
Advancing HCI with Neuromorphic Technology: Guidelines for
Designing User-Friendly Developer Tools for Neuromorphic

Development
Divesh Upreti

George Mason University
Fairfax, Virginia, USA
dupreti@gmu.edu

Aditi Maheshwari
Accenture Labs

San Francisco, California, USA
aditi.maheshwari@accenture.com

Taylor Tabb
Accenture Labs

San Francisco, California, USA
taylor.tabb@accenture.com

Ioannis Polykretis
Accenture Labs

Accenture
San Francisco, California, USA

ioannis.polykretis@accenture.com

Eric M Gallo
Accenture Labs

Accenture
San Francisco, California, USA
eric.gallo@accenture.com

Thomas D. LaToza
Department of Computer Science

George Mason University
Fairfax, Virginia, USA
tlatoza@gmu.edu

Kenneth Michael Stewart
Future Technologies Group

Accenture Labs
San Francisco, California, USA

kennetms@uci.edu

Andreea Danielescu
Accenture Labs

San Francisco, California, USA
andreea.danielescu@accenture.com

Abstract
Neuromorphic technology offers advantages such as low-power
processing, low latency, adaptive learning, and noise tolerance,
making it ideal for edge computing applications. However, devel-
opers face significant hurdles due to the nascent nature of the field,
including limited access to hardware and software, lack of bench-
marks, and the need for deep interdisciplinary knowledge. Through
interviews with 12 practitioners from both industry and academia,
we conducted a thematic analysis to understand the current land-
scape of neuromorphic programming and identified key challenges,
workflows, and potential solutions for enhancing accessibility and
adoption. Our findings led to a set of guidelines for creating more
accessible software development tools and platforms for those look-
ing to create neuromorphic applications. Through this work, we
aim to bridge the gap between neuromorphic computing and the

Authors’ Contact Information: Divesh Upreti, George Mason University, Fairfax, Vir-
ginia, USA, dupreti@gmu.edu; Aditi Maheshwari, Accenture Labs, San Francisco,
California, USA, aditi.maheshwari@accenture.com; Taylor Tabb, Accenture Labs, San
Francisco, California, USA, taylor.tabb@accenture.com; Ioannis Polykretis, Accenture
Labs
Accenture, San Francisco, California, USA, ioannis.polykretis@accenture.com; Eric M
Gallo, Accenture Labs
Accenture, San Francisco, California, USA, eric.gallo@accenture.com; Kenneth Michael
Stewart, Future Technologies Group
Accenture Labs, San Francisco, California, USA, kennetms@uci.edu; Thomas D. LaToza,
Department of Computer Science
George Mason University, Fairfax, Virginia, USA, tlatoza@gmu.edu; Andreea
Danielescu, Accenture Labs, San Francisco, California, USA, andreea.danielescu@
accenture.com.

This work is licensed under a Creative Commons Attribution 4.0 International License.
CHI ’25, Yokohama, Japan
© 2025 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-1394-1/25/04
https://doi.org/10.1145/3706598.3713249

HCI community, promoting the design of more intuitive and ef-
fective interfaces for neuromorphic development, and ultimately
facilitating the creation of edge intelligent systems.

CCS Concepts
• Computing Methodologies → Bio Inspired Approaches; •
Hardware → Neural systems.

Keywords
neuromorphic computing, developer experience, developer tools,
neural networks
ACM Reference Format:
Divesh Upreti, Aditi Maheshwari, Taylor Tabb, Ioannis Polykretis, Eric M
Gallo, Kenneth Michael Stewart, Thomas D. LaToza, and Andreea Danielescu.
2025. Advancing HCI with Neuromorphic Technology: Guidelines for De-
signing User-Friendly Developer Tools for Neuromorphic Development. In
CHI Conference on Human Factors in Computing Systems (CHI ’25), April
26–May 01, 2025, Yokohama, Japan. ACM, New York, NY, USA, Article 111,
18 pages. https://doi.org/10.1145/3706598.3713249

1 Introduction
With intelligent systems becoming increasingly sophisticated and
highly specialized, heterogeneous computing, especially at the edge,
is becoming the norm [18, 80]. An emerging component of the
heterogeneous computing landscape is neuromorphic computing
(NC) [2, 48, 59]. Neuromorphic technology includes hardware and
software systems that replicate the structure and functionality of
biological neural networks and bring distinct advantages and capa-
bilities like extremely low-power neural processing, low latency,
adaptive learning, and noise tolerance. As we progress towards a
world where computational materials and distributed IoT sensor
networks will penetrate every aspect of human life [4], neuromor-
phic technology is poised to play a crucial role in overcoming key

https://orcid.org/0009-0009-5286-9174
https://orcid.org/0000-0001-9828-0570
https://orcid.org/0000-0001-6833-8700
https://orcid.org/0000-0003-1794-5716
https://orcid.org/0000-0001-9086-3480
https://orcid.org/0000-0002-7719-5796
https://orcid.org/0000-0002-9564-3337
https://orcid.org/0000-0001-7460-2467
https://orcid.org/0009-0009-5286-9174
https://orcid.org/0000-0001-9828-0570
https://orcid.org/0000-0001-6833-8700
https://orcid.org/0000-0003-1794-5716
https://orcid.org/0000-0001-9086-3480
https://orcid.org/0000-0001-9086-3480
https://orcid.org/0000-0002-7719-5796
https://orcid.org/0000-0002-7719-5796
https://orcid.org/0000-0002-9564-3337
https://orcid.org/0000-0001-7460-2467
https://orcid.org/0000-0001-7460-2467
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3706598.3713249
https://doi.org/10.1145/3706598.3713249
mailto:andreea.danielescu@accenture.com
https://accenture.com
mailto:tlatoza@gmu.edu
mailto:kennetms@uci.edu
mailto:eric.gallo@accenture.com
mailto:ioannis.polykretis@accenture.com
mailto:taylor.tabb@accenture.com
mailto:aditi.maheshwari@accenture.com
mailto:dupreti@gmu.edu
mailto:tlatoza@gmu.edu
mailto:kennetms@uci.edu
mailto:eric.gallo@accenture.com
mailto:ioannis.polykretis@accenture.com
mailto:taylor.tabb@accenture.com
mailto:aditi.maheshwari@accenture.com
mailto:dupreti@gmu.edu
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3706598.3713249&domain=pdf&date_stamp=2025-04-25

CHI ’25, April 26–May 01, 2025, Yokohama, Japan Upreti et al.

constraints around power, latency, sustainability, data security, and
computational complexity. With the potential to create systems that
collect, process, and analyze complex data locally in real time with
high power efficiency, and the versatility to deploy neuromorphic
processing in both silicon and non-silicon materials using digital
or analog approaches, neuromorphic technology will be key to
realizing Weiser’s vision of ubiquitous computing [70]. NC differs
fundamentally from conventional Von Neumann architectures in
a number of ways, as shown in Figure 1. Von Neumann architec-
tures use binary encoding (1’s and 0’s) to process information, and
computation is done serially in discrete, clock-controlled time steps.
Processing and memory are physically separate, requiring constant
data transfer between them. Conversely, neuromorphic technolo-
gies – like neuromorphic processors [66], mimic the architecture of
biological processing by encoding information through the number
or timing of spikes and by processing the information through
asynchronous networks of neurons and synapses. Memory and
processing are co-located, eliminating transfer bottlenecks. This
distinctive architecture enables high parallelism and event-driven
processing – where only a small portion of the system is active at
any given time – resulting in low latency and power consumption,
which are both ideal for edge devices.

Neuromorphic technology’s inherent neural network-style com-
putation makes it a natural platform for many of today’s artifi-
cial intelligence (AI) tasks [58]. Sharing overlapping applications
and methods with machine learning (ML) and deep learning (DL),
[55, 56], NC attracts developers traditionally focused on artificial
neural networks (ANN). Originating from diverse backgrounds,
developers enter the NC field facing a yet emerging, but already
complex and ‘full-stack’ technological domain that requires deep
knowledge of neuroscience, computer science, and hardware de-
sign to tackle its unique hardware and software challenges. This
knowledge is crucial to also allow developers to leverage existing
commercial neuromorphic technology such as event-driven cam-
eras [1] for highly specialized applications. However, upon entering
the field, developers face a variety of domain-related complexities
such as limited access to existing hardware and software, scarcity of
benchmarks and metrics, minimal abstraction, and having to catch
up to performance benchmarks that have been rigorously set and
continuously one-upped by traditional AI tools, which prioritize
accuracy over other key metrics such as power consumption or
adaptability [58]. Consequently, learning how to develop and deploy
applications may seem insurmountable for those not already deeply
embedded in the field. Owing to the significant overlap of NC with
ML, efforts have been made to overcome these challenges, by draw-
ing inspiration from successful developer tools used in traditional
AI and ML applications [28, 29], or outlining opportunities for the
neuromorphic community to foster algorithmic and application
development [58]. While being only the early steps in opening neu-
romorphic development to the masses, these efforts highlight the
importance of seeking inspiration and lessons from processes, tools,
and experiences in traditional neural network development to form
a more nuanced perspective on how to solve existing challenges in
neuromorphic development and identify where the technology can
be most suitably applied.

Aiming to further structure these efforts and bridge the gap be-
tween NC and HCI, we interviewed 12 expert practitioners with

varying years of experience in neuromorphic development to un-
derstand the motivations, workflows, challenges, and potential
solutions towards improving the accessibility and broader adop-
tion of this technology. The goal of our study is to explore how
HCI researchers can contribute to making NC more usable and
approachable, and embed it within HCI contexts. HCI researchers,
with their expertise in usability, developer experience, and tool
design, are uniquely positioned to address the challenges around
the adoption of NC. Therefore, HCI researchers and practitioners
focused on designing developer tools are the key audience for this
work.

Well designed developer tools are crucial for translating NC’s po-
tential into practical applications within HCI, especially for emerg-
ing technologies such as intelligent wearables, e-textiles, IoT sys-
tems, distributed sensor networks, autonomous robots, and many
more. These domains demand computing solutions that prioritize
low-power, low-latency, and personalized functionality, which NC
can uniquely provide. Current ubiquitous computing systems in
HCI, such as IoT devices and distributed sensor networks, often
rely on conventional computing architectures that are inherently
power-intensive, limiting their scalability and efficiency in real-
time, energy-constrained environments. This high energy consump-
tion poses significant challenges to the deployment of sustainable,
low-power ubiquitous computing solutions [16]. By addressing the
limitations of current systems, NC has the potential to redefine
the capabilities of ubiquitous computing, making it a critical area
of exploration for HCI researchers aiming to develop sustainable
and efficient computing solutions [10]. More broadly, NC aligns
with three core themes in HCI: advancing ubiquitous computing
through energy-efficient, scalable systems; driving sustainability
with low-power solutions that integrate with energy-harvesting
technologies; and enabling novel applications, such as adaptive and
hyper-personalized wearables, distributed environmental sensors,
and intelligent systems.

Through a thematic analysis of our interview data, we highlight
experts’ sentiments around NC, commonly utilized workflows, and
existing challenges and gaps in neuromorphic development. We
leverage these insights to develop a set of guidelines for creating
user-friendly tools and platforms for neuromorphic development
and highlight important advancements in neuromorphic tool de-
velopment and learnings that could be borrowed from traditional
developer tools to inform future directions for neuromorphic devel-
opment. By addressing the challenges and identifying opportunities
for HCI researchers focused on developer tooling, we provide ac-
tionable guidelines to lower barriers to NC adoption, making it
a valuable resource for HCI researchers invested in the future of
computing.

In summary, our primary contributions are:

• An in-depth exploration of the motivations, workflows, tools
and resources currently used, and pain points associated with
neuromorphic application development, along with helpful
prerequisites for getting started with NC, and key insights
around areas of improvement in neuromorphic development
gathered through interviews with 12 experts in the field
(Section 4).

Advancing HCI with Neuromorphic Technology CHI ’25, April 26–May 01, 2025, Yokohama, Japan

Figure 1: Comparison of the computational principles governing Von Neumann and neuromorphic architectures

• Opportunities and actionable guidelines for creating user-
friendly and intuitive tools and platforms for neuromorphic
development, specifically for HCI researchers focused on
developer tools. These recommendations leverage insights
and best practices from adjacent computing domains, such as
machine learning and traditional software development, to
address the unique challenges of neuromorphic computing
(Section 5).

2 Background

2.1 Developer Tools for Neuromorphic and
Traditional Machine Learning Systems

Current tooling and support software for neuromorphic systems
can be categorized into five main types [60]:

• Custom hardware synthesis tools: Such tools convert
a higher-level network description into a low-level neural
circuitry representation (e.g., SpiNNaker [51]).

• Mapping and Programming Tools: Mapping tools map
an existing neural network model onto a neuromorphic ar-
chitecture, while programming tools allow users to directly
program particular neuromorphic architectures (e.g., Lava
[23]).

• Simulators: Neuromorphic simulators are essential develop-
ment tools to emulate neuromorphic hardware performance
in a non-neuromorphic system [62]. Simulations are per-
formed at various scales ranging from subcellular, to single
neurons, and from small custom networks to multilayer ar-
chitectures. Simulations also examine the performance at a
range of levels: from the software to the single chip and the
whole system. They are used for verifying the performance of
neuromorphic hardware, developing and training algorithms
[60], and building a user base for not-readily-available hard-
ware. Simulation tools like Nest [31], Brian [32], and Nengo
[11] have been previously studied for general usability and
effectiveness.

• Libraries and Frameworks: A wide range of software sys-
tems have been developed to streamline and standardize the
develompent of neuromorphic applications through reusable
and optimized code bases. These range from platform-agnostic

tools such as SNNtorch [28] and SpikingJelly [29] that adapt
the structure of well-established ML frameworks like Py-
torch to neuromoprhic needs, to platform-specific tools such
as Lava [23] and Rockpool [49] that aim for deployment on
specific hardware.

• Visualization tools: These tools offer a more intuitive in-
sight of the inner workings of neuromorphic systems[27]
[38] (e.g., Nest [31], BindsNET [33], Brian [32], Brian2GeNN
[64], Brian 2 [63] and Nengo [11]).

However, there is a significant challenge with this arsenal of
tools: although some systems like Nengo [11] and SNNtorch [28]
aim to cross the boundaries of specific platforms, they are usu-
ally not end-to-end from software design to hardware deployment.
When they are, they tend to be hardware-specific and limited to the
manufacturers that developed them [15, 49], making them less ac-
cessible and applicable outside specific use cases and communities
[58].

The development environments, tools, frameworks, and libraries
used in neuromorphic programming draw some inspiration from
those used in conventional ML, and especially deep learning (DL).
Due to the underlying neural network architectures of both DL and
NC, these two approaches share many methodological similarities
in terms of neuron modeling [56], debugging, parameter optimiza-
tion, and resource availability [20, 79]. Hyperparameter selection
and optimization is a primary challenge in developing both neu-
romorphic systems [20] and traditional ML [82], since parameters
such as learning rates, regularization coefficients, and initialization
strategies significantly influence the learning dynamics and system
performance. Additionally, NC and DL both involve building and
training neural networks using various datasets, whose quality
heavily affects the effectiveness and correctness of the models [81].

Several studies have investigated these challenges and their im-
pact on developer workflows. Developers lack key knowledge, pre-
venting them from making progress, including practical knowledge
of the APIs through which developers interact with frameworks
and libraries [19]. More fundamentally, developers lack knowledge
of the conceptual underpinnings of the technology, including their
key ideas, and the ability to use these concepts to build the right con-
ceptual models to effectively write and debug code. ANN systems
also require new skills in discovering, managing, and versioning

CHI ’25, April 26–May 01, 2025, Yokohama, Japan Upreti et al.

Aspect of Comparison ANN Programming Neuromorphic Programming
Frameworks and Libraries TensorFlow, PyTorch, Keras, scikit-learn NEST [31], Brian2 [32], GeNN [75]
Deployment Platforms Deployable on various platforms (cloud,

edge, mobile) [68]
Specialized neuromorphic hardware platforms [25]

Hardware Integration Hardware-agnostic, CPU, GPU deploy-
ment

Integration with Neuromorphic Hardware, Event-driven
processors [25]

Real-time Processing Primarily designed for batch processing Emphasis on real-time processing and low-latency re-
sponses [58]

Community Support Large and active community support for
mainstream frameworks

Smaller, more specialized community, specific to neuro-
morphic programming [60]

Table 1: Comparison of key aspects between artificial neural network (ANN) programming and neuromorphic programming,
including frameworks, deployment platforms, hardware integration, processing capabilities, and community support.

data; require different techniques for customizing and reusing mod-
els; and are harder to work with as models behave in erratic and
unpredictable ways [6]. Most developer questions focus on data
preparation and model setup necessary to correctly create a ML
pipeline [30], with particular challenges around API misuse, hy-
perparameter selection, GPU computation, and limited support
for debugging and profiling [81]. As a result of this complexity
and missing knowledge, many non expert developers simply reuse
existing models, with less knowledge of their inner workings [74].

Despite the similarities with ANNs, NC faces its own set of
unique challenges due to the fundamental difference between neu-
romorphic and ML systems in terms of spikes vs. bits, which is a new
concept for most developers [5]. This further amplifies the challenge
of a lack of conceptual understanding, as even the most basic con-
cepts about how programs execute suddenly requires knowledge
developers lack. Moreover, traditional computing possesses a com-
prehensive set of development tools, and a large number of users
trained in utilizing such tools [24]. In contrast, NC has the added
challenge of having to vie for attention and resources from the re-
searchers and users of conventional architectures [58].Without the
scale and maturity of ANN frameworks and libraries, NC developers
lack sufficient pre-built models to fall back on, requiring developers
to instead carefully craft solutions to routine problems for which
ANN developers would already have examples. A summary of the
similarities and differences between ANN and Neuromorphic Pro-
gramming is provided in Table 1.

The advantages of NC, such as energy efficiency, low latency and
robustness, constitute sufficient incentives for developers to work
with a different and unconventional architecture [12], but dedicated
efforts are needed to understand how neuromorphic development
can be made more broadly accessible to software engineers and
how barriers to entry can be reduced. More established specialized
programming domains have benefited greatly from specialized tool
support, substantially simplifying programming tasks. For exam-
ple, the live programming and reproducibility of Computational
Notebooks make data analysis far easier [39]. Building software
with transient contributors through self-contained microtasks is
made possible through programming tools which carefully mini-
mize work inter-dependencies [41]. By shedding light on the key
sources of complexity in understanding and working with NC,
we aim to inspire future HCI researchers to similarly simplify NC
programming through new programming interactions.

2.2 Studies on Challenges around Developing
Neuromorphic Systems

Past research shows that the lack of readily accessible and usable
software, simulators, and hardware systems is a key issue that in-
hibits software development in the neuromorphic domain [58]. The
lack of resources results in longer training times when compared
to non-spiking techniques, highly hardware-specific software, and
simulators that do not effectively scale and which are unable to keep
up with the use of large data sets. The authors propose that increas-
ing the accessibility of hardware and improving the effectiveness
of simulators will help developers more quickly evaluate their algo-
rithms, resulting in faster neuromorphic algorithm development.
Further, a previous survey around NC [60] shows that, in compari-
son to the volume of hardware implementations of neuromorphic
systems, there has been little work focused on the development of
supporting software. The study asserts that more work must be
done on supporting software alongside hardware improvements
to benefit the neuromorphic community. Our study explores the
challenges faced by neuromorphic developers, analyzing expert
insights to propose practical solutions, design guidelines for devel-
opment tools, and improvements in developer support, drawing
parallels to advancements in deep learning and aiming to create a
clearer learning path for newcomers to NC.

3 Methods
3.1 Participants
We recruited 12 participants from the niche scientific neuromor-
phic community in the spring of 2022 through targeted recruitment
efforts and snowball sampling. We primarily focused on researchers
with a track record of strong technical work or publications in the
space, as well as relevant industry experience. We also included
junior researchers with over a year of experience in neuromorphic
algorithm or application development. 5 of our participants worked
in research labs or the IT industry, while the remainder worked in
a university setting. 1 participant was an undergraduate student,
3 were PhD students, 2 were post-doctoral researchers, and 1 was
faculty. Participants varied in programming experience from 5 to
39 years, with a median of 10 years. They had a median of 7 years
of experience with neuromorphic development, ranging from 1
to 11 years. They came from diverse academic and professional
backgrounds, including electrical and computer engineering, civil

Advancing HCI with Neuromorphic Technology CHI ’25, April 26–May 01, 2025, Yokohama, Japan

engineering, computational neuroscience, and cognitive science,
and were based in regions across North America, Europe, and Aus-
tralia. See Table 2 for a summary of the participant demographics.

While our participants varied in their years of experience, they
were all recognized experts in the field. The participants in our
study have either developed or supported existing NC tools, or
were collaborators and students of prominent members of the NC
community. Collectively, they represent a group with firsthand
knowledge of the current state of NC development, tooling, and
challenges.

3.2 Interviews
To guide our exploration of the challenges and opportunities in
neuromorphic development, we framed our interview questions
around the following research questions:

(1) What motivates developers to adopt neuromorphic comput-
ing, and how do these motivations shape their workflows
and priorities?

(2) What are the key workflows, tools, and resources currently
used for neuromorphic development, and what challenges
do developers encounter when employing them?

(3) What are the primary challenges and pain points faced by
neuromorphic developers, and how can these inform the
design of more effective tools and systems?

(4) What skills, resources, and strategies are essential for new-
comers to neuromorphic computing, and how can these be
better supported through tool and system design?

We began by obtaining informed consent from participants be-
fore conducting the semi-structured interviews. After gathering
information about their current role, experience, and preferences
for development platforms and languages, participants were asked
about how and why they built any recent neuromorphic algorithms
or applications. Next, they were asked to talk through and explain
their development workflow. Participants were then asked to iden-
tify the challenges they have faced with neuromorphic program-
ming, particularly those that differed from traditional programming.
Participants were prompted to reflect on challenges related to de-
velopment time, optimization, resource availability, adapting to
neuromorphic architectures, and any other challenges they had
experienced. Finally, participants were asked to recommend any
solutions to these challenges, and how learning can be made easier
for beginners. For a full list of planned interview questions, see
Appendix A. Participants were not compensated for their time, as
participation was voluntary.

Interviews were conducted in April of 2022 through Zoom and
the participants were interviewed for approximately 37 to 90 min-
utes, with a median interview length of 53 minutes. We transcribed
and anonymized interviews using Otter.ai [52] and manually cor-
rected any errors in the transcription before proceeding with quali-
tative coding. Our goal was to keep the interview questions fairly
broad to allow participants to share their unique experiences in
neuromorphic computing and allow deeper exploration into spe-
cific challenges that interested the participants. Due to the nature of
semi-structured interviews, tangential responses were entertained
and discussions were eventually guided back with follow-up ques-
tions to focus on the challenges in and recommendations for NC

Development. This flexible approach contributed to the variation
in the length of study sessions.

NC is a highly specialized field within neuroscience and com-
puter science and engineering, with the majority of research activity
concentrated in major universities and research labs globally. Ex-
perts estimate the number of active researchers in NC worldwide
to be in the low thousands. As such, the pool of individuals with
deep expertise in this area is small, and shared experiences and
challenges are common among practitioners. Consequently, our in-
terviews did not reveal significant variability in perspectives, which
we attribute to the niche nature of the field rather than the study
design.

This shared understanding among participants strengthens the
reliability of the findings, as it highlights the consistency of the
challenges and opportunities faced by the community. The par-
ticipants’ collective expertise provides valuable insights into the
motivations, workflows, and challenges associated with NC devel-
opment, enabling us to identify specific areas for improvement in
NC tooling and practices.

3.3 Analysis
After anonymizing the transcripts, we imported them into Atlas.ti
[8], a tool for qualitative coding. The data from pilot interviews
was used to generate initial inductive codes, such as workflow
bottlenecks, challenges in simulation, tooling gaps, and common
challenges in transitioning to neuromorphic systems, which helped
refine the semi-structured interview design. Three of the authors
then developed a coding schema containing deductive codes gen-
erated from the original set of planned interview questions. The
coding schema was reviewed and finalized for coding the remaining
interviews through consensus among the coders. Any disagree-
ments in code assignment, grouping, or phrasing were resolved
through discussion. During the coding process, the schema was
iteratively refined—codes were condensed, clarified, clustered, and
rephrased. New codes were identified inductively through an inter-
pretive analysis of the transcript data. Whenever a new code was
agreed upon, the coders revisited prior transcripts to determine its
presence, achieved consensus, and updated the coding as necessary.
This iterative process resulted in a total of 39 codes and 7 code
groups, which were further organized into 5 overarching themes,
as described in the next section. For more details on the codes, see
the Supplementary Material.

4 Findings
In this section, we present insights derived from participant re-
sponses, organized to align with our four research questions. Each
subsection highlights findings directly based on the participants’ in-
puts. To make these insights actionable for HCI researchers and tool
designers, we follow each section with Key Insights that summarize
why the findings are relevant for HCI researchers and enumerate
areas for improvement and possible strategies for designing more
user-friendly neuromorphic development tools. Figure 2 is the di-
agrammatic representation of the findings and its synthesis from
the qualitative analysis of interview data.

https://Atlas.ti
https://Otter.ai

CHI ’25, April 26–May 01, 2025, Yokohama, Japan Upreti et al.

Participant
ID

Current Role Qualification Location
Programming
Experience

Neuromorphic
Experience

1 Post Doctoral Researcher PhD Robotics Canada 17 3
2 Senior Neuromorphic Engineer Undergrad Nanotechnology Engineering Canada 7 7
3 PhD Student Masters Device Physics US 5 2
4 PhD Student Masters Embedded Systems US 10 7
5 Post Doctoral Researcher PhD Electronic and Computer Engineering Australia 6 3
6 Lab Researcher PhD Cognitive Science Canada 24 11
7 PhD Student Masters in Neural Systems and Computation Germany 7 6
8 Undergrad Research Assistant Undergrad Computer Engineering US 6 1
9 Professor PhD Neuromorphic Computing US 10 8
10 Lab Researcher PhD Cognitive Science US 20 9
11 Lab Scientist PhD Spiking Neural Networks US 14 10
12 Lab Leader PhD Computer Engineering US 39 9

Mean 13.75 6.33
Median 10 7

Max 39 11

Table 2: Background, location, and years of experience of the interview participants

4.1 Participants’ Motivations towards
Neuromorphic Computing

One of the primary motivators driving participants’ interest in
NC was the observable incompatibility of conventional comput-
ing models with real-time, on-board learning in robots due to the
substantial power and computing requirements [P1]. Three par-
ticipants [P1, P6, P12] emphasized the computational demand and
resulting unattainable energy needs when using conventional AI
in robotics and neuronal simulations.

The standard approach of integrating power-hungry processors
on board or relying on tethered computational resources is also
deemed untenable, as P1 analogized it with embedding a large
power-hungry data center on a mobile robot, explaining its practi-
cal infeasibility. They stated that particularly in applications such as
space and underwater robotics, which necessitate higher levels of
autonomy and minimal power consumption, NC is better poised to
meet the requirements of such systems. P1 also reported that transi-
tioning from the Von Neumann architecture to a neuromorphic one
wasn’t as significant a shift for them and that the asynchronous
nature of NC was seen as compatible with robotics’ event-driven
nature. They believed that the energy-saving prospects were sub-
stantial with NC.

While many participants focused on the energy efficiency of
NC systems, P3 considered NC as the route to recreating the un-
paralleled speed and accuracy of the human brain through
technology. They emphasized the promise embedded in SNNs
to mirror neurons more truthfully than other neural network ap-
proaches:"...replicating my brain on a chip or something like that,
which is as fast as the brain, especially via neuromorphic...there is
a possibility of being it closer to the normal biology, the biological
principles".

Neuromorphic accelerators, which can alleviate power constraints
around running SNNs on traditional CPUs and other conventional
hardware and allow for enhanced research capabilities in under-
standing neural networks and behaviors, were also of significant
interest to our participants [P10, P12]. To take full advantage of the
benefits NC has to offer, our participants [P4, P5, P9] collectively

emphasized focusing on a "full-stack" or a highly interdisciplinary
and collaborative approach to NC: "I think in the end neuromorphic
computing, it’s the fullest stack computing... you’ll see neuromor-
phic researchers that are mainly concerned with devices. Or you have
physicists working on neuromorphic devices or materials. You have,
for example, architecture, design, and algorithms. The ideal scenario
is all of these will be together in one resource". (P9). This entails
not only focusing on the software side but also considering the
hardware aspects and bringing them together into one cohesive
platform. A co-design mindset, where both hardware and software
are developed in tandem, was deemed crucial to realize the benefits
of NC.

Key Insights for HCI researchers: We believe that these per-
spectives from the participants converge towards a collective un-
derstanding that NC is not simply an exploration of an alternate
computing paradigm but is fundamentally an iterative progression
towards a model that embraces the efficiency and capability of the
human brain. They point to the fact that NC affords unique fea-
tures to systems like adaptability and fault tolerance, which present
unique opportunities for HCI researchers to innovate in areas like
user experience design and adaptive interfaces.

4.2 Existing Workflows, Tools, and Resources
for Neuromorphic Development

When asked about the steps taken by developers to build neuro-
morphic applications, our participants shed light on the integrated
workflow they use for neuromorphic system design, along with the
tools and resources that they employ to create their applications.

4.2.1 Workflow. Our participants reported a workflow that was
congruous to brainstorming [P1, P3, P5, P6, P8, P9, P10, P12], sand-
boxing/experimentation & debugging/validation [P1, P3, P5, P7,
P8, P10, P11], followed by training an SNN [P2, P5, P8, P11, P12],
optimizing the SNN [P1, P2, P5, P6, P7, P8, P11, P12], and finally
moving the network from a simulator to neuromorphic hardware
[P6, P12].

Advancing HCI with Neuromorphic Technology CHI ’25, April 26–May 01, 2025, Yokohama, Japan

Figure 2: Mapping the emergence of themes from qualitative analysis codes. This diagram illustrates how codes derived from
participant interviews were grouped into themes, showing their relationships to the key findings and discussions of the study.

Brainstorming begins with a clear problem definition [P8],
and involves the exploration of the current architectural design
and reusable code [P1, P2], creating solution designs with high-
level blocks [P3], exploration and selection of tools and hardware
[P8, P12], accounting for hardware and software constraints and
compatibility [P6, P12], and creating flowcharts from unstructured
ideas to create the solution structure [P5].

Sandboxing and Experimentation involves iterative program-
ming, where participants emphasize the significance of reusing
code from standard implementations [P1, P2], utilizing existing
techniques such as scikit-learn and in-house code for baseline algo-
rithms [P2], and incorporating tools like optimizers from SciPy [P2]
depending on the development domain. Participants reported the us-
age of notebooks to create a sandbox for experimentation [P5, P10],
which often involves probes and data collection to troubleshoot
and debug spiking neural systems [P4]. The habit of building more
modular networks is suggested for easier debugging [P4], but the
participant acknowledges it as a practice that is still underutilized.
Finally, validation can include either optimization of a trained SNN
or optimization of a traditional ANN or other network, followed
by conversion to a spiking version with aims to match the original
model closely [P5].

The SNN training phase involves transitioning from a non-
neuromorphic implementation to a spiking version, with complexi-
ties increasing as the model size grows [P2]. The participant also
estimated that training SNNs takes up a significant portion (50-
70%) of development time for projects. Troubleshooting involves
adjusting parameters like firing thresholds. Citing the absence of

widely accepted default workflows or a Stack Exchange-like plat-
form, and noting the large knowledge gap between experts and
novices, participants highlighted the need for clear communication
and widely adopted channels for effective problem resolution be-
tween these groups [P6]. Training SNNs encompasses challenges
associated with the lack of fundamental theory and the uncertainty
of successful outcomes (i.e., whether data is learnable) and often
involves an iterative process, making adjustments based on the
results [P6, P7, P11].

Optimization strategies focus on making networks more effi-
cient [P8]. Techniques such as making the networks more mod-
ular, selecting appropriate algorithms, and fine-tuning network
size through hyperparameter optimization are employed [P8, P9].
Optimizing power consumption involves careful consideration of
neuron placement and network abstraction [P10, P11].

Finally, the simulator to hardware transition is character-
ized by mapping algorithms from CPUs to neuromorphic hardware.
Differential equations are used as a unique technique to express
algorithms, facilitating their implementation on diverse neuromor-
phic hardware [P6]. Simulation on CPUs first is preferred, primarily
because most tools are on traditional CPUs, and efforts are made
to ensure seamless transitions to neuromorphic hardware with
minimal code changes [P6, P12].

To aid the conversion of non-neuromorphic code to neu-
romorphic SNN-based versions in cases where the SNN is built
through conversion from an ANN rather than from scratch, P3 and
P4 reported a need for tools that could allow known traditional
neural network models to be run directly on neuromorphic hard-
ware. Despite the common expert sentiment about the necessary

CHI ’25, April 26–May 01, 2025, Yokohama, Japan Upreti et al.

demarcation in the scope and value proposition of neuromorphic
and traditional computing, P3 and P4 reported that such conversion
tools can help as a starting point for beginners with a good under-
standing of traditional ANNs. P3 also stated that it would be good
to have"some other tool-chains or frameworks... that are completely
open so that and you give an ANN, and then you can completely get
the SNN processed and get the output out. That complete framework
would be extremely advantageous for users starting out".

4.2.2 Tools and Resources. Participants reported on their usage of
datasets, and various tools for neuromorphic development. [P5, P7,
P11, P12] mentioned using datasets like the DVS gesture dataset
[7], MNIST [42], and the Oxford Radcliffe dataset. They hinted at
generic speech, video, and image datasets being used to learn Deep
Learning basics, and how traditional Deep Learning techniques are
already good at solving problems therein. In addition to datasets,
3 tabulates the tools used for programming in NC as reported by
each of the participants.

Key Insights: For HCI researchers, understanding the detailed
workflow and tools used in neuromorphic development is crucial
for identifying key stages where user interfaces and experiences
can be optimized to enhance productivity and reduce cognitive
load. For example, knowing that developers prioritize modularity
during the debugging phase can lead to the design of interfaces that
better support component-based development and visualization
tools that make complex networks more comprehensible. Further-
more, insight into the iterative nature of training SNNs helps HCI
researchers create more effective collaborative tools that facilitate
communication and knowledge-sharing between novices and ex-
perts to tackle the steep learning curve associated with SNNs.

4.3 Challenges and Pain Points in
Neuromorphic Development

To better support HCI researchers in identifying areas for interven-
tion, we asked participants about specific challenges they encounter
in developing neuromorphic systems. In this section, we discuss our
findings related to the challenges of neuromorphic programming.

4.3.1 Complexity of SNNs. A majority of the participants [P1-P5,
P10-12] reported that the complexity of SNNs is something that
most programmers struggle with. These challenges arise due to the
usage of spikes as the primary signal, and the introduction of the
time dimension.

Traditional ANNs, when implemented on a Von Neumann archi-
tecture, operate in discrete time cycles that are synchronized with
a clock signal. Therefore, computations in these networks occur at
fixed time intervals, typically driven by the clock speed of the CPU,
when neurons both process their inputs and update their analog
states. Instead, SNNs are asynchronous, incorporating time as an
explicit dimension, allowing them to model and simulate the behav-
ior of biological neurons more accurately. Drawing from biology,
neurons in SNNs integrate their inputs continuously over time into
their membrane voltage, and communicate using asynchronous
spikes.

A spike refers to the all-or-none firing of a neuronal action po-
tential whenever the membrane voltage exceeds a threshold. The
asynchronous spike emission from each neuron complicates the

relationship between input and output spikes and necessitates the
inclusion of a temporal dimension and processing delays in a single
neuron. The effect becomes aggravated in cascaded architectures,
where the delays are propagated through the neuronal layers. Learn-
ing to work with spikes as the primary neuronal signal challenges
the developers learning to program in the neuromorphic domain,
with half of the participants [P1-P5, P11] reporting that this concept
makes training or simulating SNNs difficult, as it is not directly
translatable from ANNs. P2 states "I guess the main thing is that it
introduces delay, you have to learn to account for in some way... ".

The sequence of multiple neuronal firing timings constitutes
a spike train. Information from sensors needs to first be encoded
into spike trains, which are then processed through the SNN which
outputs spikes that are decoded to generate comprehensible in-
formation. Many participants [P2, P5, P8] reported difficulty in
encoding data and interfacing the neural network with the neural
processor in spikes to ensure they convey information accurately.
They reported that the encoding process is an integral aspect of
working with SNNs and the various available encoding techniques
result in varying levels of accuracy and efficiency. Therefore, choos-
ing the correct technique is both critical and challenging. P10 states
"...This is probably the first piece of advice that I give to people when
they’re struggling with projects is that they should look more carefully
at how they’re encoding information because it’s very common to see
others struggling with spike representations that are useless. And that
leads to poor, poor performance and endless retraining". P2 also states
that "...It also starts adding in just more knobs to tune so like, things
like firing rate, how quickly should they, like, what ranges should
they spike in?".

The additional temporal dimension and the required encoding
of continuous information into discrete spike trains increases
the number of hyperparameters in SNNs. Hyperparameters
in a neural network are variables like learning rate, batch size,
etc., and their tuning is an essential process in achieving optimal
performance. Four participants [P5, P7, P10, P12] raised concerns
over the abundance of the hyperparameters that need to be tuned
with SNNs. As P5 states "...When I’m doing hyperparameter sweeps, I
spend a lot more time on an SNN over a conventional Neural Network,
because yep, more things to play with... thresholds, ...various types of
batch normalization, ...a lot of degrees of freedom that I’m not sure will
make my application better. So yeah, maybe I’ll run 200 trials for a DL
algorithm and be satisfied but with an SNN, that might end up being
600 trials... I haven’t really done a direct one-to-one benchmark, but
it could easily be five times the time on like a miscellaneous dataset".

Key Insights: One of the ways in which the challenge of com-
plexities within NC systems may be alleviated is through designing
modular and reconfigurable systems. Three participants [P7, P9,
P11] reported that being able to abstract neural network modules
as much as possible and implement them easily without having to
understand them from inside out would be better, especially for
exploration or demonstration purposes. NC can benefit from draw-
ing inspiration from current ML frameworks like TensorFlow or
PyTorch that support such modular networks which can be used by
beginners to explore their effectiveness. P1 states: "The modularity
in the system, making that easier... making it easier to run modules in-
dependently would be good. But that’s not something that’s precluded

Advancing HCI with Neuromorphic Technology CHI ’25, April 26–May 01, 2025, Yokohama, Japan

Figure 3: A standard workflow for neuromorphic computing applications. Starting from event-based vision and audio datasets,
developers utilize custom tools and libraries to program their SNN-based algorithms. Simulators are used to emulate the
performance of the developed algorithms before their deployment on neuromorphic hardware.

by Nengo, or Lava. It’s more of a programming practice that I’m
still developing with these models... I’d like to see a tool where... you
can latch on to the model and get that (model functionality) without
specifying it explicitly in the code itself... I think that would be the
that would be the number one on my wish list if I could get that".

Considering the difficulty in tuning SNNs, HCI could contribute
to developing more interactive, feedback-oriented tools that assist
developers in understanding the effects of hyperparameter tuning
in real-time.

Finally, being able to clarify the value proposition for NC
would significantly simplify the decision-making process for new
developers who’re willing to explore NC for their applications. Four
participants [P5, P6, P9, P11] reported that it is important to clearly
establish the list of domains in which NC shows particular promise
for greater performance and applicability compared to traditional
computing. P6 reported that having a graphic that highlights the
benefits of neuromorphic for some specific uses, if made ubiquitous
in the neuromorphic community, would make it clear for early
developers in the field. P11 reported that there should be a clear
explanation of why neuromorphic excels on such domains and
shows promise for greater performance than current technology.

Without this distinction, a lot of early development effort in learning
neuromorphic can be misguided, and developers would merely be
copying traditional deep learning problems in neuromorphic.

For developers who are more experienced with traditional ML/AI
workflows, mirroring development flows and patterns of suc-
cessful non-neuromorphic tools could be another strategy to
ease the transition to implementing neuromorphic systems. Several
participants [P1, P2, P5, P7, P9, P11] agreed that when neuromorphic
tools are similar in look, feel, and functionality to more traditional
developer tools, it is easier for curious developers to try, test, and
switch to neuromorphic systems. For example, P9 discussed how
libraries for NC should be more similar to the libraries for popular
ML and DL platforms with which more developers are already fa-
miliar: "So for example, with Pytorch and SNNtorch, that is kind of like
bringing in something that people are comfortable with, I don’t want
us to be so exotic that people are afraid of learning". Programming
practices such as abstraction, code modularity, standard compil-
ers, and debugging strategies that currently exist in traditional
programming are helpful and can be applied for neuromorphic
programming as well [P1, P3, P4, P5, P9].

CHI ’25, April 26–May 01, 2025, Yokohama, Japan Upreti et al.

Participant Speciality Development Tools Hardware Tools

1
Nengo (Visualization),

Intel’s LAVA framework (Mapping and Programming) Intel Loihi (NM Processor)

2
ABR neuromorphic compiler (Nengo),

pytorch, TensorFlow, Nengo DL (Libraries and Frameworks),
SNN toolbox (Multi-functional)

-

3 - VHDL, Verilog, Vivado (Hardware Description Languages)

4 SNN toolbox, SNNTorch (Libraries and Frameworks) Loihi, SpiNNaker, SVP (SpiNNaker Virtual Plasticity)
(Programmable Hardware Platforms)

5
SNNTorch, PyTorch, Spiking Jelly,

Intel’s LAVA DL (Libraries and Frameworks),
Nengo (Visualization)

SpiNNaker, Python, Embedded C, Loihi

6
Nengo, Nengo IDE (University of Waterloo),

Lava, NX SDK
-

7 Lava, Brain 2 (Simulator) -

8
TENNLab neuromorphic framework (C++),

Lava, Pytorch, SNNtorch
-

9 TENN Lab framework, Pytorch, SNNtorch Loihi, Lava framework
10 Slayer (Library), NVIDIA’s reference architecture Loihi
11 Slayer (Library), Lava, Loihi (Multi-functional) BrainScale, DYNAPS (Hardware Platforms)

12 EON simulator, CrossSim (Simulators) Intel Loihi,
TrueNorth, FPGA implementation (Hardware Simulation)

Table 3: Categorized Hardware and Development Tool usage as reported by the participants.

4.3.2 Buggy Simulator Tools and Unavailability of Hardware. Neu-
romorphic simulators are meant to mimic neuromorphic hardware,
thereby aiding experimentation, helping developers understand
network interactions and neuron behavior, and accelerating the
development of neuromorphic systems. However, many partici-
pants highlighted that existing simulators and development
tools are buggy [P5, P7] and their APIs suffer from poor usability,
particularly for beginners [P3]. P7 attributed this to a goal-oriented
development process focused on specific hardware, neglecting be-
ginner users.

Several participants [P1, P2, P3, P6, P7, P9, P10] reported difficulty
with the use of simulators and transitioning from the simulator to
hardware and vice-versa. As P3 reported, simulators only describe
the hardware and results obtained on simulators are ’never’ repli-
cated on hardware. P6 reported that many current simulators do
not simulate hardware constraints like the limit of neurons that
can be supported by the hardware accurately, which causes failures
in code. P7 agreed, reporting that while it is sometimes better to
not have to be mindful of hardware constraints, it can cause issues
when transferring the simulated models onto the hardware. P1 and
P11 reported that the I/O speeds are generally slower in simulators
than hardware.

Half of our participants [P1, P2, P4, P5, P6, P12] agreed that
there is a lack of available neuromorphic hardware. This poses
a challenge for neuromorphic development, as it often requires
developers to switch back and forth between simulators and real
hardware, increasing the time spent on and complexity of the task.
P4 states "...if we want to have actual neuromorphic hardware, there
are not many companies that actually sell such systems readily avail-
able on the market. And yeah, I think that’s the biggest resource

constraint that we have.". P6 and P12 agreed that the lack of read-
ily available hardware impedes algorithm development, and can
dissuade novice enthusiasts of NC from entering the field.

Access to NC hardware is usually limited to large research facili-
ties, or companies that can afford the resources to enable access to
the hardware. P12 also reported that there is a lack of open-source
neuromorphic devices, where anyone seeking a device faces further
red tape of committing to research and usage agreements, adding
to the logistical challenges for a neuromorphic developer.

Additionally, P5 and P6 reported that some chips that were de-
veloped in an academic setting were available but are limited in
scope. P5 felt that ’academic chips’ are not necessarily designed
with the broader community in mind. When hardware is avail-
able, it often requires significant hardware debugging. P10 reported
having to work with Jupyter Notebook instead of their preferred
development environment VS Code, and having to set up proper
configurations for each remote layer, resulting in a slower workflow
when compared to working with a local IDE.

4.3.3 Lack of Documentation, Models, Libraries, Best Practices and
Benchmarks. All the participants unequivocally expressed that there
is a lack of knowledge resources and proper documentation
making it difficult to find pertinent information regarding
algorithmic development in NC and increasing the barrier
to entry for novices. Participants [P1, P6, P7, P10] reported that
there is no online question-and-answer platform that programmers
can refer to when they encounter unexplained errors that contain
information about NC specific problems, such as Stack Overflow, re-
quiring them to have to answer many questions by themselves. This
increases developers’ learning time and their overall development
time.

Advancing HCI with Neuromorphic Technology CHI ’25, April 26–May 01, 2025, Yokohama, Japan

Because the community of developers is small, the focus is pri-
marily on implementation, not documentation and pedagogy. Par-
ticipants [P1, P2, P5, P7] reported that the documentation for exist-
ing hardware and development tools is not as good as they would
expect. P5 felt that the highly skilled researchers working on the de-
velopment of new software packages and hardware had insufficient
incentives to be creating robust documentation and P7 felt that
this dearth of resources was due to a lack of financial investment
in NC. P1 states "There’s not like a Stack Exchange for NC. Which
is something I’m mildly worried about. Because I’m probably not
going to be in this lab forever (in losing regular contact and access to
experts)".

Similarly, participants [P5, P7, P10] reported that the currently
available tutorials are inadequate, with individuals moving into
the neuromorphic field relying heavily on just the few available
tutorials. P5 attributed the relative success of SNNTorch to the tu-
torials that it has, but reported that, although beginners go through
the tutorials, the information they retain is low. With regard to
sample starter applications, P7 and P10 reported that the tutorials
are not available and when they are, the right kind of tutorials are
difficult to find, especially for applications that are not from major
vendors. While scholarly articles can serve as knowledge resources,
participants [P5, P9, P10, P12] reported that there are few such
articles and that they are usually complicated, too specific, or do
not provide holistic solutions. P10 states "we probably have, like, 1%,
as many papers out there. And the papers that are out there, most of
the good ones are written by neuroscientists not by programmers, or,
you know, computer scientists. And so they tend to be more esoteric".

Participants [P3, P10] noted that models are scarce, hard to
select based on requirements, and challenging to implement
and optimize. P3 mentioned that developing neuromorphic ap-
plications with languages like Verilog or Matlab requires building
models from scratch, along with new documentation for simulation.
This challenge also applies to encoding-decoding techniques, as
developers must learn these anew for each system. Model devel-
opment from scratch is also necessary when testing hardware for
training SNNs, since pre-existing models are typically unavailable
[P3]. While tools for ANN to SNN conversion exist [11, 29], P3
pointed out that the converted models aren’t always compatible
with all hardware languages, adding more complexity. In contrast,
building ANNs in Python is much simpler due to the availability of
pre-built models.

The repetitive building from scratch is due to a lack of standard
practices in neuromorphic software development, as noted
by multiple participants [P2, P8]. Unlike the established workflows
in deep learning for key steps like design, encoding, training, and
testing, neuromorphic development varies by hardware, as for ex-
ample each developer has their own signal processing approach
to perform encoding. P2 mentioned that much of the development
is novel, with no standard references available. Similarly, P8 re-
ported little to no standardization in signal types, encoding, or
simulation techniques, making knowledge from one system often
non-transferable to another. In traditional programming, libraries
allow developers to reuse code and save time, but P6 noted that
available NC libraries are relatively new and mainly offer basic
functions like min() and max(). While non-NC-specific libraries can
sometimes be used, there is insufficient support for event-based

data processing, which is a key aspect of NC. This lack of standard-
ization complicates comparing implementations and hinders the
creation of broader standards for neuromorphic programming. A
notable exception is Lava by Intel, an NC library recently devel-
oped to provide standard operations similar to those in traditional
computing.

Participants [P6, P8] reported a lack of specialized tools inter-
facing with neuromorphic hardware while supporting network
visualization, simulation, and optimization. Though neuromorphic
algorithm development can start on standard tools like VS Code,
such tools lack the necessary hardware optimization and visualiza-
tion features. P6 emphasized the importance of GUIs and visualizers
for research, noting that building such tools is a significant soft-
ware challenge. P8 added that no widely accepted UIs exist, as each
hardware platform uses its own tools. Aside from Nengo[11], most
tools lack real-time network visualization, which helps developers
debug, optimize, and assess neural networks. P6 also shared that
the absence of proper visualization tools significantly delayed their
progress.

Interfacing challenges extend beyond development tools to the
limited interchangeability of programming languages. Unlike ma-
chine learning, where Python-based frameworks are widely used,
neuromorphic applications are developed in various languages, re-
quiring support across them. However, P8 noted that there is no
standard neuromorphic framework supporting multiple lan-
guages, since most frameworks are designed for specific hardware
from universities or research labs and are not cross-platform. As
previously mentioned, each framework has its own workflow and
practices, making it difficult to accommodate the full variety of
systems.

Participants also reported a lack of established benchmarks
for neuromorphic systems, including a lack of appropriate datasets,
evaluation metrics, and system level benchmarks that account for
the deep coupling between NC hardware and software implemen-
tations. This makes comparing different neuromorphic implemen-
tations difficult and does not allow NC implementations to be com-
pared to the existing state-of-the-art solutions in DL. Participants
[P2, P5, P8, P12] believe this lack of benchmarking is because NC is
still incipient and has a relatively small community. The newness
and small community also make the field of NC prone to rapid
change. Developers find it increasingly challenging to adapt to
these swift changes in concepts due to the lack of robust bench-
marks. P5 says "what is a good metric of success, what is the most
commonly accepted way to achieve X, Y, and Z?... We’re all just figur-
ing it out. It’s such a volatile field. Things are changing all the time...
Quite often things that we believe are really good, turn out to just be
reimplementation of things that already existed in the past".

In deep learning, there are standardized datasets for evaluating
algorithmic performance such as ImageNet [26] for image classi-
fication tasks or CIFAR-10 [40] for image generation tasks. These
datasets can give developers a better sense of their algorithm’s per-
formance and can show which techniques make their models more
efficient, learn faster, or increase stability. P12 reported a lack of
standards for NC datasets, claiming that pairing the right dataset
with the right model can be difficult due to the lack of established
guidelines.

CHI ’25, April 26–May 01, 2025, Yokohama, Japan Upreti et al.

Finally, another crucial challenge lies in selecting appropri-
ate evaluation metrics for NC. DL benchmarks often prioritize
accuracy, making them unsuitable for fully assessing neuromor-
phic algorithms, which may offer benefits such as low latency, low
power consumption, or minimal footprint with marginal impact on
accuracy. Nevertheless, both P5 and P9 noted that accuracy remains
the primary metric for evaluating spiking neural network (SNN)
implementations. Additionally, applying conventional DL bench-
marks to traditional deep learning issues undermines the broader
scope and unique aspects of NC [P9]. P9 further argues that metrics
derived directly from DL performance can differ considerably from
those relevant to NC. P5 also mentions that appropriate perfor-
mance metrics for NC models should be closely aligned with the
specific problem being addressed. For instance, using neuromorphic
architectures for object detection may result in the lowest power
when paired with event-based cameras rather than RGB cameras,
rendering datasets like ImageNet ineffective for fully evaluating
neuromorphic solutions. However, because NC is a comparatively
small field, it is often expected to be evaluated against existing
deep learning algorithms using existing datasets and benchmarks,
posing a significant challenge for the adoption of neuromorphic
solutions. This underscores the necessity for distinct system-level
benchmarks that consider the full stack of hardware and software
solutions.

Unfortunately, traditional benchmarks are not well-suited
for assessing neuromorphic systems. Even edge solution bench-
marks like MLPerf, which evaluate latency and energy as well
as algorithmic accuracy, might be inadequate for neuromorphic
solutions. Two participants [P5, P9] highlighted the challenge of
estimating power requirements and selecting from different perfor-
mance metrics, recommending that additional metrics be included
in evaluations. P9 also proposed that the neuromorphic community
should focus on different metrics like resilience, energy efficiency,
and latency. However, they acknowledged that integrating design
and performance metrics into a single framework is extremely chal-
lenging, as defining and selecting the most relevant metrics for a
NC application or algorithm is not straightforward.

Key Insights: Based on our participants’ suggestions, it is ev-
ident that a coordinated effort to create and maintain dedicated
online platforms, coupled with incentives for active participation,
could transform the NC knowledge resources landscape. Such plat-
forms would not only serve as knowledge hubs but also strengthen
the sense of community, fostering collaboration and collective
problem-solving. Aside from these, creating and incentivizing
good documentation with information at all levels of abstraction
will empower developers to use the information for lower-level
development such as programming neurons to higher-level usage
such as adopting an API into their development pipeline [P5, P7].

Focusing on pedagogical materials such as example-driven
tutorials [P1, P10] and the need for user friendly APIs [P3]
would also serve as useful strategies in increasing knowledge dis-
semination for novice NC developers. Additionally, creating com-
prehensive "Getting Started" resources [P2, P11] that provide
accessible introductory resources for beginners to navigate the in-
tricacies and establish foundational knowledge was deemed useful.
"It’d be nice to have something like... Andrew Ng’s machine learning

journey, I think it’s a very short document. And it goes through a big
list of like tips if you’re doing the typical back prop or a conventional
machine learning. It’d be nice to have a version of that for like the
neuromorphic implementations, the tips and tricks for if you’re facing
this type of problem, or like what type of neurons might be good for
certain problems" (P2).

To ensure that beginners have a clear learning pathway, GUIs
for beginners and real time network visualizers could enable
an abstract understanding of the network and the spiking activities
occurring within the neurons, and help debug issues. This guide-
line is supported by many of our participants [P2, P5, P6, P8, P10,
P11, P12], with P5 stating: "...the moment you start using GUIs, and
visualizations that kind of abstracts away the lower level detail that
we want to play with. But for beginners being inducted into the field,
I think it’s fantastic."

Furthermore, having known best practices and guidelines
for developers with information such as what is the right work-
flow for developing a particular kind of neuromorphic application,
what is the right encoding method for a particular type of data,
what performance metric is suited for a particular problem, and
what kind of dataset should be used to benchmark a particular type
of algorithm would benefit the community at large [P5]. This is nec-
essary so that developers can fall back on established best-practices
for key decisions instead of having to invent and create new solu-
tions for each challenge they face. This also allows the community
to better evaluate the progress made on algorithm development
when its performance can be directly compared to other algorithms.

The lack of standard benchmarks and practices also presents an
opportunity for HCI designers to facilitate community-driven plat-
forms that encourage sharing and standardization of best practices
and resources. More pointed guidelines on how the HCI commu-
nity can support a better development ecosystem for NC by taking
inspiration from what’s already been done in the past for other
fields are discussed in section 5.

4.4 Suggested Prerequisites and Resources for
Getting Started with Neuromorphic
Computing

In this section, we present findings related to skills and resources
that our participants thought could benefit novice developers in NC.
These emerged from participants’ responses regarding knowledge
prerequisites and starter applications that would be interesting for
newcomers.

4.4.1 Starter Applications for New Developers. The vastness of com-
putational neuroscience knowledge, along with the lack of knowl-
edge resources for understanding the neuromorphic domain make
entry to the field challenging for beginners. One approach is to
create starter applications as entry points to the field [17, 67]. A
fourth of our participants acknowledged that starting with tuto-
rials for pre-existing tools is helpful for learning the basics
of neuromorphic programming. P1 and P5 mentioned Nengo
[56] and P11 mentioned Intel’s Lava [23] tutorials and the associ-
ated visualizations as having the right amount of complexity for
beginners, with just enough abstraction of the neural processing
and progressive disclosure of necessary information.

Advancing HCI with Neuromorphic Technology CHI ’25, April 26–May 01, 2025, Yokohama, Japan

Most participants [P2, P3, P5, P6, P8, P10] mentioned that an
effective introduction to the field could be starting with less com-
plex problems that allow for fast model training and using datasets
suited to the neuromorphic domain. Participants [P4, P5, P7, P10,
P12] emphasized that new developers should focus on problems
where NC offers clear advantages, such as speed and power
efficiency, over non-spiking implementations. Several partici-
pants [P6, P8, P9, P10] suggested examples such as adaptive control
for robotics or other small robotics application. P12 suggested that
solving such problems with open-source tools like Nengo [11] and
simulators like Brian [32] and Nest [31] is a good way to start
learning.

If novices opt to start with a classic DL problem, P4 suggested
digit recognition using the MNIST dataset as a good starting point
and P11 further suggested transitioning to analogous neuromor-
phic tasks such as the Oxford Spike Raster translation. However,
P7 noted that while approaching this well-studied problem can
help with understanding, learning for truly neuromorphic solu-
tions should focus on neuromorphic-directed event-based inputs,
and utilize visualizations of the neuronal spiking activities
such as raster plots that help the learner understand the complex
dynamics of neurons like firing patterns, stimulation response, and
more.

4.4.2 Helpful Skills. Participants reported several skills that could
be considered as prerequisites to learning programming for neuro-
morphic systems.

Four participants reported that it is beneficial to begin learn-
ing neuromorphic programming after understanding the
basics of ML and programming [P1, P2, P5, P7]. Based on their
personal experience, P2 reported: "I guess one of the earlier issues I
had was I started the field not knowing much about neural networks.
So I was kind of learning it from that end (NC)... So that was a bit
of a challenge in the beginning. So I definitely think it’s nice having
a bit of a ML background to kind of get the basics and then starting
to build up how this (NC) is different." Two participants [P5, P6]
further reported that a strong programming background simplifies
the transition to neuromorphic programming. Several concepts like
sandboxing, simulation, optimization, and programming decisions
translate from traditional to neuromorphic programming. P6 fur-
ther reported that parallel (Java, C, and Python), and lower-level
programming (VHDL, Verilog, and Simulink) are much closer to
neuromorphic programming.

Six participants [P4, P5, P6, P9, P11, P12] stressed the importance
of building familiarity with neuromorphic hardware and
understanding how neurons and synapses are implemented on-chip
in order to more effectively harness the efficiency of the hardware.
P11 specifically states "understanding the architecture, it’s one of the
keys, and also like here, and that if you don’t, fully understand the
limitation and how the systems work, I mean, you kind of will not be
able to tell like, if you can implement certain things on the chip itself,
Right? And that is critical".

Four participants [P5, P7, P9, P12] reported that having a basic
background in computational neuroscience, the field that uti-
lizes mathematical models to understand how the brain works, is
helpful, especially as a beginner. However, the field is dense and
programmers can benefit from some abstraction [P12]. Specifically,

P12 states "I think the most important thing, at least for me,... is to get
an intuition of how neurons can compute, how brains can compute
it all. Right, it’s really on that intuitive level, how can a network of
neurons implement complex computations, as we observe, like in us
and in animals, right, does this for me, the most important thing that
I kind of learned". Four participants [P4, P6, P8, P9] suggest that
the combination of skills developed through both computer science
and computational neuroscience makes for an easier transition to
neuromorphic programming and excelling therein.

Three participants [P1, P2, P8] suggested better programming
practices that could help with learning neuromorphic programming.
P1 and P2 recommended building modular networks that can
be used abstractly. Specifically, P1 states "getting into the habit of
building modular, more modular networks, I usually just build, you
know, kind of small single use networks for exploration, or demon-
stration purposes". P8 reported that learning to leverage preexisting
documentation from other developers and writing documentation
are also important skills.

Key Insights: For HCI researchers, these insights point to areas
where educational tools and interfaces can be improved to support
NC learning. One potential approach is creating adaptive learn-
ing environments that adjust content and complexity based on a
learner’s background in machine learning and programming. These
environments could feature interactive, problem-solving simula-
tions that gradually introduce more complex neuromorphic con-
cepts, such as spike-based processing or neuromorphic chip ar-
chitectures. Enhancing documentation tools to support a detailed
understanding of neuromorphic projects could ease the steep learn-
ing curve. Finally, well documented maker kits that are inexpensive
to acquire and test on could also prove to be a useful tool for novice
developers in the area, and is an area that HCI researchers are well
versed in. By designing interfaces and platforms that address these
educational needs, HCI researchers can make NC more accessible
and foster a larger, more skilled community of developers in this
emerging field.

5 Leveraging Insights from Developer Tools in
Traditional Computing to Inform Future
Directions for Neuromorphic Development

While Section 4 presents the findings from participant interviews
and key insights relevant to HCI researchers, this section builds
upon those insights to offer actionable recommendations for design-
ing better tools and systems for neuromorphic computing. Drawing
on lessons from adjacent fields, such as machine learning and deep
learning, we identify specific practices and approaches that can
inspire improvements in the neuromorphic development ecosystem.
This section is particularly relevant for HCI tool designers seeking
to create accessible, intuitive, and community-driven platforms that
address the challenges outlined in Section 4. By connecting the find-
ings to established successes in traditional computing domains, we
aim to provide a roadmap for advancing the developer experience
in neuromorphic computing.

With the first challenges arising when novices attempt to learn
about NC, the scarcity of knowledge resources accentuates the need
for more, better-structured, and increasingly in-depth tutorials. The

CHI ’25, April 26–May 01, 2025, Yokohama, Japan Upreti et al.

established fields of ML and DL not only have an abundance of
such resources, but can also lend tools like Torii and Sodalite that
have been developed to simplify and optimize the development
of structured curriculum and documentation [35, 37]. By en-
couraging experienced neuromorphic developers to adopt tools like
these, we can ensure more of high-quality tutorials and documen-
tation. In addressing the questions that arise during the solitary
exploration of existing knowledge resources, novices to the field
can benefit from platforms where community members exchange
acquired knowledge and provide support. Knowledge forums like
StackOverflow [9] available for conventional software development
and DL have accelerated the identification and solution of prob-
lems and could similarly benefit an emergent field such as NC. In
prioritizing the creation of a StackExchange community and sup-
porting more community-driven initiatives, we can ensure
new developers have the resources required to get their questions
answered. Lastly, when new developers mature enough to dive
into existing source code, the lack of detailed justifications on the
design decisions and large, complex codebases is disheartening.
This is exactly where the adaptation of information foraging tools
like Wandercode and RIT [36, 53] can provide recommendations
about the sequence of attention points in developed code
and simplify the understanding and learning experience. Taking
it one step further, assistive tools that have been developed for
code analysis such as Tutorons and Ivie [34, 73] can be of help by
providing more verbose and user-friendly line-by-line code
explanations. Ensuring these tools can give valuable suggestions
and guidance in the field of NC ensures new developers have all the
learning resources required to develop the skill-set and confidence
required to move on to developing SNNs of their own. Adapting
these tools to NC however, is not always a trivial task. Certain soft-
ware, like documentation or information foraging tools, tend to be
abstracted away from the underlying codebase and are easier to uti-
lize, simply requiring adoption into a developer’s workflow. Other
tools that rely more on domain-specific knowledge, like Tutorons,
would require expert adaptation to be useful in the NC space but
Ivie proposes an interesting potential solution to this, using LLMs
to automatically generate explanations. Given the relative new-
ness and lack of neuromorphic documentation, these explanations
would need to be evaluated for specificity and accuracy before full
adoption of the tool.

Stepping into action for the first time with specific problems in
hand, new developers find themselves overwhelmed by the multi-
tude of datasets and the previously proposed network models in the
context of NC. The more mature field of DL has already faced and
addressed these challenges: First, the use of well-established dataset
repositories like Kaggle or Torchvision Datasets [45] has simplified
the packaging, distribution, and standardization of datasets for a
wide range of tasks. Similar efforts have started in the field of NC
[43] where conventional datasets need to be extended with
their event-based counterparts, but their adoption would need
to become wider. Second, in the context of DL, several sophisti-
cated tools have been developed to facilitate the exploration and
selection of network architectures based on the given task
[69, 72]. Tools like ExampleNet [72] utilize the collective knowledge
of previously suggested effective models to provide architecture
recommendations that range from network type to number and

width of layers, and from neuron activations to ranges of hyper-
parameter values. Utilizing such tools in the context of NC and
expanding them with the specifics of SNNs (e.g. spiking neuron
models, input encoding, etc.) could provide a valuable starting base
for new developers in the field.

As developers progress from foundational learning to more ad-
vanced neuromorphic development, the need for detailed, special-
ized tools becomes increasingly essential. For instance, dedicated DL
tools take the initial hyperparameter recommendations discussed
above and perform parameter sweeps or grid searches to identify
their optimal values [3, 14, 22, 65]. Adapting similar tools to the NC
context could significantly aid developers in fine-tuning SNNs
without excessive guesswork. The domain transfer would be rel-
atively straightforward as several parameters (learning rate, batch
size, etc.) translate directly from DL to NC. For others, the tools
should be extended to handle the larger parameter sets in NC, while
considering their inter-dependencies (e.g. membrane capacitance
affects the maximum neuronal firing rate given a number of time
steps, with all three are seemingly independent parameters). When
such parameter sweeps are conducted, however, bugs often emerge,
underscoring the importance of architecture-specific debugging
tools. DL already offers solutions, like UMLAUT [57], that provide
architecture-specific debugging recommendations. Such tools could
be extended to neuromorphic development, to pinpoint specific
sources of bugs in the heavily parameterized SNNs. In addi-
tion to understanding network architectures, gaining insights into
the inner workings of networks through real-time visualization
tools can provide a more intuitive grasp of the network’s behavior,
especially considering the time-dependent nature of spike-based
computations. Tools that allow for real-time probing of certain
parameters during the training phase [61] can have a signif-
icant impact on the model accuracy, but must be adapted to suit
the temporal dimension of SNNs. Such frameworks developed for
DL optimization can be adapted and extended for NC, helping to
streamline model refinement and boost overall performance.

Unlike conventional DL, accuracy is just one of several key met-
rics used in NC to evaluate a model’s performance. Therefore, profil-
ing a model based on memory allocation, power consumption, and
latency becomes essential. While there are tools in place to evaluate
ANNs for some of these metrics [78], adapting them to SNNs is cru-
cial. This is especially important because performance evaluations
for SNNs can differ significantly when run on actual neuromorphic
processors compared to conventional hardware. As a result, accu-
rate simulators are necessary to estimate SNN performance both
on and off dedicated hardware. Though some simulators already
exist [71], there is a growing need for cross-platform systems
that enable meaningful comparisons across different hard-
ware. Additionally, once deployed to hardware, better tooling like
Inline [13] are needed to monitor these metrics. These efforts align
with the ongoing push in the NC community for advanced bench-
marking [77], addressing both software and hardware performance
evaluations.

6 Discussion and Future Work
Our study highlighted that developers are motivated by the poten-
tial of Neuromorphic Computing (NC) to address critical needs in

Advancing HCI with Neuromorphic Technology CHI ’25, April 26–May 01, 2025, Yokohama, Japan

low-power, real-time computing. However, they face significant
challenges due to the nascent state of tools and resources avail-
able to support their workflows (RQ1). Through interviews with
experts, we explored the workflows and tools currently used in
NC development, emphasizing the need for more robust, modular,
and standardized platforms to streamline practices and reduce frag-
mentation (RQ2). We also identified critical pain points, including
steep learning curves, limited educational resources, and difficulty
scaling solutions from simulation to hardware (RQ3). Addition-
ally, we uncovered the skills, resources, and support structures
necessary for new developers to onboard successfully into the NC
ecosystem, highlighting the importance of comprehensive tutorials,
pre-configured templates, and community-driven platforms (RQ4).
These findings formed the foundation for the actionable recommen-
dations detailed in Section 5, providing HCI researchers and tool
designers with practical pathways to enhance the NC development
ecosystem.

In recent years, the field of NC has seen significant advancements
aimed at making the technology more accessible and developer-
friendly, aligning closely with the findings of our study. One notable
development is NeuroBench, a framework designed for bench-
marking NC algorithms and systems that is collaborative and
fair [76]. NeuroBench addresses the need for more standardized,
flexible benchmarks, allowing for hardware-independent testing
and offering a common open-source toolset to developers. By de-
coupling algorithmic performance from hardware and providing
a structured benchmark suite, it encourages broader participation
in neuromorphic research and prototyping, even for those without
direct access to specialized hardware.

Progress has also been made in increasing hardware accessibil-
ity, with designers developing approaches to implement SNNs
on non-neuromorphic hardware. New tools for FPGA-based
neuromorphic implementation are providing a configurable, open-
source spiking neural core architecture that can be deployed on
readily available hardware. [21, 47]. Platforms such as Quantisenc
and Spiker+ offer modular tools for developers to experiment with
neuromorphic systems on familiar electronics. This architecture
emphasizes flexibility, giving developers the ability to tailor SNNs
for specific applications, without requiring deep knowledge of the
underlying hardware. Other groups are taking accessibility a step
further, such as efforts out of the University of Tennessee to cre-
ate a neuromorphic starter kit, using only microcontrollers and
common board computers to assemble neuromorphic systems [54].
The project aims to develop open-source electronics and software
to enable deployment of neuromorphic designs by students and
designers on familiar platforms such as Raspberry Pi, enabling real
world prototyping and validation of SNN designs.

In addition to hardware-related advances, a suite of new software
tools, including CARLsim++ [50], SNNAX [44], and GenericSNN
[46] have emerged. These efforts aim to lower the entry barrier
for neuromorphic programming by providing user-friendly APIs,
GUIs and simulators while increasing compatibility with existing
software tools, allowing developers to simulate and experiment with
SNNs on conventional platforms and accelerating neuromorphic
adoption beyond niche applications.

In the context of supporting broader adoption and bridging the
interdisciplinary gaps identified in our research, these develop-
ments represent substantial progress. Where practitioners once
faced hurdles such as limited hardware access, the community is
now equipped with a growing array of tools that democratize access
to neuromorphic technology. These advancements in neuromor-
phic accessibility also present an exciting opportunity for the CHI
community. With the growing availability of neuromorphic tools,
frameworks, and benchmarks, HCI researchers can now more easily
engage with this evolving field. This opens up new possibilities for
creating human-centered design solutions that can support broader
adoption and practical application of NC in everyday systems.

Our study, however, focused primarily on interviews with ex-
perts to understand their motivations, workflows, and challenges.
While this provided valuable insights, we acknowledge that observ-
ing participants in their natural workflows could further enrich
our findings. Future research could adopt traditional contextual
inquiry methods, such as observing participants as they use NC
tools, identifying real-time pain points, and validating findings
through direct feedback. Embedding researchers within partici-
pants’ environments would offer a deeper understanding of tool
usage and reveal hidden challenges, providing actionable insights
for designing more effective and intuitive developer tools for NC.

7 Conclusion
Our paper identified critical challenges in neuromorphic program-
ming, such as limited learning resources and hardware availability,
fragmented community support, and difficulties in navigating com-
plex codebases for new researchers. Drawing insights from neigh-
boring fields like ML and DL, we proposed several approaches to ad-
dress these issues, including better-structured tutorials, community-
driven support platforms, and enhanced debugging and perfor-
mance profiling tools. Recent developments in NC, such as stan-
dardized benchmarking frameworks and new developer libraries,
are helping to lower barriers for entry, making it easier for both
novice and experienced developers to engage with the field. By
leveraging these advancements and creating accessible, developer-
friendly tools, we can reduce cognitive barriers, fostering broader
adoption and innovation in NC. Ultimately, the convergence of NC
and HCI holds the potential to drive the creation of more intelligent,
efficient, and scalable edge AI systems.

Acknowledgments
We sincerely thank Noah Pacik-Nelson for his valuable insights
and tremendous contributions in refining the manuscript for our
paper.

References
[1] [n. d.]. Event-Based Camera Chips Are Here, What’s Next? - IEEE Spectrum.

https://spectrum.ieee.org/event-based-camera-chips
[2] [n. d.]. Neuromorphic electronic systems | IEEE Journals & Magazine | IEEE

Xplore. https://ieeexplore.ieee.org/abstract/document/58356
[3] Martín Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen,

Craig Citro, Greg S. Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, San-
jay Ghemawat, Ian Goodfellow, Andrew Harp, Geoffrey Irving, Michael Isard,
Yangqing Jia, Rafal Jozefowicz, Lukasz Kaiser, Manjunath Kudlur, Josh Levenberg,
Dandelion Mané, Rajat Monga, Sherry Moore, Derek Murray, Chris Olah, Mike
Schuster, Jonathon Shlens, Benoit Steiner, Ilya Sutskever, Kunal Talwar, Paul
Tucker, Vincent Vanhoucke, Vijay Vasudevan, Fernanda Viégas, Oriol Vinyals,

https://spectrum.ieee.org/event-based-camera-chips
https://ieeexplore.ieee.org/abstract/document/58356

CHI ’25, April 26–May 01, 2025, Yokohama, Japan Upreti et al.

Pete Warden, Martin Wattenberg, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng.
2015. TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems.
https://www.tensorflow.org/ Software available from tensorflow.org.

[4] Gregory D. Abowd. 2020. The Internet of Materials: A Vision for Computational
Materials. IEEE Pervasive Computing 19, 2 (2020), 56–62. https://doi.org/10.1109/
MPRV.2020.2982475

[5] Mohammed Riyaz Ahmed and B.K. Sujatha. 2015. A review on methods, issues
and challenges in neuromorphic engineering. In 2015 International Conference on
Communications and Signal Processing (ICCSP). 0899–0903. https://doi.org/10.
1109/ICCSP.2015.7322626

[6] Saleema Amershi, Andrew Begel, Christian Bird, Robert DeLine, Harald Gall,
Ece Kamar, Nachiappan Nagappan, Besmira Nushi, and Thomas Zimmermann.
2019. Software engineering for machine learning: a case study. In Proceedings of
the 41st International Conference on Software Engineering: Software Engineering
in Practice (Montreal, Quebec, Canada) (ICSE-SEIP ’19). IEEE Press, 291–300.
https://doi.org/10.1109/ICSE-SEIP.2019.00042

[7] Arnon Amir, Brian Taba, David Berg, Timothy Melano, Jeffrey McKinstry,
Carmelo Di Nolfo, Tapan Nayak, Alexander Andreopoulos, Guillaume Garreau,
Marcela Mendoza, et al. 2017. A low power, fully event-based gesture recogni-
tion system. In Proceedings of the IEEE conference on computer vision and pattern
recognition. 7243–7252.

[8] ATLAS.ti. 2023. ATLAS.ti Scientific Software Development GmbH. https://atlasti.
com/ Version 9, Mac/Windows.

[9] Jeff Atwood and Joel Spolsky. 2008. StackOverflow. https://stackoverflow.com/
[10] Mark Barnell, Courtney Raymond, Lisa Loomis, Darrek Isereau, Daniel Brown,

Francesca Vidal, and Steven Smiley. 2023. Advanced Ultra Low-Power Deep
Learning Applications with Neuromorphic Computing. In 2023 IEEE High Per-
formance Extreme Computing Conference (HPEC). 1–4. https://doi.org/10.1109/
HPEC58863.2023.10363561 ISSN: 2643-1971.

[11] Trevor Bekolay, James Bergstra, Eric Hunsberger, Travis DeWolf, Terrence C
Stewart, Daniel Rasmussen, Xuan Choo, Aaron Russell Voelker, and Chris Elia-
smith. 2014. Nengo: a Python tool for building large-scale functional brain models.
Frontiers in neuroinformatics 7 (2014), 48.

[12] Gennadi Bersuker, Maribeth Mason, and Karen L Jones. 2018. Neuromorphic
computing: The potential for high-performance processing in space. Game
Changer (2018), 1–12.

[13] Andrea Bianchi, Zhi Lin Yap, Punn Lertjaturaphat, Austin Z. Henley, Kong-
pyung Justin Moon, and Yoonji Kim. [n. d.]. Inline Visualization and Manipulation
of Real-Time Hardware Log for Supporting Debugging of Embedded Programs.
8 ([n. d.]), 248:1–248:26. Issue EICS. https://doi.org/10.1145/3660250

[14] Lukas Biewald. 2020. Experiment Tracking with Weights and Biases. https:
//www.wandb.com/ Software available from wandb.com.

[15] Peter Blouw and Chris Eliasmith. 2020. Event-driven signal processing with neu-
romorphic computing systems. In ICASSP 2020-2020 IEEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 8534–8538.

[16] Shekhar Borkar. 2012. Technology challenges and opportunities for ubiquitous
computing. In 2012 IEEE Asian Solid State Circuits Conference (A-SSCC). 125–128.
https://doi.org/10.1109/IPEC.2012.6522621

[17] Peter Brusilovsky, Lauri Malmi, Roya Hosseini, Julio Guerra, Teemu Sirkiä, and
Kerttu Pollari-Malmi. 2018. An integrated practice system for learning program-
ming in Python: design and evaluation. Research and practice in technology
enhanced learning 13 (2018), 1–40.

[18] Kurt Cagle. [n. d.]. (1) Why The Future Of Computing Is Heteroge-
neous | LinkedIn. https://www.linkedin.com/pulse/why-future-computing-
heterogeneous-kurt-cagle/

[19] Carrie J. Cai and Philip J. Guo. 2019. Software Developers Learning Machine
Learning: Motivations, Hurdles, and Desires. In 2019 IEEE Symposium on Visual
Languages and Human-Centric Computing (VL/HCC). 25–34. https://doi.org/10.
1109/VLHCC.2019.8818751

[20] Kristofor D Carlson, Jayram Moorkanikara Nageswaran, Nikil Dutt, and Jeffrey L
Krichmar. 2014. An efficient automated parameter tuning framework for spiking
neural networks. Frontiers in neuroscience 8 (2014), 10.

[21] Alessio Carpegna, Alessandro Savino, and Stefano Di Carlo. 2024. Spiker+:
a framework for the generation of efficient Spiking Neural Networks FPGA
accelerators for inference at the edge. arXiv preprint arXiv:2401.01141 (2024).

[22] Andrew Chen, Andy Chow, Aaron Davidson, Arjun DCunha, Ali Ghodsi, Sue Ann
Hong, Andy Konwinski, Clemens Mewald, Siddharth Murching, Tomas Nykodym,
Paul Ogilvie, Mani Parkhe, Avesh Singh, Fen Xie, Matei Zaharia, Richard Zang,
Juntai Zheng, and Corey Zumar. 2020. Developments in MLflow: A System to
Accelerate the Machine Learning Lifecycle. In Proceedings of the Fourth Interna-
tional Workshop on Data Management for End-to-End Machine Learning (Portland,
OR, USA) (DEEM ’20). Association for Computing Machinery, New York, NY,
USA, Article 5, 4 pages. https://doi.org/10.1145/3399579.3399867

[23] Intel Corporation. 2021. Lava: An Open-Source Neuromorphic Computing Frame-
work. https://lava-nc.org/ Accessed: 2024-05-31.

[24] Shaveta Dargan, Munish Kumar, Maruthi Rohit Ayyagari, and Gulshan Kumar.
2020. A survey of deep learning and its applications: a new paradigm to machine
learning. Archives of Computational Methods in Engineering 27 (2020), 1071–1092.

[25] Mike Davies, Narayan Srinivasa, Tsung-Han Lin, Gautham Chinya, Yongqiang
Cao, Sri Harsha Choday, Georgios Dimou, Prasad Joshi, Nabil Imam, Shweta Jain,
Yuyun Liao, Chit-Kwan Lin, Andrew Lines, Ruokun Liu, Deepak Mathaikutty,
Steven McCoy, Arnab Paul, Jonathan Tse, Guruguhanathan Venkataramanan,
Yi-Hsin Weng, Andreas Wild, Yoonseok Yang, and Hong Wang. 2018. Loihi: A
Neuromorphic Manycore Processor with On-Chip Learning. IEEE Micro 38, 1
(2018), 82–99. https://doi.org/10.1109/MM.2018.112130359

[26] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. 2009. Imagenet:
A large-scale hierarchical image database. In 2009 IEEE conference on computer
vision and pattern recognition. Ieee, 248–255.

[27] J. P. Dominguez-Morales, Angel Jiménez-Fernandez, Manuel J. Domínguez-
Morales, and Gabriel Jiménez-Moreno. 2017. NAVIS: Neuromorphic Auditory
VISualizer Tool. Neurocomputing 237 (2017), 418–422.

[28] Jason K. Eshraghian, Max Ward, Emre O. Neftci, Xinxin Wang, Gregor Lenz,
Girish Dwivedi, Mohammed Bennamoun, Doo Seok Jeong, and Wei D. Lu. 2023.
Training Spiking Neural Networks Using Lessons From Deep Learning. Proc.
IEEE 111, 9 (2023), 1016–1054. https://doi.org/10.1109/JPROC.2023.3308088

[29] Wei Fang, Yanqi Chen, Jianhao Ding, Zhaofei Yu, Timothée Masquelier, Ding
Chen, Liwei Huang, Huihui Zhou, Guoqi Li, and Yonghong Tian. 2023. Spiking-
Jelly: An open-source machine learning infrastructure platform for spike-based
intelligence. Science Advances 9, 40 (2023), eadi1480. https://doi.org/10.1126/
sciadv.adi1480 arXiv:https://www.science.org/doi/pdf/10.1126/sciadv.adi1480

[30] Kai Gao, Zhixing Wang, Audris Mockus, and Minghui Zhou. 2023. On the
Variability of Software Engineering Needs for Deep Learning: Stages, Trends,
and Application Types. IEEE Transactions on Software Engineering 49, 2 (2023),
760–776. https://doi.org/10.1109/TSE.2022.3163576

[31] Marc-Oliver Gewaltig and Markus Diesmann. 2007. Nest (neural simulation tool).
Scholarpedia 2, 4 (2007), 1430.

[32] Dan FM Goodman and Romain Brette. 2008. Brian: a simulator for spiking neural
networks in python. Frontiers in neuroinformatics (2008), 5.

[33] Hananel Hazan, Daniel J Saunders, Hassaan Khan, Devdhar Patel, Darpan T
Sanghavi, Hava T Siegelmann, and Robert Kozma. 2018. Bindsnet: A machine
learning-oriented spiking neural networks library in python. Frontiers in neu-
roinformatics 12 (2018), 89.

[34] Andrew Head, Codanda Appachu, Marti A. Hearst, and Bjorn Hartmann. 2015.
Tutorons: Generating context-relevant, on-demand explanations and demon-
strations of online code. In 2015 IEEE Symposium on Visual Languages and
Human-Centric Computing (VL/HCC) (Atlanta, GA, 2015-10). IEEE, 3–12. https:
//doi.org/10.1109/VLHCC.2015.7356972

[35] Andrew Head, Jason Jiang, James Smith, Marti A. Hearst, and Björn Hartmann.
[n. d.]. Composing Flexibly-Organized Step-by-Step Tutorials from Linked Source
Code, Snippets, and Outputs. In Proceedings of the 2020 CHI Conference on Human
Factors in Computing Systems (New York, NY, USA, 2020-04-23) (CHI ’20). Associ-
ation for Computing Machinery, 1–12. https://doi.org/10.1145/3313831.3376798

[36] Austin Z. Henley, David Shepherd, and Scott D. Fleming. [n. d.]. Wandercode:
An Interaction Design for Code Recommenders to Reduce Information Overload,
Ease Exploration, and Save Screen Space. arXiv:2408.14589 [cs] http://arxiv.org/
abs/2408.14589

[37] Amber Horvath, Andrew Macvean, and Brad A. Myers. [n. d.]. Support for
Long-Form Documentation Authoring and Maintenance. IEEE Computer Society,
109–114. https://doi.org/10.1109/VL-HCC57772.2023.00020

[38] Nikola Kasabov, Nathan Matthew Scott, Enmei Tu, Stefan Marks, Neelava Sen-
gupta, Elisa Capecci, Muhaini Othman, Maryam Gholami Doborjeh, Norhanifah
Murli, Reggio Hartono, et al. 2016. Evolving spatio-temporal data machines based
on the NeuCube neuromorphic framework: Design methodology and selected
applications. Neural Networks 78 (2016), 1–14.

[39] Thomas Kluyver, Benjain Ragan-Kelley, Fernando Pérez, Brian Granger, Matthias
Bussonnier, Jonathan Frederic, Kyle Kelley, Jessica Hamrick, Jason Grout, Syl-
vain Corlay, Paul Ivanov, Damián Avila, Safia Abdalla, Carol Willing, and
Jupyter Development Team. 2016. Jupyter Notebooks—a publishing format
for reproducible computational workflows. In IOS Press. IOS Press, 87–90.
https://doi.org/10.3233/978-1-61499-649-1-87

[40] A. Krizhevsky. 2009. Learning Multiple Layers of Features from Tiny Images,
CIFAR-10 Dataset. https://www.cs.toronto.edu/~kriz/cifar.html. Accessed: Sep-
tember 7, 2024.

[41] Thomas D. LaToza, Arturo Di Lecce, Fabio Ricci, W. Ben Towne, and André
van der Hoek. 2019. Microtask Programming. IEEE Transactions on Software
Engineering 45, 11 (2019), 1106–1124. https://doi.org/10.1109/TSE.2018.2823327

[42] Yann LeCun. 1998. The MNIST database of handwritten digits. http://yann. lecun.
com/exdb/mnist/ (1998).

[43] Gregor Lenz, Kenneth Chaney, Sumit Bam Shrestha, Omar Oubari, Serge Pi-
caud, and Guido Zarrella. 2021. Tonic: event-based datasets and transforma-
tions. https://doi.org/10.5281/zenodo.5079802 Documentation available under
https://tonic.readthedocs.io.

[44] Jamie Lohoff, Jan Finkbeiner, and Emre Neftci. 2024. SNNAX–Spiking Neural
Networks in JAX. arXiv preprint arXiv:2409.02842 (2024).

[45] Sébastien Marcel and Yann Rodriguez. 2010. Torchvision the machine-vision
package of torch. In Proceedings of the 18th ACM International Conference on

https://www.tensorflow.org/
https://doi.org/10.1109/MPRV.2020.2982475
https://doi.org/10.1109/MPRV.2020.2982475
https://doi.org/10.1109/ICCSP.2015.7322626
https://doi.org/10.1109/ICCSP.2015.7322626
https://doi.org/10.1109/ICSE-SEIP.2019.00042
https://atlasti.com/
https://atlasti.com/
https://stackoverflow.com/
https://doi.org/10.1109/HPEC58863.2023.10363561
https://doi.org/10.1109/HPEC58863.2023.10363561
https://doi.org/10.1145/3660250
https://www.wandb.com/
https://www.wandb.com/
https://doi.org/10.1109/IPEC.2012.6522621
https://www.linkedin.com/pulse/why-future-computing-heterogeneous-kurt-cagle/
https://www.linkedin.com/pulse/why-future-computing-heterogeneous-kurt-cagle/
https://doi.org/10.1109/VLHCC.2019.8818751
https://doi.org/10.1109/VLHCC.2019.8818751
https://doi.org/10.1145/3399579.3399867
https://lava-nc.org/
https://doi.org/10.1109/MM.2018.112130359
https://doi.org/10.1109/JPROC.2023.3308088
https://doi.org/10.1126/sciadv.adi1480
https://doi.org/10.1126/sciadv.adi1480
https://arxiv.org/abs/https://www.science.org/doi/pdf/10.1126/sciadv.adi1480
https://doi.org/10.1109/TSE.2022.3163576
https://doi.org/10.1109/VLHCC.2015.7356972
https://doi.org/10.1109/VLHCC.2015.7356972
https://doi.org/10.1145/3313831.3376798
https://arxiv.org/abs/2408.14589 [cs]
http://arxiv.org/abs/2408.14589
http://arxiv.org/abs/2408.14589
https://doi.org/10.1109/VL-HCC57772.2023.00020
https://doi.org/10.3233/978-1-61499-649-1-87
https://www.cs.toronto.edu/~kriz/cifar.html
https://doi.org/10.1109/TSE.2018.2823327
https://doi.org/10.5281/zenodo.5079802
http://yann
https://wandb.com
https://ATLAS.ti
https://ATLAS.ti
https://tensorflow.org

Advancing HCI with Neuromorphic Technology CHI ’25, April 26–May 01, 2025, Yokohama, Japan

Multimedia (Firenze, Italy) (MM ’10). Association for Computing Machinery, New
York, NY, USA, 1485–1488. https://doi.org/10.1145/1873951.1874254

[46] Alberto Martin-Martin, Marta Verona-Almeida, Rubén Padial-Allué, Javier
Mendez, Encarnación Castillo, and Luis Parrilla. 2024. GenericSNN: a framework
for easy development of Spiking Neural Networks. IEEE Access (2024).

[47] Shadi Matinizadeh, Noah Pacik-Nelson, Ioannis Polykretis, Krupa Tishbi, Suman
Kumar, M Lakshmi Varshika, Arghavan Mohammadhassani, Abhishek Mishra,
Nagarajan Kandasamy, James Shackleford, et al. 2024. A Fully-Configurable Open-
Source Software-Defined Digital Quantized Spiking Neural Core Architecture.
arXiv preprint arXiv:2404.02248 (2024).

[48] Don Monroe. 2014. Neuromorphic computing gets ready for the (really) big time.
Commun. ACM 57, 6 (June 2014), 13–15. https://doi.org/10.1145/2601069

[49] Dylan R. Muir, Felix Bauer, and Philipp Weidel. 2019. Rockpool Documentaton.
https://doi.org/10.5281/zenodo.3773845

[50] Lars Niedermeier and Jeffrey L Krichmar. 2024. An Integrated Toolbox for
Creating Neuromorphic Edge Applications. arXiv preprint arXiv:2404.08726
(2024).

[51] University of Manchester. [n. d.]. SpiNNaker: A Neuromorphic Computing Plat-
form. http://apt.cs.manchester.ac.uk/projects/SpiNNaker/. Accessed: 2024-05-31.

[52] Otter.ai. 2023. Otter.ai AI-Powered Voice Transcription Service. https://otter.ai/
Version 2023.

[53] David Piorkowski, Scott Fleming, Christopher Scaffidi, Christopher Bogart, Mar-
garet Burnett, Bonnie John, Rachel Bellamy, and Calvin Swart. [n. d.]. Reactive
information foraging: an empirical investigation of theory-based recommender
systems for programmers. In Proceedings of the SIGCHI Conference on Human Fac-
tors in Computing Systems (New York, NY, USA, 2012-05-05) (CHI ’12). Association
for Computing Machinery, 1471–1480. https://doi.org/10.1145/2207676.2208608

[54] James S Plank, Bryson Gullett, Adam Z Foshie, Garrett S Rose, and Cather-
ine D Schuman. 2022. Disclosure of a neuromorphic starter kit. arXiv preprint
arXiv:2211.04526 (2022).

[55] Thomas E. Potok, Catherine Schuman, Steven Young, Robert Patton, Federico
Spedalieri, Jeremy Liu, Ke-Thia Yao, Garrett Rose, and Gangotree Chakma. 2018. A
Study of Complex Deep Learning Networks on High-Performance, Neuromorphic,
and Quantum Computers. J. Emerg. Technol. Comput. Syst. 14, 2, Article 19 (jul
2018), 21 pages. https://doi.org/10.1145/3178454

[56] Daniel Rasmussen. 2019. NengoDL: Combining deep learning and neuromorphic
modelling methods. Neuroinformatics 17, 4 (2019), 611–628.

[57] Eldon Schoop, Forrest Huang, and Bjoern Hartmann. [n. d.]. UMLAUT: Debug-
ging Deep Learning Programs using Program Structure and Model Behavior.
In Proceedings of the 2021 CHI Conference on Human Factors in Computing Sys-
tems (New York, NY, USA, 2021-05-07) (CHI ’21). Association for Computing
Machinery, 1–16. https://doi.org/10.1145/3411764.3445538

[58] Catherine D Schuman, Shruti R Kulkarni, Maryam Parsa, J Parker Mitchell,
Prasanna Date, and Bill Kay. 2022. Opportunities for neuromorphic computing
algorithms and applications. Nature Computational Science 2, 1 (2022), 10–19.

[59] Catherine D. Schuman, Thomas E. Potok, Robert M. Patton, J. Douglas Bird-
well, Mark E. Dean, Garrett S. Rose, and James S. Plank. 2017. A Survey
of Neuromorphic Computing and Neural Networks in Hardware. https:
//doi.org/10.48550/arXiv.1705.06963 arXiv:1705.06963 [cs].

[60] Catherine D. Schuman, Thomas E. Potok, Robert M. Patton, J. Douglas Birdwell,
Mark E. Dean, Garrett S. Rose, and James S. Plank. 2017. A Survey of Neuromor-
phic Computing and Neural Networks in Hardware. CoRR abs/1705.06963 (2017).
arXiv:1705.06963 http://arxiv.org/abs/1705.06963

[61] Shital Shah, Roland Fernandez, and Steven Drucker. [n. d.]. A system for real-
time interactive analysis of deep learning training. In Proceedings of the ACM
SIGCHI Symposium on Engineering Interactive Computing Systems (New York,
NY, USA, 2019-06-18) (EICS ’19). Association for Computing Machinery, 1–6.
https://doi.org/10.1145/3319499.3328231

[62] Felix Staudigl, Farhad Merchant, and Rainer Leupers. 2021. A survey of neuro-
morphic computing-in-memory: architectures, simulators, and security. IEEE
Design & Test 39, 2 (2021), 90–99.

[63] Marcel Stimberg, Romain Brette, and Dan FM Goodman. 2019. Brian 2, an
intuitive and efficient neural simulator. elife 8 (2019), e47314.

[64] Marcel Stimberg, Dan FM Goodman, and Thomas Nowotny. 2018. Brian2GeNN: a
system for accelerating a large variety of spiking neural networks with graphics
hardware. bioRxiv (2018), 448050.

[65] Neptune team. 2019. neptune.ai. https://neptune.ai/
[66] John Timmer. 2021. Intel launches its next-generation neuromorphic pro-

cessor—so, what’s that again? https://arstechnica.com/science/2021/09/
understanding-neuromorphic-computing-and-why-intels-excited-about-it/

[67] Maja Videnovik, Tone Vold, Linda Kiønig, Ana Madevska Bogdanova, and
Vladimir Trajkovik. 2023. Game-based learning in computer science educa-
tion: a scoping literature review. International Journal of STEM Education 10, 1
(2023), 54.

[68] Fangxin Wang, Miao Zhang, Xiangxiang Wang, Xiaoqiang Ma, and Jiangchuan
Liu. 2020. Deep Learning for Edge Computing Applications: A State-of-the-Art
Survey. IEEE Access 8 (2020), 58322–58336. https://doi.org/10.1109/ACCESS.2020.
2982411

[69] Zijie J Wang, Robert Turko, Omar Shaikh, Haekyu Park, Nilaksh Das, Fred
Hohman, Minsuk Kahng, and Duen Horng Chau. 2020. CNN 101: Interactive
visual learning for convolutional neural networks. In Extended abstracts of the
2020 CHI conference on human factors in computing systems. 1–7.

[70] Mark Weiser. 1999. The Computer for the 21st Century. SIGMOBILE Mob. Comput.
Commun. Rev. 3, 3 (jul 1999), 3–11. https://doi.org/10.1145/329124.329126

[71] Sam (Likun) Xi, Yuan Yao, Kshitij Bhardwaj, Paul Whatmough, Gu-Yeon Wei, and
David Brooks. [n. d.]. SMAUG: End-to-End Full-Stack Simulation Infrastructure
for Deep Learning Workloads. 17, 4 ([n. d.]), 39:1–39:26. https://doi.org/10.1145/
3424669

[72] Litao Yan, Elena L. Glassman, and Tianyi Zhang. 2021. Visualizing Examples
of Deep Neural Networks at Scale. In Proceedings of the 2021 CHI Conference on
Human Factors in Computing Systems (New York, NY, USA, 2021-05-07) (CHI ’21).
Association for Computing Machinery, 1–14. https://doi.org/10.1145/3411764.
3445654

[73] Litao Yan, Alyssa Hwang, Zhiyuan Wu, and Andrew Head. [n. d.]. Ivie: Light-
weight Anchored Explanations of Just-Generated Code. In Proceedings of the
CHI Conference on Human Factors in Computing Systems (Honolulu HI USA,
2024-05-11). ACM, 1–15. https://doi.org/10.1145/3613904.3642239

[74] Qian Yang, Jina Suh, Nan-Chen Chen, and Gonzalo Ramos. 2018. Grounding
Interactive Machine Learning Tool Design in How Non-Experts Actually Build
Models. In Proceedings of the 2018 Designing Interactive Systems Conference (Hong
Kong, China) (DIS ’18). Association for Computing Machinery, New York, NY,
USA, 573–584. https://doi.org/10.1145/3196709.3196729

[75] Esin Yavuz, James Turner, and Thomas Nowotny. 2016. GeNN: a code generation
framework for accelerated brain simulations. Scientific reports 6, 1 (2016), 18854.

[76] Jason Yik, Soikat Hasan Ahmed, Zergham Ahmed, Brian Anderson, Andreas G
Andreou, Chiara Bartolozzi, Arindam Basu, Douwe den Blanken, Petrut Bogdan,
Sonia Buckley, et al. 2023. Neurobench: Advancing neuromorphic computing
through collaborative, fair and representative benchmarking. (2023).

[77] Jason Yik, Korneel Van den Berghe, Douwe den Blanken, Younes Bouhadjar,
Maxime Fabre, Paul Hueber, Denis Kleyko, Noah Pacik-Nelson, Pao-Sheng Vin-
cent Sun, Guangzhi Tang, Shenqi Wang, Biyan Zhou, Soikat Hasan Ahmed,
George Vathakkattil Joseph, Benedetto Leto, Aurora Micheli, Anurag Kumar
Mishra, Gregor Lenz, Tao Sun, Zergham Ahmed, Mahmoud Akl, Brian Ander-
son, Andreas G. Andreou, Chiara Bartolozzi, Arindam Basu, Petrut Bogdan,
Sander Bohte, Sonia Buckley, Gert Cauwenberghs, Elisabetta Chicca, Federico
Corradi, Guido de Croon, Andreea Danielescu, Anurag Daram, Mike Davies,
Yigit Demirag, Jason Eshraghian, Tobias Fischer, Jeremy Forest, Vittorio Fra,
Steve Furber, P. Michael Furlong, William Gilpin, Aditya Gilra, Hector A. Gon-
zalez, Giacomo Indiveri, Siddharth Joshi, Vedant Karia, Lyes Khacef, James C.
Knight, Laura Kriener, Rajkumar Kubendran, Dhireesha Kudithipudi, Yao-Hong
Liu, Shih-Chii Liu, Haoyuan Ma, Rajit Manohar, Josep Maria Margarit-Taulé,
Christian Mayr, Konstantinos Michmizos, Dylan Muir, Emre Neftci, Thomas
Nowotny, Fabrizio Ottati, Ayca Ozcelikkale, Priyadarshini Panda, Jongkil Park,
Melika Payvand, Christian Pehle, Mihai A. Petrovici, Alessandro Pierro, Christoph
Posch, Alpha Renner, Yulia Sandamirskaya, Clemens JS Schaefer, André van
Schaik, Johannes Schemmel, Samuel Schmidgall, Catherine Schuman, Jae sun
Seo, Sadique Sheik, Sumit Bam Shrestha, Manolis Sifalakis, Amos Sironi, Matthew
Stewart, Kenneth Stewart, Terrence C. Stewart, Philipp Stratmann, Jonathan Tim-
check, Nergis Tömen, Gianvito Urgese, Marian Verhelst, Craig M. Vineyard, Bern-
hard Vogginger, Amirreza Yousefzadeh, Fatima Tuz Zohora, Charlotte Frenkel,
and Vijay Janapa Reddi. 2024. NeuroBench: A Framework for Benchmarking
Neuromorphic Computing Algorithms and Systems. arXiv:2304.04640 [cs.AI]
https://arxiv.org/abs/2304.04640

[78] Geoffrey X. Yu, Tovi Grossman, and Gennady Pekhimenko. [n. d.]. Skyline:
Interactive In-Editor Computational Performance Profiling for Deep Neural
Network Training. In Proceedings of the 33rd Annual ACM Symposium on User
Interface Software and Technology (New York, NY, USA, 2020-10-20) (UIST ’20).
Association for Computing Machinery, 126–139. https://doi.org/10.1145/3379337.
3415890

[79] Tong Yu and Hong Zhu. 2020. Hyper-parameter optimization: A review of
algorithms and applications. arXiv preprint arXiv:2003.05689 (2020).

[80] Mohamed Zahran. 2016. Heterogeneous computing: Here to stay: Hardware and
software perspectives. Queue 14, 6 (2016), 31–42.

[81] Tianyi Zhang, Cuiyun Gao, Lei Ma, Michael Lyu, and Miryung Kim. 2019. An Em-
pirical Study of Common Challenges in Developing Deep Learning Applications.
In 2019 IEEE 30th International Symposium on Software Reliability Engineering
(ISSRE). 104–115. https://doi.org/10.1109/ISSRE.2019.00020

[82] Lina Zhou, Shimei Pan, Jianwu Wang, and Athanasios V. Vasilakos. 2017. Machine
learning on big data: Opportunities and challenges. Neurocomputing 237 (2017),
350–361. https://doi.org/10.1016/j.neucom.2017.01.026

https://doi.org/10.1145/1873951.1874254
https://doi.org/10.1145/2601069
https://doi.org/10.5281/zenodo.3773845
http://apt.cs.manchester.ac.uk/projects/SpiNNaker/
https://otter.ai/
https://doi.org/10.1145/2207676.2208608
https://doi.org/10.1145/3178454
https://doi.org/10.1145/3411764.3445538
https://doi.org/10.48550/arXiv.1705.06963
https://doi.org/10.48550/arXiv.1705.06963
https://arxiv.org/abs/1705.06963
http://arxiv.org/abs/1705.06963
https://doi.org/10.1145/3319499.3328231
https://neptune.ai/
https://arstechnica.com/science/2021/09/understanding-neuromorphic-computing-and-why-intels-excited-about-it/
https://arstechnica.com/science/2021/09/understanding-neuromorphic-computing-and-why-intels-excited-about-it/
https://doi.org/10.1109/ACCESS.2020.2982411
https://doi.org/10.1109/ACCESS.2020.2982411
https://doi.org/10.1145/329124.329126
https://doi.org/10.1145/3424669
https://doi.org/10.1145/3424669
https://doi.org/10.1145/3411764.3445654
https://doi.org/10.1145/3411764.3445654
https://doi.org/10.1145/3613904.3642239
https://doi.org/10.1145/3196709.3196729
https://arxiv.org/abs/2304.04640
https://arxiv.org/abs/2304.04640
https://doi.org/10.1145/3379337.3415890
https://doi.org/10.1145/3379337.3415890
https://doi.org/10.1109/ISSRE.2019.00020
https://doi.org/10.1016/j.neucom.2017.01.026
https://neptune.ai
https://Otter.ai

CHI ’25, April 26–May 01, 2025, Yokohama, Japan Upreti et al.

A Interview Questionnaire

A.1 Demographic Questions/Background
In this first section, we will talk about you, your background and
experience.

1. What is your current role?
2. What led you to the field of neuromorphic computing? - Your

background, and what degrees do you have? What did you major
in?

3. How many years of programming experience do you have?
4. How many years of experience do you have as a developer?
5. What experience do you have in building ML applications? In

building Deep learning applications? And in building neuromorphic
computing applications?

6. Are there any other areas that you have focused on besides
AI/ML?

7. What language do you use to build applications with Neuro-
morphic programming?

8. What tools or IDEs do you use to build applications with
Neuromorphic programming?

9. In what ways, if any, are these different from those in tradi-
tional programming?

A.2 Walkthrough Building an App
For the next few questions, think about a neuromorphic computing
algorithm or application you’ve recently built.

10.What were you trying to accomplish in building it?
11. Describe your workflow in accomplishing this.
12. What were some of the challenges you faced in building this

algorithm or application?
13. What resources (e.g., websites, APIs, and documentation) did

you use to answer questions?

A.3 Specific Challenges
14. What challenges do you have working with spikes as the primary
signal?

• In comparison to conventional programming, what chal-
lenges does working with spikes bring, in the algorithms,
data structures, patterns you create or the mental models
you use?

• Since the current conventions of programming are influ-
enced by the Von-Neumann architecture, what are the chal-
lenges when you program for a system that adopts a Neuro-
morphic architecture?

15. What differences are there when running code on hardware
rather than in a simulator? What challenges may this bring?

16. Have you performed any optimization on your algorithms?
What are the barriers you faced during such optimization?

17. When you have a challenge, what external resources or people
do you use to help address these challenges?

18. How does the development time in neuromorphic computing
compare with standard implementation?

19. In terms of resource availability, how does neuromorphic
compare with respect to standard implementation?

20. Are there resources you’d like to see that don’t yet exist?

A.4 Potential Solutions
21. What types of tools or libraries would be helpful? How might
they differ from the tools or libraries that exist now? APIs?

22. If there was a simple starter application to illustrate neu-
romorphic computing, what would it demonstrate? E.g.: A ‘Hello
World’ program in Neuromorphic Computing, like: Print a number,
‘n’, that is input by the user for n number of times.

23. What new strategies or skills have you developed to help
cope with the challenges of neuromorphic computing?

	Abstract
	1 Introduction
	2 Background
	2.1 Developer Tools for Neuromorphic and Traditional Machine Learning Systems
	2.2 Studies on Challenges around Developing Neuromorphic Systems

	3 Methods
	3.1 Participants
	3.2 Interviews
	3.3 Analysis

	4 Findings
	4.1 Participants' Motivations towards Neuromorphic Computing
	4.2 Existing Workflows, Tools, and Resources for Neuromorphic Development
	4.3 Challenges and Pain Points in Neuromorphic Development
	4.4 Suggested Prerequisites and Resources for Getting Started with Neuromorphic Computing

	5 Leveraging Insights from Developer Tools in Traditional Computing to Inform Future Directions for Neuromorphic Development
	6 Discussion and Future Work
	7 Conclusion
	Acknowledgments
	References
	A Interview Questionnaire
	A.1 Demographic Questions/Background
	A.2 Walkthrough Building an App
	A.3 Specific Challenges
	A.4 Potential Solutions

