that the sum of Equations (4.9) and (4.10) is upper-bounded by
1 + µ. Looking at the first summand in Equation (4.10), this implies that

Pr

h

b
(i�1)
1

= 1 ^ b
(i)
2

= 0 | (x
1

, x
2

, x
3

) = (0, 0, 1)
i

 4µ. (4.11)

Probabilistic manipulation gives

Pr

h

b
(i�1)
1

= 1 ^ b
(i)
2

= 0 | (x
1

, x
2

, x
3

) = (0, 0, 1)
i

= 1� Pr

h

b
(i�1)
1

= 0 _ b
(i)
2

= 1 | (x
1

, x
2

, x
3

) = (0, 0, 1)
i

� 1� Pr

h

b
(i�1)
1

= 0 | (x
1

, x
2

, x
3

) = (0, 0, 1)
i

� Pr

h

b
(i)
2

= 1 | (x
1

, x
2

, x
3

) = (0, 0, 1)
i

� 1� Pr

h

b
(i�1)
1

= 0 | (x
1

, x
2

, x
3

) = (0, 0, 1)
i

� µ ,

where the last inequality is due to the assumption of the claim. Combined with Equation (4.11),
this implies:

Pr

h

b
(i�1)
1

= 0 | (x
1

, x
2

, x
3

) = (0, 0, 1)
i

� 1� 5µ.

Applying an analogous argument starting with the third summand in Equation (4.10) gives

Pr

h

b
(i�1)
3

= 1 | (x
1

, x
2

, x
3

) = (0, 1, 1)
i

� 1� 5µ.

Repeating the entire argument, but modifying the adversary to consider all possible pairs of
corrupted parties and all possible settings of their inputs, completes the proof of the claim.

Theorem 4.2.3 Any protocol ⇧maj that securely computes maj with complete fairness requires !(log )
rounds.

Proof: Assume there exists a protocol ⇧maj that securely computes maj with complete fairness
using m = O(log ) rounds. Let µ() = 1

4·5m() , and note that µ is noticeable. By the assumed
security of ⇧maj, the conditions of Claim 4.2.2 hold for  large enough; Equation (4.7), in
particular, holds for i = m(). Fixing this  and applying the claim iteratively m() times, we
conclude that Pj�1 and Pj+1

can correctly compute the value of the function, on all inputs,
with probability at least 3/4 without interacting with Pj at all. This is clearly impossible.

86

⇧OR

Inputs: Each party Pi holds input xi 2 {0, 1}, and the security parameter is k.
Computation:

1. Let P = {P1, . . . , Pn} be the set of all players.
2. Each player Pi chooses random coins ri and broadcasts ci = Com(1

, xi, ri), where
Com denotes a computationally-hiding, statistically-binding commitment scheme. If
any party Pi does not broadcast anything (or otherwise broadcasts an invalid value),
then all honest players output 1. Otherwise, let c = (c1, . . . , cn).

3. All players Pi 2 P run a protocol ⇡P for computing CommittedORP , with party Pi using
(xi, ri, cP) as its input where cP

def
= (ci)i:Pi2P .

4. If players receive ? from the execution of CommittedORP , they set P = P \ {P ⇤}, where
P ⇤ 2 P is the lowest-indexed player in P , and return to step 3.

5. If players receive a set D ⇢ P from the execution of CommittedORP , they set P = P \ D
and return to step 3.

6. If players receive a binary output from the execution of CommittedORP , they output this
value and end the protocol.

Figure 4.3: A protocol computing OR for n players.

4.3 Fair Computation of OR for n Players

In this section, we demonstrate the completely-fair computation of a non-trivial function
for an arbitrary number of parties n, any t < n of whom are corrupted. Specifically, we show
how to compute boolean OR with complete fairness. The idea in the protocol is to have the
parties repeatedly try to compute OR on committed inputs, using a protocol that is secure-with-
designated-abort (i.e., where only the lowest-indexed party can force an abort. See Definition
2.6.1.) The key observation is that, in case of an abort, the dishonest players only learn some-
thing about the inputs of the honest players if all the malicious parties use input 0. (If any
of the malicious players holds input 1, then the output is always 1 regardless of the inputs
of the honest parties.) So, if the lowest-indexed party is corrupt and aborts the computation
of the committed OR, then the remaining parties simply recompute the committed OR using
‘0’ as the effective input for any parties that have already been eliminated. They repeatedly
proceed in this fashion, eliminating dishonest parties at each iteration. Eventually, when the
lowest-indexed player is honest, the process terminates and all honest players receive (cor-
rect) output.

The actual protocol follows the above intuition, but is a bit more involved. A formal
description of the protocol is given in Figure 4.3, and the “committed OR” functionality is
defined in Figure 4.4.

Theorem 4.3.1 Assume Com is a computationally-hiding, statistically-binding commitment scheme,
and that ⇡P securely computes CommittedORP (with abort). Then the protocol of Figure 4.3 computes
OR with complete fairness.

Proof: Let ⇧ denote the protocol of Figure 4.3. For simplicity we assume Com is perfectly
binding, though statistical binding suffices. For any non-uniform, polynomial time adversary
A in the hybrid world, we demonstrate a non-uniform polynomial-time adversary S corrupt-
ing the same parties as A and running in the ideal world with access to an ideal functionality

87

CommittedORP

Inputs: The functionality is run by parties in P . Let the input of player Pi 2 P be (xi, ri, c
i
)

where c

i
= (cij)j:Pj2P . The security parameter is k.

For each party Pi 2 P , determine its output as follows:
1. Say Pj disagrees with Pi if either (1) c

j 6= c

i or (2) Com(1

, xj , rj) 6= cij . (Note that
disagreement is not a symmetric relation.)

2. Let Di be the set of parties who disagree with Pi.
3. If there exist any parties that disagree with each other, return Di as output to Pi. Other-

wise, return
W

j:Pj2P xj to all parties.

Figure 4.4: Functionality CommittedORP , parameterized by a set P

computing OR (with complete fairness), such that

�

IDEALOR,S(x1, . . . , xn, k)

x
i

2{0,1},k2N
c⌘
n

HYBRIDCommittedORP
⇧,A (x

1

, . . . , xn, k)
o

x
i

2{0,1},k2N
.

Applying the composition theorem of [20] then proves the theorem.
We note that when no players are corrupt, the proof of security is easy, due to the as-

sumed existence of a private broadcast channel. We now describe the execution of S :

1. Let C 6= ; be the corrupted players, and let H = {P
1

, . . . Pn} \ C denote the honest
players. Initialize I = C. Looking ahead, I denotes the set of corrupted parties who
have not yet been eliminated from the protocol.

2. S invokes A on the inputs {xi}i:P
i

2C , the auxiliary input z, and the security parameter k.

3. For Pi 2 H, the simulator S gives to A a commitment ci = Com(1

, xi, ri) to xi = 0 using
randomness ri. S then records the commitment ci that is broadcast by A on behalf of
each party Pi 2 C. If any corrupted player fails to broadcast a value ci, then S submits
1’s to the trusted party on behalf of all corrupted parties, outputs whatever A outputs,
and halts.

4. If I = ;, S submits (on behalf of all the corrupted parties) 0’s to the trusted party
computing OR (unless it has already done so). It then outputs whatever A outputs, and
halts. If I 6= ;, continue to the next step.

5. S sets P = H[I and obtains inputs {(ri, xi, ci)}i:P
i

2I for the computation of CommittedORP .
For each Pi 2 P , the simulator S computes the list of players Di that disagree with Pi

(as in Figure 4.4), using as the inputs of the honest parties the commitments defined in
Step 3, and assuming that honest parties provide correct decommitments. Observe that
if Pi, Pj 2 H then Di = Dj ✓ I. Let DH ✓ I be the set of parties that disagree with the
honest parties.

Let P ⇤ be the lowest-indexed player in P . If no parties disagree with each other, go to
step 6. Otherwise:

(a) If P ⇤ 2 I, then A is given {Di}i:P
i

2I . If P ⇤ aborts, then S sets I = I \ {P ⇤} and
goes to step 4. If P ⇤ does not abort, then S sets I = I \ DH and goes to step 4.

(b) If P ⇤ /2 I, then A is given {Di}i:P
i

2I . Then S sets I = I \ DH and goes to step 4.

88

6. S computes the value b =
W

P
i

2I xi .

(a) If b = 0, and S has not yet queried the trusted party computing OR, then S submits
0’s (on behalf of all the corrupted parties) to the trusted party and stores the output
of the trusted party as bout. S gives bout to A (either as just received from the trusted
party, or as stored in a previous execution of this step).

(b) If b = 1, then S gives the value 1 to A without querying the trusted party.

S now continues as follows:

(a) If P ⇤ 2 I and P ⇤ aborts, then S sets I = I \ {P ⇤} and goes to step 4.
(b) If P ⇤ /2 I, or if P ⇤ does not abort, then S submits 1’s to the trusted party if it has

not yet submitted 0’s. It outputs whatever A outputs, and halts.

We first demonstrate that the view of A in the hybrid world is computationally indistin-
guishable from its view in the ideal world. In step 3, the commitments by the simulator are
all commitments to 0 values rather than to the actual inputs of the honest players. However,
it is easy to see that if A could distinguish between the two worlds in this step, he could
violate the security of the underlying commitment scheme. We now show that, except for
Step 3 of the simulation, the ideal world view generated by the simulator and the hybrid
world view are identically distributed. Recall that at the start of Step 5 of the simulation, we
let P = I [H denote the set of remaining players. We first note that when the outputs of
CommittedORP(ri, xi, ci)i:P

i

2I[H are disagreement lists (rather than the OR of the remaining
inputs), then in Step 5, S is capable both of correctly detecting this, and of computing the
disagreement lists, independently of the honest input values. In this step, then, the view of
A will be identical to his view in the hybrid world. If all remaining players are consistent, in
which case the output of CommittedORP is the binary OR of the remaining inputs, there are
two possibilities. If the input xi for some Pi 2 I is 1, then the adversarial view created by
S in Step 6b is exactly as in the hybrid world; the output of CommittedORI[H in the hybrid
world is always 1 in this case, regardless of the honest players’ inputs. When all input values
xi for Pi 2 I are 0, then the hybrid world output of CommittedORI[H will depend on the in-
puts of the honest players, and S must query the trusted party to determine this value. Note,
however, that in this case the output of CommittedORI[H in all subsequent calls in the hybrid
world will remain unchanged, regardless of which players are later excluded, and thus the
view generated by S in Step 6a is correct every time.

We next consider the joint distribution of the honest players’ outputs with the view of A.
We claim that the output of the honest players (in both worlds) is exactly b =

W

P
i

xi for Pi that
are never eliminated, where for honest parties, these are simply their original input values,
and for malicious parties these are the values they first committed to (either in Step 3 in the
ideal world, or in Step 2 in the hybrid world). In the hybrid world, this claim follows trivially
from the protocol description. In the ideal world, there are two possible submissions that S
can make to the trusted party: S can submit all 0’s or all 1’s. S submits 0’s to the trusted party
when all (remaining) inputs xi for Pi 2 I are 0 (in Step 6a), or when I = ; (in Step 4). In this
case the output of the honest parties is

b =
_

P
i

2I[H
xi =

_

P
i

2I0[H
xi

for any I 0 ✓ I. Therefore, regardless of which players from I are eliminated in the future, the
output of the honest parties is equal to the OR of the inputs of the non-eliminated players, as

89

claimed. The only time S submits 1’s to the trusted party is in Step 6b, after it has verified that
no more parties will abort, and that (at least) one of the remaining inputs is a 1. Here too, then,
the output of the honest players is consistent with the inputs of the non-eliminated players.
Finally, notice that the set of players still participating at the end of the protocol depends only
on the view of A. Since we have already argued that the distributions on A’s views in the
two worlds are computationally indistinguishable, it follows that the distribution on possible
sets of non-eliminated players, I [H are computationally indistinguishable as well. This
completes the proof sketch.

90

Chapter 5

Partial Fairness in Secure Two-Party
Computation

In Chapter 1 we discussed extensively the various approaches that have been suggested
for achieving partial fairness. For the most part, they have come in two (similar) flavors: those
that make it easier in each round to compute the output through brute-force, and those that
have given the players increasing statistical confidence in the output in each round. In this
Chapter we introduce our own definition of partial fairness, given below, and we explore the
feasibility of achieving this definition. This work originally appeared in Eurocrypt 2010 [52].

As discussed, the most desirable (but, in the two-party setting, typically unachievable)
definition of security requires computational indistinguishability between the real world and
a “true” ideal world where parties receive output simultaneously. The usual relaxation of
security-with-abort [42] leaves unchanged the requirement of computational indistinguisha-
bility, but weakens the ideal world so that fairness is no longer guaranteed at all. Motivated
by [58], we suggest an alternate relaxation: keep the ideal world unchanged, but relax the no-
tion of simulation and require instead that the real and ideal worlds be distinguishable with
probability at most 1

p + negl, where p is some specified polynomial1 (see Definition 5.0.2). We
refer to a protocol satisfying this definition as being “1

p -secure”. Cleve [25] and Moran et al.
[74] show 1

p -secure protocols for two-party coin tossing (where parties have no inputs), but
we are not aware of any other results satisfying our definition. In particular, none of the prior
approaches for achieving partial fairness yield protocols that are 1

p -secure.
We propose the notion of 1

p -security as a new way to approach the problem of partial
fairness, and view this as an independent contribution. We also demonstrate protocols that
achieve this definition for a broad class of functionalities. Specifically, let f : X ⇥ Y !
Z1

⇥Z2

 be a (randomized) functionality where player 1 (resp., player 2) provides input x 2 X

(resp., y 2 Y) and receives output z1 2 Z1

 (resp., z2 2 Z2

). For arbitrary polynomial p, we
show 1

p -secure protocols for computing f as long as at least one of X, Y, Z
1

, Z
2

 is polyno-
mial size (in ). Our protocols are always private, and when either X or Y is polynomial-size
we also achieve the usual notion of security-with-abort. We assume only the existence of en-

1Katz [58] proposed a related notion of “ 1
p

-security-with-abort”; that definition, however, continues to com-
pare the real world with the relaxed ideal world and so again guarantees no fairness at all. A similar relaxation,
formalized differently and with different motivation (and again giving no fairness), is also used in [6]. Our defini-
tion of 1

p

-security is also similar in spirit to (but weaker than) the notion of ✏-zero knowledge [31] and is analogous
to some definitions of password-based key exchange [44] (although there p is fixed by the size of the password
dictionary).

91

hanced trapdoor permutations or, more generally, oblivious transfer.
We also prove that our feasibility results are, in general, optimal. First, we demonstrate

a deterministic, boolean function f : X ⇥ Y ! {0, 1}, where X and Y both have super-
polynomial size, for which no protocol computing f can simultaneously achieve both security-
with-abort and 1

p -security (for p > 4). We also show a deterministic function f : X ⇥ Y !
Z, with each of X, Y, Z super-polynomial in size, such that f cannot be 1

p -securely com-
puted for p > 2.

Preliminaries: For a fixed function p, the ensembles X = {X(a,)}a2D


,2N and

Y = {Y (a,)}a2D


,2N are computationally 1

p -indistinguishable, denoted X
1/p
⇡ Y , if for every

non-uniform polynomial-time algorithm D there exists a negligible function µ(·) such that for
every  and every a 2 D

�

�

Pr[D(X(a,)) = 1]� Pr[D(Y (a,)) = 1]

�

�  1

p()
+ µ().

This gives the following definition:

Definition 5.0.2 Protocol ⇡ is said to 1

p -securely compute F if for every non-uniform probabilistic
polynomial-time adversary A in the real model, there exists a non-uniform probabilistic polynomial-
time adversary S in the ideal model such that

�

IDEALF ,S(z)(x, y,)

(x,y)2X


⇥Y


, z2{0,1}⇤,2N
1/p
⇡

�

REAL⇡,A(z)(x, y,)

(x,y)2X


⇥Y


, z2{0,1}⇤,2N .

5.1 1

p

-Secure Computation of General Functionalities

We begin with an informal description of our feasibility results. Let x denote the input of
P
1

, let y denote the input of P
2

, and let f : X ⇥ Y ! Z denote the function they are trying to
compute. (For simplicity, here we omit the dependence of X,Y , and Z on , and focus on the
case where each party receives the same output.) As in previous chapters, our protocols will
be composed of two stages, where in the first stage the players execute a ShareGen protocol,
and in the second stage they exchange shares of outputs in a sequence of m = m() iterations.
Here, instead of choosing i⇤ from a geometric distribution, as we did in previous chapters, we
choose i⇤ uniformly from {1, . . . ,m}. When X and Y (the domains of f) have size polynomial
in , the second stage follows that of ⇧EXOR from Chapter 3: we set ai = f(x, ŷ) for ŷ chosen
uniformly from Y , and set bi = f(x̂, y) for x̂ chosen uniformly (and independently) from X .
Note that ai (resp., bi) is independent of y (resp., x), as desired.

Intuitively, this is partially fair because fairness is violated only if P
1

aborts exactly in
iteration i⇤. (If P

1

aborts before iteration i⇤ then neither party learns the “correct” value z =

f(x, y), while if he aborts after iteration i⇤ then both parties learn the correct value. An abort
by P

2

in iteration i⇤ does not violate fairness, since by then P
1

has already learned the output.)
We show that even if P

1

knows the value of z (which it may, depending on partial information
P
1

has about y), it cannot determine with certainty when iteration i⇤ occurs. Specifically, we
prove a general result (see Lemma 5.1.1) implying (roughly) that as long as Pr[ai = z] � ↵ for
all i < i⇤, then P

1

cannot abort in iteration i⇤ except with probability at most 1/↵m (recall that
m is the number of iterations in the second phase). Since Pr[ai = f(x, y)] = Prŷ2Y [f(x, ŷ) =
f(x, y)] � Prŷ2Y [ŷ = y] = 1/|Y | for any x, y, we conclude that setting m = p · |Y |, so that

92

1/↵m = 1/p, suffices to achieve 1

p -security. We thus get a protocol with polynomially many
rounds as long as Y is polynomial size.

The above does not work directly when Y has super-polynomial size. To fix this, we must
ensure that for every possible z 2 Z (the range of f) we have that Pr[ai = z] is noticeable.
We do this by changing the distribution of ai (for i < i⇤) as follows: with probability 1 � 1/q
choose ai as above, but with probability 1/q choose ai uniformly from Z. Now, for any x, y,
we have Pr[ai = f(x, y)] � 1

q · Prai2Z [ai = f(x, y)] � 1/q|Z| and so setting m = pq|Z| ensures
that P

1

cannot abort in iteration i⇤ except with probability at most 1/p.
Changing the distribution of ai, however, introduces a new problem: if P

2

aborts prior to
iteration i⇤, the output of the honest P

1

in the real world cannot necessarily be simulated in the
ideal world. We show, however, that it can be simulated to within statistical difference O(1/q).
Taking q = p (along with m = pq|Z|) thus gives a 1

p -secure protocol with polynomially many
rounds.

We begin in Section 5.1.1 by stating a lemma that forms an essential piece of our anal-
ysis in the two sections that follow. In Section 5.1.2 we demonstrate a private and 1

p -secure
protocol for functionalities defined on polynomial-size domains. A slight modification of this
protocol is also simultaneously secure-with-abort. To keep the exposition as simple as pos-
sible, we restrict our attention there to single-output functionalities (though the techniques
extend easily to the general case). In Section 5.1.3 we show how to adapt the protocol for
functionalities defined over domains of super-polynomial size (but polynomial range), and
also generalize to functionalities generating different outputs for each party.

5.1.1 A Useful Lemma

We analyze an abstract game � between a challenger and an (unbounded) adversary A.
The game is parameterized by a value ↵ 2 (0, 1] and an integer m � 1. Fix arbitrary distribu-
tions D

1

, D
2

such that for every z it holds that

Pra D1 [a = z] � ↵ · Pra D2 [a = z]. (5.1)

The game �(↵,m) proceeds as follows:

1. The challenger chooses i⇤ uniformly from {1, . . . ,m}, and then chooses a
1

, . . . , am as
follows:

• For i < i⇤, it chooses ai D
1

.
• For i � i⇤, it chooses ai D

2

.

2. The challenger and A then interact in a sequence of at most m iterations. In iteration i:

• The challenger gives ai to the adversary.
• The adversary can either abort or continue. In the former case, the game stops. In

the latter case, the game continues to the next iteration.

3. A wins if it aborts the game in iteration i⇤.

Let Win(↵,m) denote the maximum probability with which A wins the above game.

Lemma 5.1.1 For any D
1

, D
2

satisfying Equation (5.1), it holds that Win(↵,m)  1/↵m.

93

Proof: Fix D
1

, D
2

satisfying (5.1). We prove the lemma by induction on m. When m = 1 the
lemma is trivially true; for completeness, we also directly analyze the case m = 2. Since A is
unbounded we may assume it is deterministic. So without loss of generality, we may assume
the adversary’s strategy is determined by a set S in the support of D

2

such that A aborts in
the first iteration iff a

1

2 S, and otherwise aborts in the second iteration (no matter what). We
have

Pr[A wins] = Pr[A wins and i⇤ = 1] + Pr[A wins and i⇤ = 2]

=

1

2

· Pra D2 [a 2 S] +
1

2

·
�

1� Pra D1 [a 2 S]
�

 1

2

· Pra D2 [a 2 S] +
1

2

·
�

1� ↵ · Pra D2 [a 2 S]
�

=

1

2

+

1

2

·
�

(1� ↵) · Pra D2 [a 2 S]
�

 1� ↵/2,

where the first inequality is due to Equation (5.1). One can easily verify that 1 � ↵/2  1/2↵
when ↵ > 0. We have thus proved Win(↵, 2)  1/2↵.

Assume Win(↵,m)  1/↵m, and we now bound Win(↵,m + 1). As above, let S denote
a set in the support of D

2

such that A aborts in the first iteration iff a
1

2 S. If A does not
abort in the first iteration, and the game does not end, then the conditional distribution of
i⇤ is uniform in {2, . . . ,m + 1} and the game �(↵,m + 1) from this point forward is exactly
equivalent to the game �(↵,m). In particular, conditioned on the game �(↵,m+1) not ending
after the first iteration, the best strategy for A is to play whatever is the best strategy in game
�(↵,m). We thus have

Win(↵,m+ 1) = Pr[A wins and i⇤ = 1] + Pr[A wins and i⇤ > 1]

=

1

m+ 1

· Pra D2 [a 2 S] +
r

m+ 1

·
�

1� Pra D1 [a 2 S]
�

·Win(↵,m)

 1

m+ 1

· Pra D2 [a 2 S] +
1

↵(m+ 1)

·
�

1� ↵ · Pra D2 [a 2 S]
�

·

=

1

↵(m+ 1)

.

This completes the proof.

5.1.2 1
p -Security for Functionalities with Polynomial-Size Domain

In this section, we describe a protocol that works for functionalities where at least one
of the domains is polynomial-size. (We stress that the protocol works directly for randomized
functionalities; the standard reduction from randomized to deterministic functionalities [42]
would not apply here since, in general, it makes the domain too large.) Although a small
modification of the protocol works even when the parties receive different outputs, for sim-
plicity we assume here that the parties compute a single-output function. We return to the
more general setting in the following section.
Theorem 5.1.2 Let F = {f : X ⇥ Y ! Z} be a (randomized) functionality where |Y| =

poly(). Assuming the existence of enhanced trapdoor permutations, for any polynomial p there is an
O (p · |Y|)-round protocol computing F that is private and 1

p -secure.

Proof: As described earlier, our protocol ⇧ consists of two stages. Let p be a polynomial,
and set m = p() · |Y|. We implement the first stage of ⇧ using a sub-protocol ⇡ for com-

94

ShareGenm

Inputs: Let the inputs to ShareGenm be x 2 X and y 2 Y. (If one of the received inputs is not
in the correct domain, a default input is substituted.)

Computation:
1. Define values a1, . . . , am and b1, . . . , bm in the following way:

• Choose i⇤ uniformly at random from {1, . . . ,m}.
• For i = 1 to i⇤ � 1 do:

– Choose ŷ Y and set ai = f(x, ŷ).
– Choose x̂ X and set bi = f(x̂, y).

• Compute z = f(x, y). For i = i⇤ to m, set ai = bi = z.

2. For 1  i  m, choose (a
(1)
i , a

(2)
i) and (b

(1)
i , b

(2)
i) as random secret sharings of ai and bi,

respectively. (I.e., a(1)i is random and a
(1)
i � a

(2)
i = ai.)

3. Compute ka, kb Gen(1). For 1  i  m, let tai = Macka(ika
(2)
i) and tbi = Mackb(ikb

(1)
i).

Output:
1. Send to P1 the values a(1)1 , . . . , a

(1)
m and (b

(1)
1 , tb1), . . . , (b

(1)
m , tbm), and the MAC-key ka.

2. Send to P2 the values (a(2)1 , ta1), . . . , (a
(2)
m , tam) and b

(2)
1 , . . . , b

(2)
m , and the MAC-key kb.

Figure 5.1: Functionality ShareGenm.

puting a randomized functionality ShareGenm (parameterized by a polynomial m) that is de-
fined in Figure 5.1. This functionality returns shares to each party, authenticated using an
information-theoretically secure m-time MAC (Gen,Mac,Vrfy). In the second stage of ⇧ the
parties exchange these shares in a sequence of m iterations as described in Figure 5.2.

We analyze our protocol in a hybrid model where there is a trusted party computing
ShareGenm according to the ideal model described in Definition 2.4.1, where a malicious P

1

can abort the trusted party before it sends output to the honest party. We prove privacy and
1

p -security of ⇧ in this hybrid model; it follows as in [20] that if we use a sub-protocol for
computing ShareGenm that is secure-with-abort, then the real-world protocol ⇧ is private and
1

p -secure.
We first consider the case of a malicious P

1

. Intuition for the following claim was given
in Section 5.1. The formal statement and proof follow.

Claim 5.1.3 Let ⇧hy denote an execution of ⇧ in a hybrid model with access to an ideal functionality
computing ShareGenm (with abort). For every non-uniform, polynomial-time adversary A corrupting
P
1

and running ⇧

hy, there exists a non-uniform, polynomial-time adversary S corrupting P
1

and
running in the ideal world with access to an ideal functionality computing F (with complete fairness),
such that 1

p -security holds, i.e.,

�

IDEALF ,S(aux)(x, y,)

x2X


,y2Y


,aux2{0,1}⇤
1/p
⇡

n

HYBRID
⇧

hy,A(aux)(x, y,)
o

x2X


,y2Y


,aux2{0,1}⇤
,

and privacy holds, i.e.,
n

OUTS
F ,S(aux)(x, y,)

o

x2X


,y2Y


,aux2{0,1}⇤
⌘
n

VIEWA
⇧

hy,A(aux)(x, y,)
o

x2X


,y2Y


,aux2{0,1}⇤
.

Proof: We construct a simulator S that is given black-box access to A. For readability in what
follows, we ignore the MAC-tags and keys. That is, we do not mention the fact that S computes

95

Protocol 1
Inputs: Party P1 has input x and party P2 has input y. Let m = p · |Y|.
The protocol:

1. Preliminary phase:

(a) P1 chooses ŷ 2 Y uniformly at random, and sets a0 = f(x, ŷ). Similarly, P2

chooses x̂ 2 X uniformly at random, and sets b0 = f(x̂, y).
(b) Parties P1 and P2 run a protocol ⇡ to compute ShareGenm, using their inputs x and

y.
(c) If P2 receives ? from the above computation, it outputs b0 and halts. Otherwise,

the parties proceed to the next step.

(d) Denote the output of P1 from ⇡ by a
(1)
1 , . . . , a

(1)
m , (b(1)1 , tb1), . . . , (b

(1)
m , tbm), and ka.

(e) Denote the output of P2 from ⇡ by (a
(2)
1 , ta1), . . . , (a

(2)
m , tam), b(2)1 , . . . , b

(2)
m , and kb.

2. For i = 1, . . . , r do:
P2 sends the next share to P1:

(a) P2 sends (a(2)i , tai) to P1.

(b) P1 receives (a
(2)
i , tai) from P2. If Vrfyka

(ika(2)i , tai) = 0 (or if P1 received an invalid
message, or no message), then P1 outputs ai�1 and halts.

(c) If Vrfyka
(ika(2)i , tai) = 1, then P1 sets ai = a

(1)
i � a

(2)
i (and continues running the

protocol).

P1 sends the next share to P2:
(a) P1 sends (b(1)i , tbi) to P2.

(b) P2 receives (b
(1)
i , tbi) from P1. If Vrfykb

(ikb(1)i , tbi) = 0 (or if P2 received an invalid
message, or no message), then P2 outputs bi�1 and halts.

(c) If Vrfykb
(ikb(1)i , tbi) = 1, then P2 sets bi = b

(1)
i � b

(2)
i (and continues running the

protocol).

3. If all m iterations have been run, party P1 outputs am and party P2 outputs bm.

Figure 5.2: Generic protocol for computing a functionality f.

MAC-tags for messages it sends to A, nor do we mention the fact that S must verify the MAC-
tags on the messages sent by A. When we say that A “aborts”, we include in this the event
that A sends an invalid message, or a message whose tag does not pass verification. We also
drop the subscript n from our notation and write X,Y in place of X, Y.

1. S invokes A on the input2 x0, the auxiliary input, and the security parameter n. The
simulator also chooses x̂ 2 X uniformly at random (it will send x̂ to the trusted party, if
needed).

2. S receives the input x of A to the computation of the functionality ShareGenm. (If x 62 X
a default input is substituted.)

3. S sets m = p·|Y |, and chooses uniformly-distributed shares a(1)
1

, . . . , a
(1)

m and b
(1)

1

, . . . , b
(1)

m .
Then, S gives these shares to A as its output from the computation of ShareGenm.

2We reserve x for the value input by A to the computation of ShareGen
m

.

96

4. If A sends abort to the trusted party computing ShareGenm, then S sends x̂ to the trusted
party computing f , outputs whatever A outputs, and halts. Otherwise (i.e., if A sends
continue), S proceeds as below.

5. Choose i⇤ uniformly from {1, . . . ,m}

6. For i = 1 to i⇤ � 1:

(a) S chooses ŷ 2 Y uniformly at random, computes ai = f(x, ŷ), and sets a
(2)

i =

a
(1)

i � ai. It gives a(2)i to A. (A fresh ŷ is chosen in every iteration.)
(b) If A aborts, then S sends x̂ to the trusted party, outputs whatever A outputs, and

halts.

7. For i = i⇤ to m:

(a) If i = i⇤ then S sends x to the trusted party computing f and receives z = f(x, y).

(b) S sets a(2)i = a
(1)

i � z and gives a(2)i to A.
(c) If A aborts, then S then outputs whatever A outputs, and halts. If A does not abort,

then S proceeds.

8. If A never aborted (and all m iterations are done), S outputs what A outputs and halts.

It is immediate that the view of A in the simulation above is distributed identically to its
view in ⇧

hy; privacy follows. We now prove 1

p -security.
Ignoring the possibility of a MAC forgery, we claim that the statistical difference between

an execution of A, running ⇧ in a hybrid world with access to an ideal functionality com-
puting ShareGenm, and an execution of S , running in an ideal world with access to an ideal
functionality computing f , is at most 1/p. (Thus, taking into account the possibility of a MAC
forgery makes the statistical difference at most 1/p+ µ() for some negligible function µ.) To
see this, let y denote the input of the honest P

2

and consider three cases depending on when
the adversary aborts:

1. A aborts in round i < i⇤. Conditioned on this event, the view of A is identically dis-
tributed in the two worlds (and is independent of y), and the output of the honest party
is f(x̂, y) for x̂ chosen uniformly in X .

2. A aborts in round i > i⇤ (or never). Conditioned on this, the view of A is again dis-
tributed identically in the two worlds, and in both worlds the output of the honest
party is f(x, y).

3. A aborts in round i = i⇤: here, although the view of A is still identical in both worlds,
the output of the honest party is not: in the hybrid world the honest party will output
f(x̂, y), for x̂ chosen uniformly in X , while in the ideal world the honest party will
output f(x, y).

However, Lemma 5.1.1 implies that this event occurs with probability at most 1/p. To
see this, let D

1

denote the distribution of ai for i < i⇤ (i.e., this is the distribution defined
by the output of f(x, ŷ), for ŷ chosen uniformly from Y), and let D

2

denote the distri-
bution of ai⇤ (i.e., the distribution defined by the output of f(x, y)). For any z 2 Z we

97

have

Pra D1 [a = z]
def

= Prŷ Y [f(x, ŷ) = z]

� 1

|Y | · Pr[f(x, y) = z] =

1

|Y | · Pra D2 [a = z].

Taking ↵ = 1/|Y | and applying Lemma 5.1.1, we see that A aborts in iteration i⇤ with
probability at most 1/↵m = |Y |/|Y |p = 1/p.

This completes the proof of the claim.
Next we consider the case of a malicious P

2

. A proof of the following is almost identical
to that of Claim 5.1.3; in fact, the proof is simpler and we can prove a stronger notion of
security (namely, where complete fairness holds) since P

1

always “gets the output first” in
every iteration of ⇧. For these reasons, a proof is omitted.

Claim 5.1.4 Let ⇧hy denote an execution of ⇧ in a hybrid model with access to an ideal functionality
computing ShareGenm (with abort). For every non-uniform, polynomial-time adversary A corrupting
P
2

and running ⇧

hy, there exists a non-uniform, polynomial-time adversary S corrupting P
2

and
running in the ideal world with access to an ideal functionality computing F (with complete fairness),
such that 1

p -security holds, i.e.,

�

IDEALF ,S(aux)(x, y,)

x2X


,y2Y


,aux2{0,1}⇤
1/p
⇡

n

HYBRID
⇧

hy,A(aux)(x, y,)
o

x2X


,y2Y


,aux2{0,1}⇤
,

and privacy holds, i.e.,
n

OUTS
F ,S(aux)(x, y,)

o

x2X


,y2Y


,aux2{0,1}⇤
⌘
n

VIEWA
⇧

hy,A(aux)(x, y,)
o

x2X


,y2Y


,aux2{0,1}⇤
.

The results of [20], along with the fact that a secure-with-abort protocol for ShareGenm
is implied by the existence of enhanced trapdoor permutations, complete the proof of Theo-
rem 5.1.2.

Achieving security-with-abort. As written, the protocol is not secure-with-abort. However,
the protocol can be modified easily so that it is (without affecting 1

p -security): simply have
ShareGenm choose i⇤ uniformly from {2, . . . ,m+1} and set bi⇤�1 =?, where ? is some distin-
guished value outside the range of f . Although this allows a malicious P

2

to identify exactly
when iteration i⇤ occurs, this does not affect security since by that time P

1

has already received
the correct output.

5.1.3 1
p -Security for Functionalities with Polynomial-Size Range

The protocol from the previous section does not apply to functions on domains of super-
polynomial size, since the round complexity is linear in the size of the smaller domain. Here
we show how to extend the protocol to handle arbitrary domains if the range of the function
(for at least one of the parties) is polynomial size. We now also explicitly take into account the
case when parties obtain different outputs. Intuition for the changes we introduce is given in
Section 5.1.

Theorem 5.1.5 Let F = {f : X ⇥ Y ! Z1

 ⇥ Z2

} be a (randomized) functionality, where
|Z1

| = poly(). Assuming the existence of enhanced trapdoor permutations, for any polynomial p
there is an O

�

p2 · |Z1

|
�

-round protocol computing F that is private and 1

p -secure.

98

ShareGenp,m

Inputs: Let the inputs to ShareGenp,m be x 2 X and y 2 Y. (If one of the received inputs is
not in the correct domain, a default input is substituted.)

Computation:
1. Define values a1, . . . , am and b1, . . . , bm in the following way:

• Choose i⇤ uniformly at random from {1, . . . ,m}.
• For i = 1 to i⇤ � 1 do:

– Choose x̂ X and set bi = f2
(x̂, y).

– With probability 1
p , choose z Z1

 and set ai = z. With the remaining proba-
bility 1� 1

p , choose ŷ Y and set ai = f1
(x, ŷ).

• Compute z1 = f1
(x, y) and z2 = f2

(x, y) (if f = (f1
 , f

2
) is randomized, these

values are computed using the same random tape). For i = i⇤ to m, set ai = z1 and
bi = z2.

2. For 1  i  m, choose (a
(1)
i , a

(2)
i) and (b

(1)
i , b

(2)
i) as random secret sharings of ai and bi,

respectively. (E.g., a(1)i is random and a
(1)
i � a

(2)
i = ai.)

3. Compute ka, kb Gen(1). For 1  i  m, let tai = Macka(ika
(2)
i) and tbi = Mackb(ikb

(1)
i).

Output:
1. Send to P1 the values a(1)1 , . . . , a

(1)
m and (b

(1)
1 , tb1), . . . , (b

(1)
m , tbm), and the MAC-key ka.

2. Send to P2 the values (a(2)1 , ta1), . . . , (a
(2)
m , tam) and b

(2)
1 , . . . , b

(2)
m , and the MAC-key kb.

Figure 5.3: Functionality ShareGenp,m.

Proof: Our protocol ⇧ is, once again, composed of two stages. The second stage is identi-
cal to the second stage of the previous protocol (see Figure 5.2), except that the number of
iterations m is now set to m = p2 · |Z1

|. The first stage generates shares using a sub-routine
⇡ computing a different functionality ShareGenp,m, parameterized by both p and m and de-
scribed in Figure 5.3.

We again analyze our protocol in a hybrid model, where there is now a trusted party
computing ShareGenp,m. (Once again, P

1

can abort the computation of ShareGenp,m in the
ideal world.) We prove privacy and 1

p -security of ⇧ in this hybrid model, implying [20] that
if the parties use a secure-with-abort protocol for computing ShareGenp,m, then the real-world
protocol ⇧ is private and 1

p -secure. We first consider the case of a malicious P
1

.

Claim 5.1.6 Let ⇧hy denote an execution of ⇧ in a hybrid model with access to an ideal functionality
computing ShareGenp,m (with abort). For every non-uniform, polynomial-time adversary A corrupt-
ing P

1

and running ⇧

hy, there exists a non-uniform, polynomial-time adversary S corrupting P
1

and
running in the ideal world with access to an ideal functionality computing F (with complete fairness),
such that 1

p -security holds, i.e.,

�

IDEALF ,S(aux)(x, y,)

x2X


,y2Y


,aux2{0,1}⇤
1/p
⇡

n

HYBRID
⇧

hy,A(aux)(x, y,)
o

x2X


,y2Y


,aux2{0,1}⇤
,

and privacy holds, i.e.,
n

OUTS
F ,S(aux)(x, y,)

o

x2X


,y2Y


,aux2{0,1}⇤
⌘
n

VIEWA
⇧

hy,A(aux)(x, y,)
o

x2X


,y2Y


,aux2{0,1}⇤
.

99

Proof: The simulator used to prove this claim is essentially the same as the simulator used in
the proof of Claim 5.1.3, except that in step 6(a) the distribution on ai (for i < i⇤) is changed to
the one used by ShareGenp,m. The analysis is similar, too, except for bounding the probability
that A aborts in iteration i⇤. To bound this probability we will again rely on Lemma 5.1.1, but
now distribution D

1

(i.e., the distribution of ai for i < i⇤) is different. Let y denote the input
of P

2

. Note that, by construction of ShareGenp,m, for any z 2 Z1

 we have Pra D1 [a = z] �
1

p · 1

|Z1


| . Regardless of f1 and y, it therefore holds for all z 2 Z1

 that

Pra D1 [a = z] � 1

p · |Z1

|
· Pra D2 [a = z].

Setting ↵ = 1/p · |Z1

| and applying Lemma 5.1.1, we see that A aborts in iteration i⇤ with
probability at most

1

↵m
=

p · |Z1

|
p2 · |Z1

|
=

1

p
.

This completes the proof of the claim.
We next consider the case of a malicious P

2

. Note that, in contrast to Claim 5.1.4, here we
claim only 1

p -security (and privacy).

Claim 5.1.7 Let ⇧hy denote an execution of ⇧ in a hybrid model with access to an ideal functionality
computing ShareGenp,m (with abort). For every non-uniform, polynomial-time adversary A corrupt-
ing P

2

and running ⇧

hy, there exists a non-uniform, polynomial-time adversary S corrupting P
2

and
running in the ideal world with access to an ideal functionality computing F (with complete fairness),
such that 1

p -security holds, i.e.,

�

IDEALF ,S(aux)(x, y,)

x2X


,y2Y


,aux2{0,1}⇤
1/p
⇡

n

HYBRID
⇧

hy,A(aux)(x, y,)
o

x2X


,y2Y


,aux2{0,1}⇤
,

and privacy holds, i.e.,
n

OUTS
F ,S(aux)(x, y,)

o

x2X


,y2Y


,aux2{0,1}⇤
⌘
n

VIEWA
⇧

hy,A(aux)(x, y,)
o

x2X


,y2Y


,aux2{0,1}⇤
.

Proof: The simulator S in this case is fairly obvious, but we include it for completeness.
Once again, for readability we ignore the presence of the MAC-tags and keys.

1. S invokes A on the input y0, the auxiliary input, and the security parameter n. The
simulator also chooses ŷ 2 Y uniformly at random (it will send ŷ to the trusted party, if
needed).

2. S receives the input y of A to the computation of the functionality ShareGenp,m. (If y 62 Y
a default input is substituted.)

3. S sets m = p2·|Z1|, and chooses uniformly-distributed shares a(1)
1

, . . . , a
(1)

m and b
(1)

1

, . . . , b
(1)

m .
Then, S gives these shares to A as its output from the computation of ShareGenp,m.

4. Choose i⇤ uniformly from {1, . . . ,m}

5. For i = 1 to i⇤ � 1:

100

(a) S chooses x̂ 2 X uniformly at random, computes bi = f2

(x̂, y), and sets b
(1)

i =

b
(2)

i � bi. It gives b(1)i to A. (Note that a fresh x̂ is chosen in every iteration.)
(b) If A aborts, then S sends ŷ to the trusted party, outputs whatever A outputs, and

halts.

6. For i = i⇤ to m:

(a) If i = i⇤ then S sends y to the trusted party computing f and receives z = f2

(x, y).

(b) S sets b(1)i = b
(2)

i � z and gives b(1)i to A.
(c) If A aborts, then S then outputs whatever A outputs, and halts. If A does not abort,

then S proceeds.

7. If A has never aborted (and all m iterations are done), then S outputs whatever A out-
puts and halts.

Privacy is immediate, and so we focus on 1

p -security. Ignoring the possibility of a MAC
forgery, we claim that the statistical difference between an execution of A, running ⇧ in a hy-
brid world with access to an ideal functionality computing ShareGenp,m, and an execution of
S , running in an ideal world with access to an ideal functionality computing F , is at most 1/p.
(Thus, taking into account the possibility of a MAC forgery makes the statistical difference at
most 1/p+ µ() for some negligible function µ.) The view of A is identical in the two worlds;
the only issue is the output of the honest P

1

holding input x. Specifically, if A aborts in any
iteration prior to i⇤ then, in the ideal-world interaction with S , party P

1

outputs f1

(x, ŷ) for
a uniformly-chosen ŷ 2 Y . In the hybrid world, however, the output of P

1

is given by the
distribution of ai (for i < i⇤) as determined by ShareGenp,m. However, these two distributions
are within statistical difference (at most) 1/p. The claim follows.

The results of [20], along with the fact that a secure-with-abort protocol for ShareGenp,m
is implied by the existence of enhanced trapdoor permutations, complete the proof of Theo-
rem 5.1.5.

5.2 Optimality of Our Results

We show that the results of the previous section are optimal as far as generic feasibility is
concerned.

5.2.1 Impossibility of 1

p -Security and Security-with-Abort Simultaneously

In Section 5.1.2 (cf. the remark at the end of that section) we showed a protocol achieving
1

p -security and security-with-abort simultaneously for functionalities where at least one of the
domains is polynomial-size. We show that if both domains are super-polynomial in size then,
in general, it is impossible to achieve both these criteria at once.

Theorem 5.2.1 Let F =

�

EQ : {0, 1}`() ⇥ {0, 1}`() ! {0, 1}

, where EQ denotes the equality
function on strings and `() = !(log ). Let ⇧ be any protocol computing F . If ⇧ is secure-with-
abort, then ⇧ does not 1

p -securely compute F for any p � 4 +

1

poly() .

101

Proof: Let ⇧ be a protocol that computes F and is secure-with-abort. Assume without loss
of generality that P

2

sends the first message in ⇧ and that P
1

sends the last message. Say ⇧

has m = m() iterations for some polynomial m, where an iteration consists of a message
sent by P

2

followed by a message sent by P
1

. Let a
0

denote the value that P
1

outputs if P
2

sends nothing, and let ai, for 1  i  m, denote the value that P
1

outputs if P
2

aborts after
sending its iteration-i message. Similarly, let b

0

denote the value that P
2

outputs if P
1

sends
nothing, and let bi, for 1  i  m, denote the value that P

2

outputs if P
1

aborts after sending
its iteration-i message. We may assume without loss of generality that, for all i, we have
ai 2 {0, 1} and bi 2 {0, 1,?}.

We will consider two experiments involving an execution of ⇧. In the first, x and y
are chosen uniformly and independently from {0, 1}`(); the parties are given inputs x and
y, respectively; and the parties then run protocol ⇧ honestly. We denote the probability of
events in this experiment by Prrand[·]. In the second experiment, x is chosen uniformly from
{0, 1}`() and y is set equal to x; these inputs are given to the parties and they run the protocol
honestly as before. We denote the probability of events in this probability space by Preq[·].

Claim 5.2.2 Prrand[a0 = 1 _ · · · _ am = 1] and Prrand[b0 = 1 _ · · · _ bm = 1] are negligible.

Proof: This follows from the fact that ⇧ is secure-with-abort. If, say, it were the case that
Prrand[a0 = 1 _ · · · _ am = 1] is not negligible, then we could consider an adversarial P

2

that
runs the protocol honestly but aborts at a random round. This would cause the honest P

1

to
output 1 with non-negligible probability in the real world, whereas P

1

outputs 1 with only
negligible probability in the ideal world (since the parties are given independent, random
inputs).

Assume for simplicity that ⇧ has perfect correctness, i.e., that am = bm = EQ(x, y) when
the two parties run the protocol honestly holding initial inputs x and y. (This assumption is
not necessary, but allows us to avoid having to deal with annoying technicalities.) Then

Preq[a0 = 1 _ · · · _ am = 1] = Preq[b0 = 1 _ · · · _ bm = 1] = 1

since, in particular, Preq[am = 1] = Preq[bm = 1] = 1. In a given execution, let i⇤ denote the
lowest index for which ai⇤ = 1, and let j⇤ denote the lowest index for which bj⇤ = 1. Since

Preq[i
⇤  j⇤] + Preq[i

⇤ > j⇤] = 1,

at least one of the terms on the left-hand side is at least 1/2. We assume that
Preq[i

⇤  j⇤] � 1/2, but the same argument (swapping the roles of the parties) applies if
Preq[i

⇤ > j⇤] � 1/2.
Consider now a third experiment that is a mixture of the previous two. Specifically, in

this experiment a random bit b is chosen; if b = 0 then the parties are given inputs x and y as
in the first experiment (i.e., chosen uniformly and independently at random), while if b = 1

then the parties are given (random) x = y as in the second experiment. The parties then run
protocol ⇧ honestly. We denote the probability of events in this probability space by Pr

real
3

[·].
We use the superscript real to distinguish this from an ideal-world version of this experiment
where the bit b is chosen uniformly and the parties are given x and y generated accordingly,
but now the parties interact with an ideal party computing EQ without abort (i.e., in the first
ideal model). We denote the probability of events in this experiment by Pr

ideal
3

[·].
Consider an execution of the third experiment (in either the real or ideal worlds), in the

case when P
1

is malicious. Let guess denote the event that P
1

correctly guesses the value of

102

the bit b, and let out
2

denote the output of P
2

. It is not hard to show that

Pr

ideal
3

[guess ^ out
2

6= 1] =

1

2

. (5.2)

(Note that out
2

2 {0, 1} in the first ideal world.) Now take the following real-world adversary
A corrupting P

1

: upon receiving input x, adversary A runs ⇧ honestly but computes ai after
receiving each iteration-i message from P

2

. Then:

• If, at some point, ai = 1 then A aborts the protocol (before sending the iteration-i mes-
sage on behalf of P

1

) and outputs the guess “b = 1”.

• If ai = 0 for all i, then A simply runs the protocol to the end (including the final message
of the protocol) and outputs the guess “b = 0”.

We have:

Pr

real
3

[guess ^ out
2

6= 1]

=

1

2

· Prrand[guess ^ out
2

6= 1] +

1

2

· Preq[guess ^ out
2

6= 1]

� 1

2

· Prrand[a1 = 0 ^ · · · ^ am = 0 ^ bm = 0] +

1

2

· Preq[i
⇤  j⇤]

� 1

2

· (1� negl()) +
1

4

=

3

4

� negl(), (5.3)

using Claim 5.2.2 for the second inequality. Equations (5.2) and (5.3) show that ⇧ cannot also
be 1

p -secure for any p � 4 +

1

poly() .

5.2.2 Impossibility of 1

p -Security for General Functions

Our results show that 1

p -security is achievable for any functionality f : X⇥Y ! Z1

⇥Z2



if at least one of X, Y, Z
1

, Z
2

 has polynomial size. Here, we demonstrate that this limitation
is inherent.

Define a deterministic, single-output function F = {Swap} with

Swap : {0, 1}!(log ) ⇥ {0, 1}!(log ) ! {0, 1}!(log )

as follows: Fix some `() = !(log ). Let (Gen,Mac,Vrfy) denote an information-theoretic,
one-time MAC for messages of length 2 · `() with key length O(`()) and tag length `().
Then

Swap
�

(x
1

, t
1

, k
2

), (x
2

, t
2

, k
1

)

�

def

=

⇢

(x
1

, x
2

) if Vrfyk1(x1, t1) = Vrfyk2(x2, t2) = 1

? otherwise .

(Note that both parties receive the same output (x
1

, x
2

) in the first case.)

Theorem 5.2.3 Function F cannot be 1

p -securely computed for any p � 2 +

1

poly() .

Proof: Consider an ideal-world computation of Swap where:

• x
1

, x
2

are chosen uniformly at random from {0, 1}2`().

103

• k
1

, k0
1

, k
2

, k0
2

are output by Gen(1) (i.e., they are random MAC-keys).

• t
1

= Mack1(x1), t01 = Mack01(x1), t2 = Mack2(x2), and t0
2

= Mack02(x2).

• P
1

is given input (x
1

, t
1

, k
2

) and auxiliary information (k0
2

, t0
2

)

• P
2

is given input (x
2

, t
2

, k
1

) and auxiliary information (k0
1

, t0
1

).

Define a win for P
1

as the event that P
1

outputs x
2

while P
2

fails to output x
1

. (A win for P
2

is
defined analogously.) It is easy to see that, e.g., a malicious P

1

cannot win in the ideal world,
where complete fairness is guaranteed, except with negligible probability. This is because x

2

is a uniform 2`()-bit value, while the only information P
1

has about x
2

initially is the `()-bit
tag t0

2

. Thus, the only way for P
1

to learn x
2

is to submit to the trusted party some input
(x̂

1

, ˆt
1

, ˆk
2

) for which Vrfyk1(x̂1,
ˆt
1

) = 1; unless x̂
1

= x
1

, however, this condition holds with
negligible probability.

In any real-world computation of Swap, however, there must be one party who “gets its
output first” with probability at least 1/2, and can identify exactly when this occurs using
its auxiliary information. More formally, say we have an m-iteration protocol ⇧ computing
Swap where P

2

sends the first message and P
1

sends the last message. Let ai, for i = 0, . . . ,m,
denote the second component of the value P

1

would output if P
2

aborts the protocol after
sending its iteration-i message, and let bi denote the first component of the value that P

2

would output if P
1

aborts the protocol after sending its iteration-i message. Each value ai and
bi can be computed in polynomial time after receiving the other party’s iteration-i message.
We can therefore define an adversary P ⇤

1

that acts as follows:

Run the protocol honestly until the first round where Vrfyk02(ai, t
0
2

) = 1; then out-
put ai and abort.

An adversary P ⇤
2

can be defined analogously. Note that if, e.g., Vrfyk02(ai, t
0
2

) = 1 then ai = x
2

except with negligible probability; this follows from the information-theoretic security of the
MAC along with the fact that the execution of ⇧ is independent of k0

2

, t0
2

.
Let i denote the first round in which Vrfyk02(ai, t

0
2

) = 1, and let j denote the first round in
which Vrfyk01(bj , t

0
1

) = 1. Assuming for simplicity that ⇧ has perfect correctness, we have

Pr[i  j] + Pr[j > i] = 1.

Further, since
�

�

Pr[P ⇤
1

wins]� Pr[i  j]
�

� and
�

�

Pr[P ⇤
2

wins]� Pr[i > j]
�

� are both negligible, we
see that either P ⇤

1

or P ⇤
2

wins in the real world with probability at least 1/2 � negl(). Since
an adversary wins in the ideal world with negligible probability, this rules out 1

p -security for
p > 2.

104

Chapter 6

Fairness When Players are Rational

Because we cannot generally achieve complete fairness, our work in Chapter 5 intro-
duced a new way of relaxing the definition of fairness. In this chapter we instead consider
relaxing our assumptions about the adversary. Most research in cryptography considers arbi-
trary malicious behavior, and with good reason: for most applications, and under reasonable
assumptions, we can achieve security even under such conditions. Since this is not the case
with respect to fair computation, it is reasonable to consider weaker adversaries in this setting.
Motivated by the work of Halpern and Teague [53] we consider here a particular application
where we desire fair protocols, and we demonstrate feasibility under the assumption that all
players act rationally. That is, in the traditional game theoretic sense, we assume the players all
behave in a way that maximizes their own utility. Of course, if we allowed for arbitrary utility
functions, we would again be facing adversaries with arbitrary behavior. Instead, we restrict
the utility functions, with the aim of still achieving some meaningful notion of security, while
also enabling fairness.

The problem we consider (as Halpern and Teague before us [53]) is called rational secret
sharing. The classical problem of t-out-of-n secret sharing [84, 14] (c.f. Section 2.2.3) involves
a “dealer” D who wishes to entrust a secret s to a group of n players P

1

, . . . , Pn so that (1) any
group of t or more players can reconstruct the secret without further intervention of the dealer,
yet (2) any group of fewer than t players has no information about the secret. As an example,
consider the scheme due to Shamir [84]: assume the secret s lies in a finite field F , with
|F| > n. The dealer chooses a random polynomial f(x) of degree at most t � 1 subject to
the constraint f(0) = s, and gives the “share” f(i) to player Pi (for i = 1, . . . , n). Any set of
t players can recover f(x) (and hence s) by broadcasting their shares and interpolating the
polynomial; furthermore, no set of fewer than t players can deduce any information about s.

A secret sharing scheme, such as Shamir’s above, involves two distinct protocols:
Share(t, n, s), which is run by the dealer to generate the shares of s, and Rec(s

1

, . . . , sn), which
is run by some subset of the players in order to reconstruct s. The goal in rational secret
sharing is to find a fair reconstruction protocol. In other words, we wish to make sure that
while running Rec(s

1

, . . . , sn), no player receives s before any other player. As mentioned
before, we assume the players are acting to maximize particular utility functions. Specifically,
we assume each player prefers first and foremost any outcome where they recover the secret.
Then, that being equal, they prefer an outcome where the fewest other players recover the
secret. Formally, let µi(o) denote the utility of player Pi for the outcome o. For a particular
outcome o of the protocol, we let �i(o) be a bit denoting whether or not Pi learns the secret,
and let num(o) =

P

i �i(o); i.e., num(o) is simply the number of players who learn the secret.

105

Following [53], we make the following assumptions about the utility functions of the players:

• �i(o) > �i(o
0
)) µi(o) > µi(o

0
).

• If �i(o) = �i(o
0
), then num(o) < num(o0)) µi(o) > µi(o

0
).

When fairness is not a concern, the only necessary interaction required in the reconstruc-
tion protocol is to have each player broadcast their share to all other players. However, with
the above utility functions, no player has any incentive to do this! Consider P

1

: if strictly
fewer than t � 1 other players broadcast their shares to the rest of the group, then no one
learns the secret regardless of whether P

1

reveals his share or not. If more than t � 1 players
reveal their shares, then everyone learns the secret and P

1

’s actions again have no effect. On
the other hand, if exactly t�1 other players reveal their shares, then P

1

learns the secret (using
his share), and he can prevent other players from learning the secret by not publicly revealing
his share.

Let t, n be as above, and let t⇤ � t denote the number of players present when the secret
is to be reconstructed. Given the above discussion, we can conclude the following about the
game-theoretic equilibria of “standard” Shamir secret sharing in the above situation (defini-
tions of Nash equilibria and weakly dominating strategies are given in Section 6.1):

• For any t, n, t⇤, it is a Nash equilibrium for no one to reveal their share.

• If t⇤ > t, it is a Nash equilibrium for all t⇤ participating players to reveal their shares.
However, as discussed above, it is a weakly dominating strategy for each player not to
reveal his share; thus, the Nash equilibrium likely to be reached is the one mentioned
earlier in which no one reveals their share.

• If t⇤ = t, then having all t⇤ participating players reveal their shares is not even a Nash
equilibrium, since each player can profitably deviate by not revealing his share.

Related work: Halpern and Teague [53] introduced the question of rational secret sharing.
They proved that no protocol that has a fixed number of rounds can have a Nash equilib-
rium that results in reconstruction. They demonstrate a probabilistic protocol for t, n � 3,
and claim impossibility for n = 2. In contrast, our protocol extends even to t, n � 2, is much
simpler than their protocol, and removes some undesirable equilibria that arise in their pro-
tocol. Izmalkov, et al. [57] consider computation in which the players are colocated. This
allows them to use certain physical assumptions, such as secure envelopes and ballot boxes,
in addition to standard communication channels. In this environment, they demonstrate a
protocol ⇧ for securely implementing any mediated game � such that (informally) any equi-
librium in � corresponds to an equilibrium in ⇧, and vice versa. Since rational secret sharing
can be implemented as a mediated game, the work of [57] gives a solution to the problem we
are considering here. Their work is in fact much more general, implying a protocol for any
functionality, for arbitrary player utilities and even in the presence of coalitions. Concurrently
with the work presented here, Abraham, et al. [1] defined a notion of resistance to coalitions
of rational players and show a coalition-resistant protocol. Also concurrently, Lysyanskaya
and Triandopoulos [70] examine the case of “mixed” security when both arbitrarily malicious
and rational players might be present. Subsequent to our work, Kol and Naor [64] suggest
using an alternative, stronger solution concept than the one we present below, called strict
Nash equilibrium. They show how to achieve this using secret shares that are unbounded in
size (though constant size in expectation), and demonstrate that this restriction is necessary.

106

This work and a second result by the same authors [63] were the first two works to remove
the need for simultaneous broadcast channels (also discussed in Section 6.3). Ong et al. [75]
consider the case where some players are guaranteed to be honest, while the rest are rational.
They demonstrate a fair protocol for secret sharing in this setting, removing the simultaneous
broadcast channel, and achieving a stronger solution concept than in prior work. Asharov
and Lindell [2] consider the question of whether protocols for rational secret sharing can be
independent of the players’ utility functions, and demonstrate a negative result. They also
consider whether it is possible to construct a protocol that does not require simultaneous
broadcast, under the assumption that players might gain utility by forcing others to output
incorrect values. They again demonstrate a negative result, though they do give the first pro-
tocol that achieves security when the utility for forcing bad output is known. Finally, the
most recent work on the topic is by Fuchsbauer et al. [36] who use verifiable random functions
to provide a much more efficient protocol than in prior work, by removing the need for gen-
eral secure computation in the reconstruction phase. They also introduce two new solution
concepts that address some of the issues we discuss in Section 6.3.

6.1 Definitions from Game Theory

A game consists of multiple players interacting according to chosen strategies. In our
setting, strategies are simply probabilistic, polynomial-time interactive turing machines. We
let �i denote the strategy employed by player Pi, and let ~� = (�

1

, . . . ,�n) denote the vec-
tor of players’ strategies. Following standard game-theoretic notation, we let (�0i,~��i)

def

=

(�
1

, . . . ,�i�1,�0i,�i+1

, . . . ,�n); that is, (�0i,~��i) denotes the strategy vector ~� with Pi’s strategy
changed to �0i.

Definition 6.1.1 A vector of probabilistic, polynomial-time strategies ~� is a computational Nash
equilibrium if the following holds for all i: for any �0i 6= �i, we have Ui(�

0
i,~��i)  Ui(~�) + negl().

That is, given that all other players are following ~��i, Pi cannot gain more than some negligi-
ble advantage by deviating and choosing some (efficient) strategy other than �i.

In general, multiple Nash equilibria may exist. An inherently “unstable” Nash equilib-
rium (i.e., one unlikely to be reached) is one in which any of the players’ strategies are weakly
dominated by other strategies. Informally, a strategy �i of player Pi is weakly dominated by
another strategy �0i if (1) Pi is sometimes better off playing �0i than playing �i, and (2) Pi is
never worse off playing �0i than playing �i. Recalling the example from the introduction, say a
secret is shared using a t-out-of-n secret sharing (with t < n) and consider the strategy vector
in which all n players reveal their shares. This is a Nash equilibrium: the secret is recon-
structed even if any single player deviates. On the other hand, for each player Pi, revealing
the share is weakly dominated by not revealing the share: if fewer than t� 1 other players or
more than t � 1 other players reveal their shares, then nothing changes; if exactly t � 1 other
player reveal their shares then Pi learns the secret but no one else does. Formal definitions
follow.

Definition 6.1.2 Let Si denote a set of strategies for Pi, and let S�i
def

= S
1

⇥· · ·⇥Si�1⇥Si+1

· · ·⇥Sn.
A strategy �i 2 Si is weakly dominated by a strategy �0i 2 Si with respect to S�i if (1) there
exists a ~��i 2 S�i such that Ui(�i,~��i) < Ui(�

0
i,~��i) and (2) for all ~��i 2 S�i, it holds that

Ui(�i,~��i)  Ui(�
0
i,~��i).

107

Strategy �i is weakly dominated with respect to S�i if there exists a �0i 2 Si such that �i is
weakly dominated by �0i with respect to S�i.

Definition 6.1.3 Let DOMi(S1

⇥· · ·⇥Sn) denote the set of strategies in Si that are weakly dominated
with respect to S�i. Let S0

i denote the initial set of allowable strategies of Pi. For all k � 1, define Sk
i

inductively as Sk
i

def

= Sk�1
i \ DOMi(S

k�1
1

⇥ · · ·⇥ Sk�1
n). Let S1i

def

= \kSk
i .

We say �i survives iterated deletion of weakly dominated strategies if �i 2 S1i .

6.2 A Protocol for Rational Secret Sharing

We present our protocol under the assumption that the players have access to a simul-
taneous broadcast channel. In Section 6.3 we discuss subsequent work that removed this
assumption [63, 64, 75, 2, 36]. We consider the case of arbitrary t, n, and we assume the dealer
holds a secret s which lies in a strict subset S of a finite field F (if s lies in some field F 0, this
is easy to achieve by taking a larger field F containing F 0 as a subfield). We assume players
know S. Furthermore, we will assume that the shares of s are elements of F , as in Shamir’s
(classical) secret sharing scheme.

The intuition behind the protocol is to use the threat that nobody will learn the secret
in order to coerce cooperation and enable everybody to learn it. For the sake of presenting
the intuition, assume the dealer is present during the reconstruction phase. (In our actual
protocol, he is removed in the usual way through an execution of ShareGen.) At the beginning
of each iteration, with probability ↵ the dealer generates a random t-out-of-n Shamir sharing
of s, and with probability 1�↵ the dealer generates a random t-out-of-n Shamir sharing of an
arbitrary element ŝ 2 F \ S; we describe how ↵ is chosen below. These shares are distributed
to the players. Note that no player can tell from their share whether the players were given
a share of ŝ or the true secret s. Then they all broadcast their shares simultaneously: if they
recover some value s 2 S, they know they have recovered the secret; they simply output s
and terminate. If they recover some ŝ 2 F \ S, they return to the dealer to receive new shares
and repeat the process. If a player ever fails to broadcast, all players abort the protocol. As
described previously, if a player tries to hold back, hoping to reconstruct the secret alone, they
run the risk of aborting in a round when nothing is learned, forcing the protocol to terminate
before they can recover the secret. By choosing ↵ appropriately, we can prove that they have
higher expected utility when they cooperate.

Theorem 6.2.1 Given an ideal execution of ShareGen, and for appropriate choice of ↵, the above
protocol constitutes a Nash equilibrium for t-out-of-n secret sharing that survives iterated deletion of
weakly dominated strategies.

Proof: We first consider the case of t = n = 2, and then discuss how to generalize the proof
for arbitrary t, n. It is not hard to see that the protocol is a Nash equilibrium for appropriate
choice of ↵: Say P

2

acts according to the protocol and consider whether P
1

has any incentive
to deviate. Without loss of generality, consider a deviation in the first iteration. The only
possible deviation is for P

1

to refuse to broadcast his share. In this case, he learns the secret
(while P

2

does not) with probability ↵, but with probability 1�↵ he will never learn the secret.
Say P

1

’s utility is U+ if he learns the secret but P
2

does not; U if both players learn the
secret; and U� if neither player learns the secret, where U+ > U > U�. If P

1

follows the

108

ShareGen

Inputs: Let the inputs to ShareGen be ((pk1, s1,�1), . . . , (pkn, sn,�n)) . The security parameter
is . If any of the following statements are true, output ? and terminate:

• If for some j it holds that sj /2 F .
• If for some i, j it holds that pki 6= pkj .
• If for some j it holds that Vrfypkj

(sj ,�j) = 0.

Computation:
For 1  i  m, define values s(i)1 , . . . , s

(i)
n in the following way:

• Choose i⇤ according to a geometric distribution with parameter ↵ (see text).

• For i = 1 to i⇤ � 1 do:

– Choose ŝ 2 F \ S and set (s(i)1 , . . . , s
(i)
n) = Share(t, n, ŝ).

• For i = i⇤ to m, set (s(i)1 , . . . , s
(i)
n) = Share(t, n, s).

Output:
1. Send to Pj the values (s(1)j , . . . , s

(m)
j)

Figure 6.1: Functionality ShareGen for rational secret sharing.

protocol, his expected utility is U . If P
1

deviates, his expected utility is ↵ · U+

+ (1� ↵) · U�.
So as long as

U > ↵ · U+

+ (1� ↵) · U� ,

it is in P
1

’s best interest to follow the protocol. For appropriate ↵ 2 (0, 1), then, the strategy
profile in which both parties follow the protocol is a Nash equilibrium.1 It is immediate that
the same analysis holds for general t, n, regardless of the number of participating players t⇤.

We next prove that our protocol survives iterated deletion of weakly dominated strate-
gies. It is easy to see that when a player learns the real secret, not aborting afterwards is
weakly dominated by aborting. The first round of iterated deletion thus leaves only strate-
gies in which players always abort after learning the secret.

We show that no other deterministic strategies are weakly dominated (and hence no ran-
domized strategies are weakly dominated either). We again begin with the case t = n = 2.
We show that for all deterministic strategies �,�0 of P

1

, there exist strategies ⌧, ⌧ 0 of P
2

such
that U

1

(�, ⌧) > U
1

(�0, ⌧) but U
1

(�, ⌧ 0) < U
1

(�0, ⌧ 0). This proves that all deterministic strategies
of P

1

are incomparable, and so none are ever deleted.
Let hi(�, ⌧ ; r) denote the history of actions (by both players) through iteration i given the

indicated strategies � and ⌧ and assuming the dealer uses coins r (we view r as an infinite
string encoding the dealer’s random choices in all iterations). h

0

(�, ⌧ ; r) denotes the empty
(starting) history. Let Ai(�, ⌧ ; r) denote the action taken by P

1

in iteration i, again for the
indicated strategies and random coins. We say a player cooperates in some iteration if they
reveal their share, and defects if they do not.

Now take arbitrary deterministic strategies � 6= �0 for P
1

. Let ⌧0 be a strategy of P
2

, i � 1

1We intentionally designed the protocol such that it can run forever, though with overwhelming probability in
 it will end in the first  rounds. Without this specification, the protocol would not technically survive iterated
deletion of weakly dominated strategies. Even though it occurs negligibly often, the players will have no incentive
to broadcast when they reach the last round. Then, through inductive reasoning, it follows that they will choose
not to broadcast even in the first round. See further discussion in Section 6.3.

109

Protocol for Rational Secret Sharing

Sharing Protocol:
Inputs: The dealer has input s 2 S. The security parameter is .
Let (Share,Rec) be some classical secret sharing scheme, and (Gen, Sign,Vrfy) be a digital sig-
nature scheme.

1. The dealer computes (s1, . . . , sn) = Share(t, n, s), and (sk, pk) = Gen(1).

2. The dealer gives (pk,Signsk(si)) to Pi.

Reconstruction Protocol:
Inputs: Party Pj has input (pk, sj ,�j).
The protocol:

1. Preliminary phase:
(a) The parties run a protocol ⇡ for computing ShareGen. Each player Pj uses their

respective input, sj and security parameter .
(b) Any player that receives ? from this execution aborts the protocol. Otherwise,

denote Pj ’s output by (s
(1)
j , . . . , s

()
j) and continue to the next stage.

2. For i = 1, . . . , do:
Broadcast shares:

(a) Each Pj simultaneously broadcasts s(i)j .
(b) If anyone fails to broadcast, or broadcasts an invalid share, all players abort.

(c) Otherwise, for j 2 {1, . . . , n}, let (s(i)1 , . . . , s
(i)
j�1, s

(i)
j+1, . . . , s

(i)
n) denote the values

received by Pj .

i. If Rec(s
(i)
1 , . . . , s

(i)
j�1, sj , s

(i)
j+1, . . . , s

(i)
n) 2 S, Pj outputs s and terminates the

protocol.

ii. If Rec(s(i)1 , . . . , s
(i)
j�1, sj , s

(i)
j+1, . . . , s

(i)
n) 2 F \ S, Pj proceeds to the next round.

3. Repeat the reconstruction protocol:
With all but negligible probability, the protocol will have ended before now. If it has not,
the players restart the reconstruction using the same inputs.

Figure 6.2: A protocol for rational secret sharing.

be an integer, and r be a set of coins such that

hi�1(�, ⌧0; r) = hi�1(�0, ⌧0; r) (6.1)

but
Ai(�, ⌧

0

; r) 6= Ai(�
0, ⌧0; r); (6.2)

i.e., iteration i is the first iteration in which the actions of P
1

differ when we compare strategies
� and �0 as played against ⌧0. (Note that some such ⌧0, i, r must exist or else � = �0. Also,
it is implicit that neither player has reconstructed the real secret in any prior iteration, since
otherwise the protocol would never reach iteration i.) Without loss of generality, assume
Ai(�, ⌧

0

; r) is to defect and Ai(�
0, ⌧0; r) is to cooperate. Note that the actions in iteration i

cannot depend on whether or not the dealer shared the real secret or the fake secret in that
iteration.

Consider the following strategy ⌧ of P
2

: (1) act identically to ⌧0 through iteration i � 1;

110

(2) in iteration i, defect; (3) in all subsequent iterations: if P
1

defected in iteration i, then
cooperate; if P

1

cooperated in iteration i, defect. For any r satisfying Equations (1) and (2), P
1

is clearly better off playing � than �0 against strategy ⌧ .
Next consider the following strategy ⌧ 0 of P

2

: (1) act identically to ⌧0 through iteration
i � 1; (2) in iteration i, cooperate; (3) in all subsequent iterations: if P

1

defected in iteration i,
then defect; if P

1

cooperated in iteration i, cooperate. Exactly as when we argued earlier that
our protocol was a Nash equilibrium, we have U

1

(�, ⌧ 0) < U
1

(�0, ⌧ 0). (Here, P
1

is not better
off playing �0 than � for all r satisfying Equations (1) and (2); however, P

1

is better off playing
�0 in expectation.)

The same argument extends to the case of general t, n, regardless of the number of par-
ticipating players t⇤. We simply replace ⌧0 with a strategy profile of n� 1 strategies such that
Equations (6.1) and (6.2) above are still valid, and then define ⌧ and ⌧ 0 as above, but modifying
the strategies of all other players.

We remark that when t⇤ = t our protocol has no additional Nash equilibrium which is
preferred, by any player, to the prescribed equilibrium.

6.3 Discussion

Solution concepts: The work of Kol and Naor [63] later demonstrated a further subtlety that
arises when using the notion of iterated deletion as a solution concept. Recall that in Theorem
6.2.1, we assumed an ideal execution of ShareGen. If we replace this with a secure computa-
tion, where the execution makes use of cryptographic keys of size  (for oblivious transfer),
then if the protocol ever reaches the 2

th iteration, a player that has been trying to break the
security of these schemes is guaranteed to succeed by that time, and might fully recover their
opponent’s shares. Even though this happens with negligible probability, logically, if it does
happen, there is no reason for anyone to broadcast at that point, since their opponents may
have already recovered the secret and are not going to broadcast their own shares. Now, the
protocol is susceptible to backwards induction: if one player knows that the others will not
send their share in round 2

, then logically, they should refuse to broadcast in round 2

 � 1,
and so forth. Following the logic to its conclusion, nobody will choose to broadcast even in
the first round! The point is, while finding the secret keys used in the secure computation
may be computationally infeasible, the players are not bounded in their inductive reasoning.

Kol and Naor offer solutions to the problem by introducing techniques that are secure
in an information theoretic sense up until the round in which the secret is revealed [63, 64].
However, perhaps the more important point to take from their work is that the standard
game theoretic definitions do not necessarily translate nicely to the setting where players are
computationally bounded. In this particular case, it seems that the problem lies more in the
solution concept rather than in the protocol. One possible solution might be to introduce a
discount factor in the utility function, decreasing the payoff for any benefit that occurs far in
the future, and ensuring that the advantage to aborting in round 2

 is negligible anyway.
There is a separate problem with the solution concept used in Section 6.2. We argued

there that because the prescribed strategies are not weakly dominated, the preferred equilib-
rium is more likely to occur. However, we proved that (essentially) no strategies are weakly
dominated, which certainly waters down the argument that our preferred strategy is the most
likely outcome. Even worse is that we used an empty threat to prove the theorem, by consid-
ering a strategy that cooperates forever if the other player defects! As opposed to the concern
that was addressed by Kol and Noar, the problem here is not unique to the computational set-

111

ting; the problem lies in the very definition of the solution concept, which predates the study
of game theory in cryptography. However, if we try adopting some of the stronger solution
concepts from the literature instead, we run into difficulties in the computational setting. For
example, we might prefer to require that our prescribed strategy is sub-game perfect, which
states that the prescribed strategy must be a Nash equilibrium at every possible state in the
game tree, even those that are never reached when the strategy is correctly followed. Indeed,
this definition is designed to remove empty threats such as the one described above. Unfor-
tunately, in the computational setting, this requires us to consider even the histories in which
players happen to guess a cryptographic key. As a result, natural protocol descriptions are
unlikely to meet the definition as is.

A final point on our solution concept was mentioned in a personal conversation with
Amos Beimel. Technically, our proof in Section 6.2 only considers strategies that take the
action-histories of the other players as input. But a strategy could also consider the particular
message strings sent by the other players (including the signatures on their secret shares). For
example, although it is intuitively irrational, a strategy could dictate that a player aborts if
the third bit of the signature received from player j in the prior round is 0. When we consider
such strategies, it is no longer clear that the prescribed strategy survives iterated deletion
of weakly dominated strategies. However, Beimel demonstrated that it is not very difficult
to modify our theorem to prove that all envelope strategies survive iterated deletion, where
these are the strategies that we considered, but never defined, in which the only input to the
strategy is the action-histories.

Simultaneous broadcast: We assumed here that the players have access to a simultaneous
broadcast channel. This is not always a realistic assumption, especially if protocols are exe-
cuted over the Internet, and it is best if it can be avoided. The works of Kol and Naor were
the first to remove this assumption [63, 64], followed by Ong et al. [75], Asharov and Lindell
[2], and finally Fuchsbauer et al. [36]. With the exception of Ong et al. (who rely on the as-
sumption that some of the players are fully honest, rather than rational), all of these works
use the same fundamental idea (though most of them implicitly). If the parties do not know
enough about the secret that they can recognize it when they see it, then we can safely instruct
them take turns revealing their shares. One player will learn the secret first, but they will not
know that they have learned it until after they have responded with their own share, enabling
the other party to learn the secret as well. Then, only in the following round are the players
informed that the value they previously learned is the correct secret.

General secure computation: All of the above work deals exclusively with secret sharing.
A natural next question is whether we can extend this work to enable fairness in general
secure computation among rational parties. The naive approach would be to have the players
compute an unfair secure computation that results in a secret sharing of the outputs, and
then to apply the fair reconstruction protocol from any of the above works. Unfortunately,
without simultaneous broadcast, some complications arise. First is the issue described above
regarding prior knowledge of the output. For certain applications of secret sharing, it might
be reasonable to assume that the secret is chosen uniformly from the domain of all secrets.
However, for general secure computation, we do not want to be constrained to assuming that
the inputs are uniformly chosen. Furthermore, even if we do make this assumption, for more
general computations, the input itself may give too much information for us to assume that
he output will be unrecognized. For example, consider the case of signature exchange where
the player is given his opponents verification key as part of his input. As soon as one player
reconstructs a secret that verifies, he can abort the protocol and ruin fairness.

112

We might hope that the naive solution above will work if we are given a simultaneous
broadcast channel, but another subtlety still needs to be addressed. Suppose two players are
computing the XOR function on inputs b

1

and b
2

. If player one is rational (with the utility
functions described earlier), he will switch his input value to ¯b

1

, causing player two to output
the wrong value; he can then still output the correct value by flipping his own output bit
from the computation! This is considered a legal action in the standard definition of security
(among malicious players): we always allow the adversary to change inputs before submitting
values the the trusted party. But in the rational setting we still have no way to model this.

In summary, while our work helped to introduce the question of rational computation
(along with [53, 70, 1]), it brings with it some key definitional questions. Many of these ques-
tions are still open today. We refer the reader to a more detailed discussion in a survey by
Katz [59] for futher information.

113

Chapter 7

Fair Primitives for Secure Computation

In this paper we address a very natural question. What is the minimum amount of help
required to be able to compute all functions fairly? We think of this helper as a naive black box,
or a primitive, with no knowledge of the function being computed. It is charged with a fixed
task: it takes inputs from each player, and then simultaneously outputs some fixed function
of the inputs to all players. Clearly we can compute any function fairly if this primitive is
sufficiently complex: we can simply define its input to be a description of the function being
computed, along with the inputs to that function. (Indeed, this was demonstrated by Fitzi
et al. [35], as discussed below.) However, our interest is in reducing the complexity of the
primitives. In particular, we study the minimum input size to such primitives that will enable
the fair computation of any function.

Interestingly, there has been extensive research on very similar questions in the context of
unfair secure computation. When there is no honest majority among the players, it is known
that oblivious transfer is both necessary and sufficient for computational security (without
fairness) [89, 46, 62, 56]. There is a long line of research identifying the minimum primitives
that enable information theoretic security in this setting [24, ?]. Surprisingly, very little work
has addressed the parallel questions with respect to fairness. One exception is the work of
Lepinski, Micali, Peikert, and shelat [67], where the authors devised a protocol for completely
fair multi-party computation with any number of malicious parties by relying on “envelope”
primitives: communication primitives with special physical properties. The goal of their work
was to design a fair protocol that makes use of easily realizable primitives, rather than to ex-
plore the bounds on the complexity of these primitives or the number of required interactions
with the primitive, as we do below.

7.1 A Complete Primitive for Fair Two-Party Computation

In this section we demonstrate a primitive that is complete for two-party fairness. (In
the original paper [50] we also provide a similar primitive for the multi-party setting, but
we do not present it here.) In order to compute some function F(x, y) = {f1

(x, y), f
2

(x, y)}
fairly, the parties will first unfairly compute a related function F 0(x, y) that provides player
i with an encryption of f i

(x, y), along with a secret share of the corresponding decryption
key (generated using a 2-out-of-2 non-malleable secret-sharing scheme, defined below). This
reduces the problem of fairness to a simple exchange of the secret shares. Of course, if the
players exchanged these on their own, one player might abort just at the point of exchange,
recovering the decryption key (and thus his output) all alone. Instead, the ideal functionality

114

FairRec (described next) takes the shares from each player and performs the reconstruction
fairly; the non-malleability property of the secret-sharing scheme enables the functionality to
verify thzat both players have provided correct shares. The details follow. To simplify the
notation, we drop the security parameter when it is not important to the discussion.

Definition 7.1.1 (Fair Reconstruction) FairRec`(x, y) takes inputs of size |x| = |y| = ` and out-
puts:

FairRec`(x, y) =

(

(s, s) if Rec(x, y) = (s, 0)

(?,?) otherwise

where Rec is the reconstruction protocol from a non-malleable secret sharing scheme.

Intuitively, the FairRec functionality is just a fair implementation of Rec: it takes a non-
malleable secret share from each player, and outputs the result of Rec to both players if and
only if the secret was successfully reconstructed. We will prove that it is complete for fairness
in Section 7.1. Interestingly, it will also play a key role in our proofs of impossibility in Section
7.2.

Theorem 7.1.2 Assuming one-way functions exist, any two-party functionality F can be fairly com-
puted in the OT-hybrid model by using a single call to FairRecO().

Proof: We begin by defining a function F 0 related to F in the way described above. Specif-
ically, let (Enc,Dec) be the encryption and decryption functions for a semantically secure en-
cryption scheme. Then we define:

F 0(x, y) =
n

f
0
1

 (x, y), f
0
2

 (x, y)
o

=

��

EnckEnc(f
1

(x, y)), s1
�

,
�

EnckEnc(f
2

(x, y)), s2
�

where (s
1

, s
2

) = Share(kEnc; r), r is chosen uniformly at random, and |kEnc| = .
From standard results in cryptography, we can build a (2, 2)-NMSS scheme uncondi-

tionally. Furthermore, by the results of [61], any two-party functionality can be computed
securely with abort given black box access to OT. In particular, the following lemma follows
from previous work:

Lemma 7.1.3 Assuming the existence of oblivious transfer, for any function F(x, y), there exists a
two-party protocol ⇧0(x, y) that securely computes F 0(x, y) with abort.

The size of the input to FairRec is the size of the share of one decryption key. Fair com-
putation of F(x, y) follows easily:

1. Execute a secure-with-abort protocol to compute F 0(x, y). The existence of such a pro-
tocol follows from Lemma 7.1.3.

2. Player i 2 {1, 2} parses the output f 0i
 (x, y) as

zi = (zEnc, zFairRec) =
�

EnckEnc(f
i
(x, y)), Share(kEnc, r)i

�

and submits zFairRec to the ideal function FairRec.

3. Let ki denote the output that player i receives from FairRec. If ki = ?, output ?. Other-
wise, output Deck

i

(zEnc).

115

To demonstrate that the resulting computation is secure, we prove security in the hybrid
world where we are given a semantically-secure symmetric encryption scheme (Enc,Dec), an
ideal functionality for computing FairRec with perfect fairness, and an ideal functionality for
computing F 0(x, y) with abort. Let  also denote the security parameter for the NMSS and
encryption schemes (i.e., no polynomial-time adversary has advantage more than ✏ = negl()
in the semantic-security game).

Note that if we allow the input size to FairRec to depend on the output size of F , we do
not need to use encryption at all: F 0 can directly output shares of F and FairRec can be used
to exchange these shares. In this case, the proof of security is also much simpler and uses a
straight-line simulator. The ideal-world simulator in this proof is a little more complex and
uses its ability to rewind the adversary:

The simulator in the ideal world has access to an ideal functionality for computing F(x, y)
with perfect fairness, and simulates FairRec and F 0 for the real-world adversary. The simula-
tor works as follows (we assume without loss of generality that the adversary has corrupted
player 1):

1. S receives input x from player 1 intended for F 0. He simulates F 0 as follows:

(a) S generates a random encryption key kEnc.
(b) S computes a secret sharing of kEnc by randomly choosing r and running (s

1

, s
2

)
Share(kEnc, r).

(c) S computes ⇠ = EnckEnc(f
1

(x, 0)).
(d) S sends (⇠, s

1

) to player 1.

2. S receives input s0 from player 1 intended for FairRec. If player 1 sends any value s0 6= s
1

(including s0 = ?), we refer to this as an abort.

3. If player 1 aborted in the previous step, S returns ? on behalf of FairRec, submits ? to
F , outputs the view of player 1, and terminates the simulation.

4. Otherwise, S will try to estimate the probability that player 1 does not abort in step 2.
(This is done exactly as in Goldreich et al. [43].) We denote the true probability of this
event by q, where the probability is taken over the randomness used in generating kEnc
(Step 1a), and in generating the encryption (Step 1c). We denote S’s estimate of q by q̃.

(a) S fixes some number t = poly() � . (Its value is described more precisely below.)
(b) S rewinds player 1 and executes steps 1 and 2 repeatedly, using fresh randomness

each time, until player 1 has not aborted in t of the repetitions.
(c) S estimates q as q̃ = t/(# of repetitions). The polynomial defining t is chosen to be

large enough that Pr[1
2

 q
q̃  2] > 1� 2

�.

5. The simulator sends x to the ideal functionality for F and receives f1

(x, y). S then
repeats the following procedure at most min(

t
q̃ , 2


) times.

(a) Using fresh randomness, he rewinds player 1 and repeats Steps 1 and 2, using
⇠ = EnckEnc(f

1

(x, y)), in place of ⇠ = EnckEnc(f
1

(x, 0)).
(b) If player 1 does not abort, S simulates the output of FairRec by sending kEnc to

player 1. He outputs the transcript that successfully completed, and terminates the
simulation.

116

6. If S has not yet terminated, it outputs fail and aborts the simulation.

It is easy to observe that when the simulator does not output fail, the hybrid world and
the ideal world are identical. We next bound the probability that the simulator outputs fail,
and afterward we will prove that the simulator runs in expected polynomial time.

Claim 7.1.4 The simulator outputs fail with probability that is negligible in .

Proof: Note that S outputs fail only if a) the adversary did not abort at step 2, and b) the
simulator made t/q̃ attempts in step 5 and did not succeed in producing a transcript. Let p be
the probability that player 1 does not abort in step 2 given ⇠ = EnckEnc(f

1

(x, y)) (as opposed
to q which is the probability that he does not abort given ⇠ = EnckEnc(f

1

(x, 0))). The following
analysis is taken from [43]:

Pr[S outputs fail] = q
X

i

✓

Pr



1

q̃
= i

�◆

(1� p)t·i

 qPr



q

q̃
� 1

2

�

(1� p)t/q̃ + qPr



q

q̃
<

1

2

�

 q(1� p)t/2q + negl() (7.1)

We wish to prove that the last equation is negligible in . Let’s suppose first that p � q/2. It
follows then that

(1� p)t/2q  (1� q

2

)

t/2q < e�t/4

On the other hand, if p < q/2 and Equation (7.1) is non-negligible, i.e, for some polynomial g
and infinitely many values :

q(1� p)t/2q + negl() > 1/g(),

then it follows that q > 1/g0() for some polynomial g0. Finally, we have |q � p| > q/2 >
1/(2g0()), violating the semantic security of the encryption scheme.

Claim 7.1.5 The simulator’s expected running time is polynomial in .

Proof: First, note that if the adversary fails at step 2, the simulation ends immediately; this
occurs with probability 1� q (the probability is over the random coins used by the simulator).

With probability q, the simulator runs the estimation process of Step 4, followed by the
iterations of Step 5. The iterations in either step are polynomial time, so we will denote an
upper-bound on their runtime by g(). In the estimation process, the probability that it suc-
ceeds in any one iteration is q, and it runs this process until it has succeeded t = poly() times.
The expected number of iterations is therefore t/q. In the iteration process, the number of it-
erations is bounded by min(

t
q̃ , 2


). With probability greater than 1� 2

�, we have t/q̃ < 2t/q,
and with the remaining probability, the runtime is bounded at 2. Hence the total expected
run time is bounded by

g() · q(t
q
+

2t

q
) = 3tg() = poly()

117

7.2 A Lower Bound on the Size of Complete Primitives

In this section we show that there does not exist a finite (i.e. “short”) primitive that is
complete for fairness. More specifically, we prove that the FairRec function cannot be fairly
computed even if the players are given parallel access to a primitive of size O(log ). There are
two main ideas behind the proof. For simplicity, imagine for now that the entire protocol con-
sisted of a single call to this short primitive. Our first observation is that because the primitive
is short, the adversary can locally simulate it, computing its output for each possible input of
the other party. This will play a crucial role in our proof, but it does not itself suffice: so far the
adversary has no way of knowing which of these outputs are correct. However, because the
primitive is supposed to be complete for fairness, it allows us to compute the FairRec func-
tionality, which has a very useful property: its output is verifiable. That is, when two parties
are given inputs generated by Share, then the correct output of FairRec is (s, 0), where the flag
0 indicates that s is the correct output. Furthermore, for incorrect inputs, with overwhelming
probability the output of FairRec is (?,?). The adversary simply computes the primitive for
every possible input of the other player, and outputs s when he recovers it.

When we consider a protocol with many calls to the primitive (including parallel calls),
we combine the above ideas using a standard hybrid argument. If the adversary aborts be-
fore any invocations of the primitive, he cannot learn anything about the output s. On the
other hand, if he behaves honestly in all invocations, he should always recover s. We prove
below that there is some specific invocation for which the adversary can gain a non-negligible
advantage over the honest party by aborting and simulating the input to that invocation as
described above. Finally, he can guess which invocation will allow this advantage with sig-
nificant probability. Formally, we define:

Definition 7.2.1 (Parallel Primitives) For a primitive g, we denote park(g) the primitive that con-
sists of k independent copies of g with enforced parallelism. The parallelism is enforced in that none
of the copies of g in park(g) send output to any party until all k copies have received input from all
parties. We use ⇧g

p to denote that protocol ⇧ has access to park(g).

Note that for any k � 1, park(g) is a more powerful primitive than g (i.e., if the fairness of
F reduces to g then the fairness of F also reduces to park(g)). We are proving an impossibility,
so starting with a more powerful primitive strengthens our results. Our proof will hold even
if we restrict the adversarial behavior to aborting early.

Theorem 7.2.2 Let g be an O(log )-bit primitive. Then for any polynomial p, parp()(g) is not
complete for fairness.

Proof: Suppose there exists such a primitive g and polynomial p. Consider the r = r()

round protocol ⇧~g
p that fairly computes FairRec(x, y) while making a call to parp()(g) in each

round. We can think of this call as p() parallel calls to g. Without loss of generality, we
assume that these calls to g constitute the only communication between the players1. Let
q = p · r be the total number of calls to g. For each round i 2 r, we define some arbitrary
ordering �i on the parallel calls to g that occur in that round. This induces a natural ordering
over all q calls to g, where for i < j, calls in round i are ordered before calls in round j. We let
gk denote the kth call to g according to this ordering.

1This is without loss of generality because we can always modify g to do message transmission, in addition
to its original functionality. Note also that if less than p() calls are needed in a particular round, the players can
make extra calls with random inputs, ignoring the outputs, to make the total number of calls p().

118

Consider an execution of ⇧

~g
p in which the players’ inputs are generated by running

Share(s, r) = (s
0

, s
1

) for random s and r, and player j gets the share sj . We let the value
ai denote the output of player 0 when player 1 acts honestly for the first i calls to g (according
to the ordering previously described) and then aborts. We define bi in the symmetric way.
Note that by correctness of ⇧~g

p, and the definition of FairRec, for all i

Pr[ai 6= s ^ ai 6= ?] = negl() = Pr[bi 6= s ^ bi 6= ?]

and
Pr[aq = s] = Pr[bq = s] = 1� negl().

where the probability is over the random tapes of the players. Furthermore, by the definition
of FairRec and the properties of a NMSS scheme,

Pr[a
0

6= ?] = negl() = Pr[b
0

6= ?].

It follows that for every large enough , there exists a polynomial p0() and a round i such
that either

Pr[ai = s]� Pr[bi�1 = s] � 1

p0()
.

or
Pr[bi = s]� Pr[ai�1 = s] � 1

p0()
.

Without loss of generality, we will assume the former, and we demonstrate an adversary A
that breaks the security of ⇧~g

p with probability at least 1/(q · p0()).
A begins by choosing a random value i⇤ 2 [1, . . . , q], and plays honestly for the first i⇤�1

calls to g (i.e., submits correct values to g) and then aborts. Note that the resulting output
of player 1 is bi⇤�1. The adversary now attempts to compute the value of ai⇤ by simulating
the side of player 1. Note, however, that by definition, the value of ai⇤ depends on honest
input to gi⇤ from both players, and A may not know (anything) about player 1’s input to gi⇤ .
Here we use the fact that g has short inputs, and that FairRec is verifiable. A goes through all
possible inputs � 2 {0, 1}O(log ) that player 1 might have sent to gi⇤ , and for each such value
he simulates g internally, using as input his own (honest) value that he would have sent if he
had not aborted, and �. He computes ai⇤ from his view in the (real) interaction with player
1, and the simulated output of gi⇤ . Since one of these values of � is the value used by player
1 in the actual execution, it follows that the correct value of ai⇤ is among this set of outputs.
Furthermore, if some simulated ai⇤ = s0 6= ? then s0 = s with overwhelming probability. A
outputs s0 6= ? if this occurs, and ? otherwise. By our assumption, there exists an i such that
Pr[ai = s ^ bi�1 = ?] � 1

p0() . Hence, A recovers s without the honest party receiving output
with probability 1/(q · p0()), contradicting the fairness of protocol.

Corollary 7.2.3 Simultaneous broadcast is not complete for fairness.

Proof: The fact that short simultaneous broadcast is not complete for fairness follows from
Theorem 7.2.2. We prove now that long simultaneous broadcast can be simulated given par-
allel access to a short simultaneous broadcast protocol; it follows that if long-SB is complete,
short-SB must also complete, contradicting Theorem 7.2.2.

Let g denote the k-bit SB primitive. Then for any p 2 N, there exists a protocol ⇧~g
p that

implements kp-bit SB with perfect security, given p parallel copies to g. The protocol is the

119

(trivial) one round protocol in which both parties split their inputs into p blocks of size k,
submit block i to instance gi, and output the concatenation of the p outputs (maintaining the
order). The proof of the lemma is straightforward, so we omit a formal exposition. We simply
note that the decision of an adversary to change its input to any instance(s) of g (including
the decision to abort in some instance(s)) is entirely independent of the actions or input of
the honest party. The simulator simply recovers the p values that the adversary intended for
g (recall that an abort is treated as input 0k), concatenates them, and forwards them to the
trusted party. After receiving output, the simulator rewinds the adversary, parses the output
into blocks, and sends block i to the adversary as though it were the honest player’s input to
gi.

120

Bibliography

[1] Ittai Abraham, Danny Dolev, Rica Gonen, and Joseph Y. Halpern. Distributed comput-
ing meets game theory: robust mechanisms for rational secret sharing and multiparty
computation. In PODC, pages 53–62, 2006.

[2] Gilad Asharov and Yehuda Lindell. Utility dependence in correct and fair rational secret
sharing. In CRYPTO, pages 559–576, 2009.

[3] N. Asokan, Matthias Schunter, and Michael Waidner. Optimistic protocols for fair ex-
change. In ACM Conference on Computer and Communications Security, pages 7–17, 1997.

[4] N. Asokan, Victor Shoup, and Michael Waidner. Optimistic fair exchange of digital sig-
natures (extended abstract). In EUROCRYPT, pages 591–606, 1998.

[5] Giuseppe Ateniese. Efficient verifiable encryption (and fair exchange) of digital signa-
tures. In ACM Conference on Computer and Communications Security, pages 138–146, 1999.

[6] Yonatan Aumann and Yehuda Lindell. Security against covert adversaries: Efficient
protocols for realistic adversaries. In TCC, pages 137–156, 2007.

[7] Baruch Awerbuch, Manuel Blum, Benny Chor, Shafi Goldwasser, and Silvio Micali. How
to implement bracha’s O(log n) Byzantine agreement algorithm. Unpublished, 1985.

[8] Feng Bao, Robert H. Deng, and Wenbo Mao. Efficient and practical fair exchange proto-
cols with off-line ttp. In IEEE Symposium on Security and Privacy, pages 77–85, 1998.

[9] Donald Beaver. Multiparty protocols tolerating half faulty processors. In CRYPTO, pages
560–572, 1989.

[10] Donald Beaver. Foundations of secure interactive computing. In CRYPTO, pages 377–
391, 1991.

[11] Donald Beaver and Shafi Goldwasser. Multiparty computation with faulty majority. In
CRYPTO, pages 589–590, 1989.

[12] Michael Ben-Or, Oded Goldreich, Silvio Micali, and Ronald L. Rivest. A fair protocol for
signing contracts (extended abstract). In Wilfried Brauer, editor, ICALP, volume 194 of
Lecture Notes in Computer Science, pages 43–52. Springer, 1985.

[13] Michael Ben-Or, Shafi Goldwasser, and Avi Wigderson. Completeness theorems for
non-cryptographic fault-tolerant distributed computation (extended abstract). In STOC,
pages 1–10, 1988.

121

[14] G.R. Blakley. Safeguarding cryptographic keys. In Proceedings of the 1979 AFIPS National
Computer Conference, pages 313–317, Monval, NJ, USA, 1979. AFIPS Press.

[15] Manuel Blum. How to exchange (secret) keys. ACM Trans. Comput. Syst., 1(2):175–193,
1983.

[16] Dan Boneh and Moni Naor. Timed commitments. In CRYPTO, pages 236–254, 2000.

[17] Ernest F. Brickell, David Chaum, Ivan Damgård, and Jeroen van de Graaf. Gradual and
verifiable release of a secret. In CRYPTO, pages 156–166, 1987.

[18] Andrei Z. Broder and Danny Dolev. Flipping coins in many pockets (Byzantine agree-
ment on uniformly random values). In FOCS, pages 157–170, 1984.

[19] Christian Cachin and Jan Camenisch. Optimistic fair secure computation. In CRYPTO,
pages 93–111, 2000.

[20] Ran Canetti. Security and composition of multiparty cryptographic protocols. J. Cryptol-
ogy, 13(1):143–202, 2000.

[21] Ran Canetti. Universally composable security: A new paradigm for cryptographic pro-
tocols. In FOCS, pages 136–145, 2001.

[22] David Chaum, Claude Crépeau, and Ivan Damgård. Multiparty unconditionally secure
protocols (extended abstract). In STOC, pages 11–19, 1988.

[23] Benny Chor, Shafi Goldwasser, Silvio Micali, and Baruch Awerbuch. Verifiable secret
sharing and achieving simultaneity in the presence of faults (extended abstract). In
FOCS, pages 383–395. IEEE, 1985.

[24] Benny Chor and Eyal Kushilevitz. A zero-one law for boolean privacy. SIAM J. Discrete
Math., 4(1):36–47, 1991.

[25] Richard Cleve. Limits on the security of coin flips when half the processors are faulty
(extended abstract). In STOC, pages 364–369, 1986.

[26] Richard Cleve. Controlled gradual disclosure schemes for random bits and their appli-
cations. In CRYPTO, pages 573–588, 1989.

[27] Ronald Cramer, Ivan Damgård, and Jesper Buus Nielsen. Multiparty computation, an
introduction. http://www.cs.au.dk/̃ jbn/smc.pdf, 2009.

[28] Ivan Damgård. Practical and provably secure release of a secret and exchange of signa-
tures. J. Cryptology, 8(4):201–222, 1995.

[29] Whitfield Diffie and Martin E. Hellman. New directions in cryptography. IEEE Transac-
tions on Information Theory, 22(6):644–654, November 1976.

[30] Yevgeniy Dodis, Pil Joong Lee, and Dae Hyun Yum. Optimistic fair exchange in a multi-
user setting. In Public Key Cryptography, pages 118–133, 2007.

[31] Cynthia Dwork, Moni Naor, and Amit Sahai. Concurrent zero-knowledge. J. ACM,
51(6):851–898, 2004.

122

http://www.cs.au.dk/~jbn/smc.pdf

[32] Shimon Even. Protocol for signing contracts. In CRYPTO, pages 148–153, 1981.

[33] Shimon Even, Oded Goldreich, and Abraham Lempel. A randomized protocol for sign-
ing contracts. In CRYPTO, pages 205–210, 1982.

[34] Shimon Even and Yacov Yacobi. Relations among public key signature schemes.
Technical Report #175, Technion Israel Institute of Technology, Computer Sci-
ence Department, 1980. http://www.cs.technion.ac.il/users/wwwb/cgi-bin/tr-
info.cgi/1980/CS/CS0175.

[35] Matthias Fitzi, Juan A. Garay, Ueli M. Maurer, and Rafail Ostrovsky. Minimal complete
primitives for secure multi-party computation. J. Cryptology, 18(1):37–61, 2005.

[36] Georg Fuchsbauer, Jonathan Katz, and David Naccache. Efficient rational secret sharing
in standard communication networks. In TCC, pages 419–436, 2010.

[37] Zvi Galil, Stuart Haber, and Moti Yung. Cryptographic computation: Secure faut-
tolerant protocols and the public-key model. In CRYPTO, pages 135–155, 1987.

[38] Juan A. Garay and Markus Jakobsson. Timed release of standard digital signatures. In
Financial Cryptography, pages 168–182, 2002.

[39] Juan A. Garay, Markus Jakobsson, and Philip D. MacKenzie. Abuse-free optimistic con-
tract signing. In CRYPTO, pages 449–466, 1999.

[40] Juan A. Garay and Carl Pomerance. Timed fair exchange of standard signatures: [ex-
tended abstract]. In Financial Cryptography, pages 190–207, 2003.

[41] Oded Goldreich. A simple protocol for signing contracts. In CRYPTO, pages 133–136,
1983.

[42] Oded Goldreich. Foundations of Cryptography, Volume 2 Basic Applications. Cambridge
University Press, New York, NY, USA, 2004.

[43] Oded Goldreich and Ariel Kahan. How to construct constant-round zero-knowledge
proof systems for NP. J. Cryptology, 9(3):167–190, 1996.

[44] Oded Goldreich and Yehuda Lindell. Session-key generation using human passwords
only. J. Cryptology, 19(3):241–340, 2006.

[45] Oded Goldreich, Silvio Micali, and Avi Wigderson. How to play any mental game or
a completeness theorem for protocols with honest majority. In STOC, pages 218–229.
ACM, 1987.

[46] Oded Goldreich, Silvio Micali, and Avi Wigderson. Proofs that yield nothing but their
validity for all languages in NP have zero-knowledge proof systems. J. ACM, 38(3):691–
729, 1991.

[47] Shafi Goldwasser and Leonid A. Levin. Fair computation of general functions in pres-
ence of immoral majority. In CRYPTO, pages 77–93, 1990.

[48] Shafi Goldwasser, Silvio Micali, and Charles Rackoff. The knowledge complexity of
interactive proof systems. SIAM J. Comput., 18(1):186–208, 1989.

123

http://www.cs.technion.ac.il/users/wwwb/cgi-bin/tr-info.cgi/1980/CS/CS0175
http://www.cs.technion.ac.il/users/wwwb/cgi-bin/tr-info.cgi/1980/CS/CS0175

[49] S. Dov Gordon, Carmit Hazay, Jonathan Katz, and Yehuda Lindell. Complete fairness in
secure two-party computation. In STOC, pages 413–422, 2008.

[50] S. Dov Gordon, Yuval Ishai, Tal Moran, Rafail Ostrovsky, and Amit Sahai. On complete
primitives for fairness. In TCC, pages 91–108, 2010.

[51] S. Dov Gordon and Jonathan Katz. Rational secret sharing, revisited. In Roberto De
Prisco and Moti Yung, editors, SCN, volume 4116 of Lecture Notes in Computer Science,
pages 229–241. Springer, 2006.

[52] S. Dov Gordon and Jonathan Katz. Partial fairness in secure two-party computation. In
EUROCRYPT, pages 157–176, 2010.

[53] Joseph Y. Halpern and Vanessa Teague. Rational secret sharing and multiparty compu-
tation: extended abstract. In STOC, pages 623–632, 2004.

[54] J Håstad and A Shamir. The cryptographic security of truncated linearly related vari-
ables. In STOC ’85: Proceedings of the seventeenth annual ACM symposium on Theory of
computing, pages 356–362, New York, NY, USA, 1985. ACM.

[55] Russell Impagliazzo and Moti Yung. Direct minimum-knowledge computations. In
CRYPTO, pages 40–51, 1987.

[56] Yuval Ishai, Manoj Prabhakaran, and Amit Sahai. Founding cryptography on oblivious
transfer - efficiently. In CRYPTO, pages 572–591, 2008.

[57] Sergei Izmalkov, Silvio Micali, and Matt Lepinski. Rational secure computation and ideal
mechanism design. In FOCS, pages 585–595, 2005.

[58] Jonathan Katz. On achieving the "best of both worlds" in secure multiparty computation.
In STOC, pages 11–20, 2007.

[59] Jonathan Katz. Bridging game theory and cryptography: Recent results and future di-
rections. In TCC, pages 251–272, 2008.

[60] Jonathan Katz and Yehuda Lindell. Introduction to Modern Cryptography (Chapman &
Hall/Crc Cryptography and Network Security Series). Chapman & Hall/CRC, 2007.

[61] Joe Kilian. Founding cryptography on oblivious transfer. In STOC, pages 20–31, 1988.

[62] Joe Kilian, Eyal Kushilevitz, Silvio Micali, and Rafail Ostrovsky. Reducibility and com-
pleteness in private computations. SIAM J. Comput., 29(4):1189–1208, 2000.

[63] Gillat Kol and Moni Naor. Cryptography and game theory: Designing protocols for
exchanging information. In TCC, pages 320–339, 2008.

[64] Gillat Kol and Moni Naor. Games for exchanging information. In STOC, pages 423–432,
2008.

[65] Alptekin Küpçü and Anna Lysyanskaya. Optimistic fair exchange with multiple arbiters.
In ESORICS, pages 488–507, 2010.

[66] Alptekin Küpçü and Anna Lysyanskaya. Usable optimistic fair exchange. In CT-RSA,
pages 252–267, 2010.

124

[67] M. Lepinski, S. Micali, C. Peikert, and A. Shelat. Complete fair SFE and coalition-safe
cheap talk. In 23rd ACM Symposium on Principles of Distributed Computing (PODC), 2004.

[68] Yehuda Lindell. Parallel coin-tossing and constant-round secure two-party computation.
J. Cryptology, 16(3):143–184, 2003.

[69] Michael Luby, Silvio Micali, and Charles Rackoff. How to simultaneously exchange a
secret bit by flipping a symmetrically-biased coin. In FOCS, pages 11–21, 1983.

[70] Anna Lysyanskaya and Nikos Triandopoulos. Rationality and adversarial behavior in
multi-party computation. In CRYPTO, pages 180–197, 2006.

[71] Ralph Merkle. Secure communications over insecure channels. Communications of the
ACM, 21(4):294–299, 1978.

[72] Silvio Micali. Simultaneous electronic transactions. U.S. patent no. 5,666,420, continua-
tion of application no. 408,551, filed March 21, 1995, issued September 9, 1997.

[73] Silvio Micali and Phillip Rogaway. Secure computation (abstract). In CRYPTO, pages
392–404, 1991.

[74] Tal Moran, Moni Naor, and Gil Segev. An optimally fair coin toss. In TCC, pages 1–18,
2009.

[75] Shien Jin Ong, David C. Parkes, Alon Rosen, and Salil P. Vadhan. Fairness with an honest
minority and a rational majority. In TCC, pages 36–53, 2009.

[76] Birgit Pfitzmann, Matthias Schunter, and Michael Waidner. Optimal efficiency of opti-
mistic contract signing. In PODC, pages 113–122, 1998.

[77] Benny Pinkas. Fair secure two-party computation. In EUROCRYPT, pages 87–105, 2003.

[78] Michael O. Rabin. Digitalized signatures. In Foundations of Secure Computations, pages
155–168, 1978.

[79] Michael O. Rabin. How to exchange secrets with oblivious transfer. Technical Report TR-
81, Aiken Computation Lab, Harvard University, 1981. http://eprint.iacr.org/
2005/187.

[80] Michael O. Rabin. Transaction protection by beacons. J. Comput. Syst. Sci., 27(2):256–267,
1983.

[81] Tal Rabin and Michael Ben-Or. Verifiable secret sharing and multiparty protocols with
honest majority (extended abstract). In STOC, pages 73–85, 1989.

[82] Ronald L. Rivest, Adi Shamir, and Leonard M. Adleman. A method for obtaining digital
signatures and public-key cryptosystems. Commun. ACM, 21(2):120–126, 1978.

[83] John Rompel. One-way functions are necessary and sufficient for secure signatures. In
STOC, pages 387–394, 1990.

[84] Adi Shamir. How to share a secret. Commun. ACM, 22(11):612–613, 1979.

[85] Tom Tedrick. How to exchange half a bit. In CRYPTO, pages 147–151, 1983.

125

http://eprint.iacr.org/2005/187
http://eprint.iacr.org/2005/187

[86] Tom Tedrick. Fair exchange of secrets. In CRYPTO, pages 434–438, 1984.

[87] Umesh V. Vazirani and Vijay V. Vazirani. Trapdoor pseudo-random number generators,
with applications to protocol design. In FOCS, pages 23–30. IEEE, 1983.

[88] Andrew Chi-Chih Yao. Protocols for secure computations (extended abstract). In FOCS,
pages 160–164. IEEE, 1982.

[89] Andrew Chi-Chih Yao. How to generate and exchange secrets (extended abstract). In
FOCS, pages 162–167, 1986.

126

	Introduction
	Contributions
	A Survey of Fairness in Secure Computation

	Definitions and Preliminaries
	Basic Notation
	Basic Cryptographic Primitives
	Secure Two-Party Computation with Complete Fairness
	Secure Two-Party Computation With Abort
	Secure Multi-Party Computation with Complete Fairness
	Secure Multi-Party Computation With Designated Abort
	The Hybrid Model
	A Canonical Form for Fair Two-Party Computation

	Complete Fairness in Secure Two-Party Computation
	Fair Computation of the Millionaires' Problem (and More)
	The Protocol

	Fair Computation of Functions with an Embedded XOR
	Proof of Security for a Particular Function
	Extending the Protocol to Other Functions
	A Characterization of When Protocol EXOR is Secure

	A Lower Bound for Functions Containing an Embedded XOR
	Preliminaries
	The Proof

	Complete Fairness in Secure Multi-Party Computation
	Fair Computation of Majority for Three Players
	A Lower Bound on the Round Complexity of Majority
	Proof Overview
	Proof Details

	Fair Computation of OR for n Players

	Partial Fairness in Secure Two-Party Computation
	1p-Secure Computation of General Functionalities
	A Useful Lemma
	1p-Security for Functionalities with Polynomial-Size Domain
	1p-Security for Functionalities with Polynomial-Size Range

	Optimality of Our Results
	Impossibility of 1p-Security and Security-with-Abort Simultaneously
	Impossibility of 1p-Security for General Functions

	Fairness When Players are Rational
	Definitions from Game Theory
	A Protocol for Rational Secret Sharing
	Discussion

	Fair Primitives for Secure Computation
	A Complete Primitive for Fair Two-Party Computation
	A Lower Bound on the Size of Complete Primitives

