
CrowdCode: A Platform for Crowd Development
Thomas D. LaToza1, Eric Chiquillo2, W. Ben Towne3, Christian M. Adriano1, André van der Hoek1

1Department of Informatics
University of California, Irvine

{tlatoza, adrianoc, andre}@ics.uci.edu

2Zynga
echiquil@gmail.com

3Institute for Software Research
Carnegie Mellon University

wbt@cs.cmu.edu

ABSTRACT
Microtask crowdsourcing organizes complex work into
workflows, decomposing large tasks into small,
independent tasks performed by workers who are assumed
to be transient and possibly unreliable.

Applied to software development, this model might both
increase the parallelism in development work and increase
participation in open source development by lowering the
barriers to contribute, enabling new economic models and
allowing software to be constructed dramatically more
quickly. However, microtask crowdsourcing typically
assumes that the workflow can be specified in advance by
the requestor. In software development, this assumption
does not hold, as the structure, type, and content of tasks are
much more dynamic. How then can such work be
decomposed and coordinated as fine-grained microtasks?

Our key insight is to coordinate work through a graph of
artifacts, generating microtasks in response to events that
occur on artifacts rather than through an explicit workflow.
Each microtask asks workers to perform a short well-
defined task on a single artifact (e.g., a function or a test),
allowing work to proceed on many artifacts in parallel. As
workers complete microtasks, events are generated on the
artifact, which may then trigger further microtasks to be
generated. When an artifact changes, events are sent to
artifacts that depend on it, allowing microtask structures to
be dynamic and non-hierarchic. For example, when a
function changes its signature (e.g., adding a parameter),
artifacts that depend on it (callers and tests) are notified,
generating microtasks to handle these changes. As artifacts
may have many dependencies, artifacts may have multiple
pending notifications of changes. To coordinate this work,
each artifact has a microtask queue, allowing each change

to be performed sequentially and ensuring changes do not
conflict. Finally, this model supports iterative workflows.
For example, developers editing a function can write
psuedocode, iteratively generating microtasks until all of
the pseudocode has been replaced.

Work first begins with a set of scenarios describing desired
application behavior (provided by a requestor), spawning
microtasks to edit a function to begin implementing each
scenario. As workers edit functions, they may write
pseudocalls, describing a function call they wish to see.
After a microtask that checks to see if an existing function
provides the desired behavior, a recursive step may occur,
creating a new function and further microtasks. As
functions are created, a microtask is generated to enumerate
and then implement test cases for the function, introducing
constraints between independently created artifacts that can
be checked to ensure quality. When functions are
completed, the tests are run; if tests fail, microtasks are
generated to debug the function (or edit the tests) to enable
the function to pass its tests. To allow workers to debug a
single function in isolation, even if it calls other functions,
workers can view and edit the return values of function
calls, recursively creating new tests for the called function.

We have implemented our approach in CrowdCode, a
prototype cloud IDE for crowd development. CrowdCode
supports the development of Javascript libraries (e.g.,
Javascript code that takes an object as input and produces
an object as output), which can be embedded into a web
application. We are currently evaluating our approach by
crowdsourcing the construction of a short program with a
small crowd.

