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Abstract 
Neuromorphic technology offers advantages such as low-power 
processing, low latency, adaptive learning, and noise tolerance, 
making it ideal for edge computing applications. However, devel-
opers face significant hurdles due to the nascent nature of the field, 
including limited access to hardware and software, lack of bench-
marks, and the need for deep interdisciplinary knowledge. Through 
interviews with 12 practitioners from both industry and academia, 
we conducted a thematic analysis to understand the current land-
scape of neuromorphic programming and identified key challenges, 
workflows, and potential solutions for enhancing accessibility and 
adoption. Our findings led to a set of guidelines for creating more 
accessible software development tools and platforms for those look-
ing to create neuromorphic applications. Through this work, we 
aim to bridge the gap between neuromorphic computing and the 
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HCI community, promoting the design of more intuitive and ef-
fective interfaces for neuromorphic development, and ultimately 
facilitating the creation of edge intelligent systems. 

CCS Concepts 
• Computing Methodologies → Bio Inspired Approaches; • 
Hardware → Neural systems. 
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1 Introduction 
With intelligent systems becoming increasingly sophisticated and 
highly specialized, heterogeneous computing, especially at the edge, 
is becoming the norm [18, 80]. An emerging component of the 
heterogeneous computing landscape is neuromorphic computing 
(NC) [2, 48, 59]. Neuromorphic technology includes hardware and 
software systems that replicate the structure and functionality of 
biological neural networks and bring distinct advantages and capa-
bilities like extremely low-power neural processing, low latency, 
adaptive learning, and noise tolerance. As we progress towards a 
world where computational materials and distributed IoT sensor 
networks will penetrate every aspect of human life [4], neuromor-
phic technology is poised to play a crucial role in overcoming key 
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constraints around power, latency, sustainability, data security, and 
computational complexity. With the potential to create systems that 
collect, process, and analyze complex data locally in real time with 
high power efficiency, and the versatility to deploy neuromorphic 
processing in both silicon and non-silicon materials using digital 
or analog approaches, neuromorphic technology will be key to 
realizing Weiser’s vision of ubiquitous computing [70]. NC differs 
fundamentally from conventional Von Neumann architectures in 
a number of ways, as shown in Figure 1. Von Neumann architec-
tures use binary encoding (1’s and 0’s) to process information, and 
computation is done serially in discrete, clock-controlled time steps. 
Processing and memory are physically separate, requiring constant 
data transfer between them. Conversely, neuromorphic technolo-
gies – like neuromorphic processors [66], mimic the architecture of 
biological processing by encoding information through the number 
or timing of spikes and by processing the information through 
asynchronous networks of neurons and synapses. Memory and 
processing are co-located, eliminating transfer bottlenecks. This 
distinctive architecture enables high parallelism and event-driven 
processing – where only a small portion of the system is active at 
any given time – resulting in low latency and power consumption, 
which are both ideal for edge devices. 

Neuromorphic technology’s inherent neural network-style com-
putation makes it a natural platform for many of today’s artifi-
cial intelligence (AI) tasks [58]. Sharing overlapping applications 
and methods with machine learning (ML) and deep learning (DL), 
[55, 56], NC attracts developers traditionally focused on artificial 
neural networks (ANN). Originating from diverse backgrounds, 
developers enter the NC field facing a yet emerging, but already 
complex and ‘full-stack’ technological domain that requires deep 
knowledge of neuroscience, computer science, and hardware de-
sign to tackle its unique hardware and software challenges. This 
knowledge is crucial to also allow developers to leverage existing 
commercial neuromorphic technology such as event-driven cam-
eras [1] for highly specialized applications. However, upon entering 
the field, developers face a variety of domain-related complexities 
such as limited access to existing hardware and software, scarcity of 
benchmarks and metrics, minimal abstraction, and having to catch 
up to performance benchmarks that have been rigorously set and 
continuously one-upped by traditional AI tools, which prioritize 
accuracy over other key metrics such as power consumption or 
adaptability [58]. Consequently, learning how to develop and deploy 
applications may seem insurmountable for those not already deeply 
embedded in the field. Owing to the significant overlap of NC with 
ML, efforts have been made to overcome these challenges, by draw-
ing inspiration from successful developer tools used in traditional 
AI and ML applications [28, 29], or outlining opportunities for the 
neuromorphic community to foster algorithmic and application 
development [58]. While being only the early steps in opening neu-
romorphic development to the masses, these efforts highlight the 
importance of seeking inspiration and lessons from processes, tools, 
and experiences in traditional neural network development to form 
a more nuanced perspective on how to solve existing challenges in 
neuromorphic development and identify where the technology can 
be most suitably applied. 

Aiming to further structure these efforts and bridge the gap be-
tween NC and HCI, we interviewed 12 expert practitioners with 

varying years of experience in neuromorphic development to un-
derstand the motivations, workflows, challenges, and potential 
solutions towards improving the accessibility and broader adop-
tion of this technology. The goal of our study is to explore how 
HCI researchers can contribute to making NC more usable and 
approachable, and embed it within HCI contexts. HCI researchers, 
with their expertise in usability, developer experience, and tool 
design, are uniquely positioned to address the challenges around 
the adoption of NC. Therefore, HCI researchers and practitioners 
focused on designing developer tools are the key audience for this 
work. 

Well designed developer tools are crucial for translating NC’s po-
tential into practical applications within HCI, especially for emerg-
ing technologies such as intelligent wearables, e-textiles, IoT sys-
tems, distributed sensor networks, autonomous robots, and many 
more. These domains demand computing solutions that prioritize 
low-power, low-latency, and personalized functionality, which NC 
can uniquely provide. Current ubiquitous computing systems in 
HCI, such as IoT devices and distributed sensor networks, often 
rely on conventional computing architectures that are inherently 
power-intensive, limiting their scalability and efficiency in real-
time, energy-constrained environments. This high energy consump-
tion poses significant challenges to the deployment of sustainable, 
low-power ubiquitous computing solutions [16]. By addressing the 
limitations of current systems, NC has the potential to redefine 
the capabilities of ubiquitous computing, making it a critical area 
of exploration for HCI researchers aiming to develop sustainable 
and efficient computing solutions [10]. More broadly, NC aligns 
with three core themes in HCI: advancing ubiquitous computing 
through energy-efficient, scalable systems; driving sustainability 
with low-power solutions that integrate with energy-harvesting 
technologies; and enabling novel applications, such as adaptive and 
hyper-personalized wearables, distributed environmental sensors, 
and intelligent systems. 

Through a thematic analysis of our interview data, we highlight 
experts’ sentiments around NC, commonly utilized workflows, and 
existing challenges and gaps in neuromorphic development. We 
leverage these insights to develop a set of guidelines for creating 
user-friendly tools and platforms for neuromorphic development 
and highlight important advancements in neuromorphic tool de-
velopment and learnings that could be borrowed from traditional 
developer tools to inform future directions for neuromorphic devel-
opment. By addressing the challenges and identifying opportunities 
for HCI researchers focused on developer tooling, we provide ac-
tionable guidelines to lower barriers to NC adoption, making it 
a valuable resource for HCI researchers invested in the future of 
computing. 

In summary, our primary contributions are: 

• An in-depth exploration of the motivations, workflows, tools 
and resources currently used, and pain points associated with 
neuromorphic application development, along with helpful 
prerequisites for getting started with NC, and key insights 
around areas of improvement in neuromorphic development 
gathered through interviews with 12 experts in the field 
(Section 4). 
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Figure 1: Comparison of the computational principles governing Von Neumann and neuromorphic architectures 

• Opportunities and actionable guidelines for creating user-
friendly and intuitive tools and platforms for neuromorphic 
development, specifically for HCI researchers focused on 
developer tools. These recommendations leverage insights 
and best practices from adjacent computing domains, such as 
machine learning and traditional software development, to 
address the unique challenges of neuromorphic computing 
(Section 5). 

2 Background 

2.1 Developer Tools for Neuromorphic and 
Traditional Machine Learning Systems 

Current tooling and support software for neuromorphic systems 
can be categorized into five main types [60]: 

• Custom hardware synthesis tools: Such tools convert 
a higher-level network description into a low-level neural 
circuitry representation (e.g., SpiNNaker [51]). 

• Mapping and Programming Tools: Mapping tools map 
an existing neural network model onto a neuromorphic ar-
chitecture, while programming tools allow users to directly 
program particular neuromorphic architectures (e.g., Lava 
[23]). 

• Simulators: Neuromorphic simulators are essential develop-
ment tools to emulate neuromorphic hardware performance 
in a non-neuromorphic system [62]. Simulations are per-
formed at various scales ranging from subcellular, to single 
neurons, and from small custom networks to multilayer ar-
chitectures. Simulations also examine the performance at a 
range of levels: from the software to the single chip and the 
whole system. They are used for verifying the performance of 
neuromorphic hardware, developing and training algorithms 
[60], and building a user base for not-readily-available hard-
ware. Simulation tools like Nest [31], Brian [32], and Nengo 
[11] have been previously studied for general usability and 
effectiveness. 

• Libraries and Frameworks: A wide range of software sys-
tems have been developed to streamline and standardize the 
develompent of neuromorphic applications through reusable 
and optimized code bases. These range from platform-agnostic 

tools such as SNNtorch [28] and SpikingJelly [29] that adapt 
the structure of well-established ML frameworks like Py-
torch to neuromoprhic needs, to platform-specific tools such 
as Lava [23] and Rockpool [49] that aim for deployment on 
specific hardware. 

• Visualization tools: These tools offer a more intuitive in-
sight of the inner workings of neuromorphic systems[27] 
[38] (e.g., Nest [31], BindsNET [33], Brian [32], Brian2GeNN 
[64], Brian 2 [63] and Nengo [11]). 

However, there is a significant challenge with this arsenal of 
tools: although some systems like Nengo [11] and SNNtorch [28] 
aim to cross the boundaries of specific platforms, they are usu-
ally not end-to-end from software design to hardware deployment. 
When they are, they tend to be hardware-specific and limited to the 
manufacturers that developed them [15, 49], making them less ac-
cessible and applicable outside specific use cases and communities 
[58]. 

The development environments, tools, frameworks, and libraries 
used in neuromorphic programming draw some inspiration from 
those used in conventional ML, and especially deep learning (DL). 
Due to the underlying neural network architectures of both DL and 
NC, these two approaches share many methodological similarities 
in terms of neuron modeling [56], debugging, parameter optimiza-
tion, and resource availability [20, 79]. Hyperparameter selection 
and optimization is a primary challenge in developing both neu-
romorphic systems [20] and traditional ML [82], since parameters 
such as learning rates, regularization coefficients, and initialization 
strategies significantly influence the learning dynamics and system 
performance. Additionally, NC and DL both involve building and 
training neural networks using various datasets, whose quality 
heavily affects the effectiveness and correctness of the models [81]. 

Several studies have investigated these challenges and their im-
pact on developer workflows. Developers lack key knowledge, pre-
venting them from making progress, including practical knowledge 
of the APIs through which developers interact with frameworks 
and libraries [19]. More fundamentally, developers lack knowledge 
of the conceptual underpinnings of the technology, including their 
key ideas, and the ability to use these concepts to build the right con-
ceptual models to effectively write and debug code. ANN systems 
also require new skills in discovering, managing, and versioning 
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Aspect of Comparison ANN Programming Neuromorphic Programming 
Frameworks and Libraries TensorFlow, PyTorch, Keras, scikit-learn NEST [31], Brian2 [32], GeNN [75] 
Deployment Platforms Deployable on various platforms (cloud, 

edge, mobile) [68] 
Specialized neuromorphic hardware platforms [25] 

Hardware Integration Hardware-agnostic, CPU, GPU deploy-
ment 

Integration with Neuromorphic Hardware, Event-driven 
processors [25] 

Real-time Processing Primarily designed for batch processing Emphasis on real-time processing and low-latency re-
sponses [58] 

Community Support Large and active community support for 
mainstream frameworks 

Smaller, more specialized community, specific to neuro-
morphic programming [60] 

Table 1: Comparison of key aspects between artificial neural network (ANN) programming and neuromorphic programming, 
including frameworks, deployment platforms, hardware integration, processing capabilities, and community support. 

data; require different techniques for customizing and reusing mod-
els; and are harder to work with as models behave in erratic and 
unpredictable ways [6]. Most developer questions focus on data 
preparation and model setup necessary to correctly create a ML 
pipeline [30], with particular challenges around API misuse, hy-
perparameter selection, GPU computation, and limited support 
for debugging and profiling [81]. As a result of this complexity 
and missing knowledge, many non expert developers simply reuse 
existing models, with less knowledge of their inner workings [74]. 

Despite the similarities with ANNs, NC faces its own set of 
unique challenges due to the fundamental difference between neu-
romorphic and ML systems in terms of spikes vs. bits, which is a new 
concept for most developers [5]. This further amplifies the challenge 
of a lack of conceptual understanding, as even the most basic con-
cepts about how programs execute suddenly requires knowledge 
developers lack. Moreover, traditional computing possesses a com-
prehensive set of development tools, and a large number of users 
trained in utilizing such tools [24]. In contrast, NC has the added 
challenge of having to vie for attention and resources from the re-
searchers and users of conventional architectures [58].Without the 
scale and maturity of ANN frameworks and libraries, NC developers 
lack sufficient pre-built models to fall back on, requiring developers 
to instead carefully craft solutions to routine problems for which 
ANN developers would already have examples. A summary of the 
similarities and differences between ANN and Neuromorphic Pro-
gramming is provided in Table 1. 

The advantages of NC, such as energy efficiency, low latency and 
robustness, constitute sufficient incentives for developers to work 
with a different and unconventional architecture [12], but dedicated 
efforts are needed to understand how neuromorphic development 
can be made more broadly accessible to software engineers and 
how barriers to entry can be reduced. More established specialized 
programming domains have benefited greatly from specialized tool 
support, substantially simplifying programming tasks. For exam-
ple, the live programming and reproducibility of Computational 
Notebooks make data analysis far easier [39]. Building software 
with transient contributors through self-contained microtasks is 
made possible through programming tools which carefully mini-
mize work inter-dependencies [41]. By shedding light on the key 
sources of complexity in understanding and working with NC, 
we aim to inspire future HCI researchers to similarly simplify NC 
programming through new programming interactions. 

2.2 Studies on Challenges around Developing 
Neuromorphic Systems 

Past research shows that the lack of readily accessible and usable 
software, simulators, and hardware systems is a key issue that in-
hibits software development in the neuromorphic domain [58]. The 
lack of resources results in longer training times when compared 
to non-spiking techniques, highly hardware-specific software, and 
simulators that do not effectively scale and which are unable to keep 
up with the use of large data sets. The authors propose that increas-
ing the accessibility of hardware and improving the effectiveness 
of simulators will help developers more quickly evaluate their algo-
rithms, resulting in faster neuromorphic algorithm development. 
Further, a previous survey around NC [60] shows that, in compari-
son to the volume of hardware implementations of neuromorphic 
systems, there has been little work focused on the development of 
supporting software. The study asserts that more work must be 
done on supporting software alongside hardware improvements 
to benefit the neuromorphic community. Our study explores the 
challenges faced by neuromorphic developers, analyzing expert 
insights to propose practical solutions, design guidelines for devel-
opment tools, and improvements in developer support, drawing 
parallels to advancements in deep learning and aiming to create a 
clearer learning path for newcomers to NC. 

3 Methods 
3.1 Participants 
We recruited 12 participants from the niche scientific neuromor-
phic community in the spring of 2022 through targeted recruitment 
efforts and snowball sampling. We primarily focused on researchers 
with a track record of strong technical work or publications in the 
space, as well as relevant industry experience. We also included 
junior researchers with over a year of experience in neuromorphic 
algorithm or application development. 5 of our participants worked 
in research labs or the IT industry, while the remainder worked in 
a university setting. 1 participant was an undergraduate student, 
3 were PhD students, 2 were post-doctoral researchers, and 1 was 
faculty. Participants varied in programming experience from 5 to 
39 years, with a median of 10 years. They had a median of 7 years 
of experience with neuromorphic development, ranging from 1 
to 11 years. They came from diverse academic and professional 
backgrounds, including electrical and computer engineering, civil 
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engineering, computational neuroscience, and cognitive science, 
and were based in regions across North America, Europe, and Aus-
tralia. See Table 2 for a summary of the participant demographics. 

While our participants varied in their years of experience, they 
were all recognized experts in the field. The participants in our 
study have either developed or supported existing NC tools, or 
were collaborators and students of prominent members of the NC 
community. Collectively, they represent a group with firsthand 
knowledge of the current state of NC development, tooling, and 
challenges. 

3.2 Interviews 
To guide our exploration of the challenges and opportunities in 
neuromorphic development, we framed our interview questions 
around the following research questions: 

(1) What motivates developers to adopt neuromorphic comput-
ing, and how do these motivations shape their workflows 
and priorities? 

(2) What are the key workflows, tools, and resources currently 
used for neuromorphic development, and what challenges 
do developers encounter when employing them? 

(3) What are the primary challenges and pain points faced by 
neuromorphic developers, and how can these inform the 
design of more effective tools and systems? 

(4) What skills, resources, and strategies are essential for new-
comers to neuromorphic computing, and how can these be 
better supported through tool and system design? 

We began by obtaining informed consent from participants be-
fore conducting the semi-structured interviews. After gathering 
information about their current role, experience, and preferences 
for development platforms and languages, participants were asked 
about how and why they built any recent neuromorphic algorithms 
or applications. Next, they were asked to talk through and explain 
their development workflow. Participants were then asked to iden-
tify the challenges they have faced with neuromorphic program-
ming, particularly those that differed from traditional programming. 
Participants were prompted to reflect on challenges related to de-
velopment time, optimization, resource availability, adapting to 
neuromorphic architectures, and any other challenges they had 
experienced. Finally, participants were asked to recommend any 
solutions to these challenges, and how learning can be made easier 
for beginners. For a full list of planned interview questions, see 
Appendix A. Participants were not compensated for their time, as 
participation was voluntary. 

Interviews were conducted in April of 2022 through Zoom and 
the participants were interviewed for approximately 37 to 90 min-
utes, with a median interview length of 53 minutes. We transcribed 
and anonymized interviews using Otter.ai [52] and manually cor-
rected any errors in the transcription before proceeding with quali-
tative coding. Our goal was to keep the interview questions fairly 
broad to allow participants to share their unique experiences in 
neuromorphic computing and allow deeper exploration into spe-
cific challenges that interested the participants. Due to the nature of 
semi-structured interviews, tangential responses were entertained 
and discussions were eventually guided back with follow-up ques-
tions to focus on the challenges in and recommendations for NC 

Development. This flexible approach contributed to the variation 
in the length of study sessions. 

NC is a highly specialized field within neuroscience and com-
puter science and engineering, with the majority of research activity 
concentrated in major universities and research labs globally. Ex-
perts estimate the number of active researchers in NC worldwide 
to be in the low thousands. As such, the pool of individuals with 
deep expertise in this area is small, and shared experiences and 
challenges are common among practitioners. Consequently, our in-
terviews did not reveal significant variability in perspectives, which 
we attribute to the niche nature of the field rather than the study 
design. 

This shared understanding among participants strengthens the 
reliability of the findings, as it highlights the consistency of the 
challenges and opportunities faced by the community. The par-
ticipants’ collective expertise provides valuable insights into the 
motivations, workflows, and challenges associated with NC devel-
opment, enabling us to identify specific areas for improvement in 
NC tooling and practices. 

3.3 Analysis 
After anonymizing the transcripts, we imported them into Atlas.ti 
[8], a tool for qualitative coding. The data from pilot interviews 
was used to generate initial inductive codes, such as workflow 
bottlenecks, challenges in simulation, tooling gaps, and common 
challenges in transitioning to neuromorphic systems, which helped 
refine the semi-structured interview design. Three of the authors 
then developed a coding schema containing deductive codes gen-
erated from the original set of planned interview questions. The 
coding schema was reviewed and finalized for coding the remaining 
interviews through consensus among the coders. Any disagree-
ments in code assignment, grouping, or phrasing were resolved 
through discussion. During the coding process, the schema was 
iteratively refined—codes were condensed, clarified, clustered, and 
rephrased. New codes were identified inductively through an inter-
pretive analysis of the transcript data. Whenever a new code was 
agreed upon, the coders revisited prior transcripts to determine its 
presence, achieved consensus, and updated the coding as necessary. 
This iterative process resulted in a total of 39 codes and 7 code 
groups, which were further organized into 5 overarching themes, 
as described in the next section. For more details on the codes, see 
the Supplementary Material. 

4 Findings 
In this section, we present insights derived from participant re-
sponses, organized to align with our four research questions. Each 
subsection highlights findings directly based on the participants’ in-
puts. To make these insights actionable for HCI researchers and tool 
designers, we follow each section with Key Insights that summarize 
why the findings are relevant for HCI researchers and enumerate 
areas for improvement and possible strategies for designing more 
user-friendly neuromorphic development tools. Figure 2 is the di-
agrammatic representation of the findings and its synthesis from 
the qualitative analysis of interview data. 

https://Atlas.ti
https://Otter.ai
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Participant 
ID 

Current Role Qualification Location 
Programming 
Experience 

Neuromorphic 
Experience 

1 Post Doctoral Researcher PhD Robotics Canada 17 3 
2 Senior Neuromorphic Engineer Undergrad Nanotechnology Engineering Canada 7 7 
3 PhD Student Masters Device Physics US 5 2 
4 PhD Student Masters Embedded Systems US 10 7 
5 Post Doctoral Researcher PhD Electronic and Computer Engineering Australia 6 3 
6 Lab Researcher PhD Cognitive Science Canada 24 11 
7 PhD Student Masters in Neural Systems and Computation Germany 7 6 
8 Undergrad Research Assistant Undergrad Computer Engineering US 6 1 
9 Professor PhD Neuromorphic Computing US 10 8 
10 Lab Researcher PhD Cognitive Science US 20 9 
11 Lab Scientist PhD Spiking Neural Networks US 14 10 
12 Lab Leader PhD Computer Engineering US 39 9 

Mean 13.75 6.33 
Median 10 7 

Max 39 11 

Table 2: Background, location, and years of experience of the interview participants 

4.1 Participants’ Motivations towards 
Neuromorphic Computing 

One of the primary motivators driving participants’ interest in 
NC was the observable incompatibility of conventional comput-
ing models with real-time, on-board learning in robots due to the 
substantial power and computing requirements [P1]. Three par-
ticipants [P1, P6, P12] emphasized the computational demand and 
resulting unattainable energy needs when using conventional AI 
in robotics and neuronal simulations. 

The standard approach of integrating power-hungry processors 
on board or relying on tethered computational resources is also 
deemed untenable, as P1 analogized it with embedding a large 
power-hungry data center on a mobile robot, explaining its practi-
cal infeasibility. They stated that particularly in applications such as 
space and underwater robotics, which necessitate higher levels of 
autonomy and minimal power consumption, NC is better poised to 
meet the requirements of such systems. P1 also reported that transi-
tioning from the Von Neumann architecture to a neuromorphic one 
wasn’t as significant a shift for them and that the asynchronous 
nature of NC was seen as compatible with robotics’ event-driven 
nature. They believed that the energy-saving prospects were sub-
stantial with NC. 

While many participants focused on the energy efficiency of 
NC systems, P3 considered NC as the route to recreating the un-
paralleled speed and accuracy of the human brain through 
technology. They emphasized the promise embedded in SNNs 
to mirror neurons more truthfully than other neural network ap-
proaches:"...replicating my brain on a chip or something like that, 
which is as fast as the brain, especially via neuromorphic...there is 
a possibility of being it closer to the normal biology, the biological 
principles". 

Neuromorphic accelerators, which can alleviate power constraints 
around running SNNs on traditional CPUs and other conventional 
hardware and allow for enhanced research capabilities in under-
standing neural networks and behaviors, were also of significant 
interest to our participants [P10, P12]. To take full advantage of the 
benefits NC has to offer, our participants [P4, P5, P9] collectively 

emphasized focusing on a "full-stack" or a highly interdisciplinary 
and collaborative approach to NC: "I think in the end neuromorphic 
computing, it’s the fullest stack computing... you’ll see neuromor-
phic researchers that are mainly concerned with devices. Or you have 
physicists working on neuromorphic devices or materials. You have, 
for example, architecture, design, and algorithms. The ideal scenario 
is all of these will be together in one resource". (P9). This entails 
not only focusing on the software side but also considering the 
hardware aspects and bringing them together into one cohesive 
platform. A co-design mindset, where both hardware and software 
are developed in tandem, was deemed crucial to realize the benefits 
of NC. 

Key Insights for HCI researchers: We believe that these per-
spectives from the participants converge towards a collective un-
derstanding that NC is not simply an exploration of an alternate 
computing paradigm but is fundamentally an iterative progression 
towards a model that embraces the efficiency and capability of the 
human brain. They point to the fact that NC affords unique fea-
tures to systems like adaptability and fault tolerance, which present 
unique opportunities for HCI researchers to innovate in areas like 
user experience design and adaptive interfaces. 

4.2 Existing Workflows, Tools, and Resources 
for Neuromorphic Development 

When asked about the steps taken by developers to build neuro-
morphic applications, our participants shed light on the integrated 
workflow they use for neuromorphic system design, along with the 
tools and resources that they employ to create their applications. 

4.2.1 Workflow. Our participants reported a workflow that was 
congruous to brainstorming [P1, P3, P5, P6, P8, P9, P10, P12], sand-
boxing/experimentation & debugging/validation [P1, P3, P5, P7, 
P8, P10, P11], followed by training an SNN [P2, P5, P8, P11, P12], 
optimizing the SNN [P1, P2, P5, P6, P7, P8, P11, P12], and finally 
moving the network from a simulator to neuromorphic hardware 
[P6, P12]. 
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Figure 2: Mapping the emergence of themes from qualitative analysis codes. This diagram illustrates how codes derived from 
participant interviews were grouped into themes, showing their relationships to the key findings and discussions of the study. 

Brainstorming begins with a clear problem definition [P8], 
and involves the exploration of the current architectural design 
and reusable code [P1, P2], creating solution designs with high-
level blocks [P3], exploration and selection of tools and hardware 
[P8, P12], accounting for hardware and software constraints and 
compatibility [P6, P12], and creating flowcharts from unstructured 
ideas to create the solution structure [P5]. 

Sandboxing and Experimentation involves iterative program-
ming, where participants emphasize the significance of reusing 
code from standard implementations [P1, P2], utilizing existing 
techniques such as scikit-learn and in-house code for baseline algo-
rithms [P2], and incorporating tools like optimizers from SciPy [P2] 
depending on the development domain. Participants reported the us-
age of notebooks to create a sandbox for experimentation [P5, P10], 
which often involves probes and data collection to troubleshoot 
and debug spiking neural systems [P4]. The habit of building more 
modular networks is suggested for easier debugging [P4], but the 
participant acknowledges it as a practice that is still underutilized. 
Finally, validation can include either optimization of a trained SNN 
or optimization of a traditional ANN or other network, followed 
by conversion to a spiking version with aims to match the original 
model closely [P5]. 

The SNN training phase involves transitioning from a non-
neuromorphic implementation to a spiking version, with complexi-
ties increasing as the model size grows [P2]. The participant also 
estimated that training SNNs takes up a significant portion (50-
70%) of development time for projects. Troubleshooting involves 
adjusting parameters like firing thresholds. Citing the absence of 

widely accepted default workflows or a Stack Exchange-like plat-
form, and noting the large knowledge gap between experts and 
novices, participants highlighted the need for clear communication 
and widely adopted channels for effective problem resolution be-
tween these groups [P6]. Training SNNs encompasses challenges 
associated with the lack of fundamental theory and the uncertainty 
of successful outcomes (i.e., whether data is learnable) and often 
involves an iterative process, making adjustments based on the 
results [P6, P7, P11]. 

Optimization strategies focus on making networks more effi-
cient [P8]. Techniques such as making the networks more mod-
ular, selecting appropriate algorithms, and fine-tuning network 
size through hyperparameter optimization are employed [P8, P9]. 
Optimizing power consumption involves careful consideration of 
neuron placement and network abstraction [P10, P11]. 

Finally, the simulator to hardware transition is character-
ized by mapping algorithms from CPUs to neuromorphic hardware. 
Differential equations are used as a unique technique to express 
algorithms, facilitating their implementation on diverse neuromor-
phic hardware [P6]. Simulation on CPUs first is preferred, primarily 
because most tools are on traditional CPUs, and efforts are made 
to ensure seamless transitions to neuromorphic hardware with 
minimal code changes [P6, P12]. 

To aid the conversion of non-neuromorphic code to neu-
romorphic SNN-based versions in cases where the SNN is built 
through conversion from an ANN rather than from scratch, P3 and 
P4 reported a need for tools that could allow known traditional 
neural network models to be run directly on neuromorphic hard-
ware. Despite the common expert sentiment about the necessary 
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demarcation in the scope and value proposition of neuromorphic 
and traditional computing, P3 and P4 reported that such conversion 
tools can help as a starting point for beginners with a good under-
standing of traditional ANNs. P3 also stated that it would be good 
to have"some other tool-chains or frameworks... that are completely 
open so that and you give an ANN, and then you can completely get 
the SNN processed and get the output out. That complete framework 
would be extremely advantageous for users starting out". 

4.2.2 Tools and Resources. Participants reported on their usage of 
datasets, and various tools for neuromorphic development. [P5, P7, 
P11, P12] mentioned using datasets like the DVS gesture dataset 
[7], MNIST [42], and the Oxford Radcliffe dataset. They hinted at 
generic speech, video, and image datasets being used to learn Deep 
Learning basics, and how traditional Deep Learning techniques are 
already good at solving problems therein. In addition to datasets, 
3 tabulates the tools used for programming in NC as reported by 
each of the participants. 

Key Insights: For HCI researchers, understanding the detailed 
workflow and tools used in neuromorphic development is crucial 
for identifying key stages where user interfaces and experiences 
can be optimized to enhance productivity and reduce cognitive 
load. For example, knowing that developers prioritize modularity 
during the debugging phase can lead to the design of interfaces that 
better support component-based development and visualization 
tools that make complex networks more comprehensible. Further-
more, insight into the iterative nature of training SNNs helps HCI 
researchers create more effective collaborative tools that facilitate 
communication and knowledge-sharing between novices and ex-
perts to tackle the steep learning curve associated with SNNs. 

4.3 Challenges and Pain Points in 
Neuromorphic Development 

To better support HCI researchers in identifying areas for interven-
tion, we asked participants about specific challenges they encounter 
in developing neuromorphic systems. In this section, we discuss our 
findings related to the challenges of neuromorphic programming. 

4.3.1 Complexity of SNNs. A majority of the participants [P1-P5, 
P10-12] reported that the complexity of SNNs is something that 
most programmers struggle with. These challenges arise due to the 
usage of spikes as the primary signal, and the introduction of the 
time dimension. 

Traditional ANNs, when implemented on a Von Neumann archi-
tecture, operate in discrete time cycles that are synchronized with 
a clock signal. Therefore, computations in these networks occur at 
fixed time intervals, typically driven by the clock speed of the CPU, 
when neurons both process their inputs and update their analog 
states. Instead, SNNs are asynchronous, incorporating time as an 
explicit dimension, allowing them to model and simulate the behav-
ior of biological neurons more accurately. Drawing from biology, 
neurons in SNNs integrate their inputs continuously over time into 
their membrane voltage, and communicate using asynchronous 
spikes. 

A spike refers to the all-or-none firing of a neuronal action po-
tential whenever the membrane voltage exceeds a threshold. The 
asynchronous spike emission from each neuron complicates the 

relationship between input and output spikes and necessitates the 
inclusion of a temporal dimension and processing delays in a single 
neuron. The effect becomes aggravated in cascaded architectures, 
where the delays are propagated through the neuronal layers. Learn-
ing to work with spikes as the primary neuronal signal challenges 
the developers learning to program in the neuromorphic domain, 
with half of the participants [P1-P5, P11] reporting that this concept 
makes training or simulating SNNs difficult, as it is not directly 
translatable from ANNs. P2 states "I guess the main thing is that it 
introduces delay, you have to learn to account for in some way... ". 

The sequence of multiple neuronal firing timings constitutes 
a spike train. Information from sensors needs to first be encoded 
into spike trains, which are then processed through the SNN which 
outputs spikes that are decoded to generate comprehensible in-
formation. Many participants [P2, P5, P8] reported difficulty in 
encoding data and interfacing the neural network with the neural 
processor in spikes to ensure they convey information accurately. 
They reported that the encoding process is an integral aspect of 
working with SNNs and the various available encoding techniques 
result in varying levels of accuracy and efficiency. Therefore, choos-
ing the correct technique is both critical and challenging. P10 states 
"...This is probably the first piece of advice that I give to people when 
they’re struggling with projects is that they should look more carefully 
at how they’re encoding information because it’s very common to see 
others struggling with spike representations that are useless. And that 
leads to poor, poor performance and endless retraining". P2 also states 
that "...It also starts adding in just more knobs to tune so like, things 
like firing rate, how quickly should they, like, what ranges should 
they spike in?". 

The additional temporal dimension and the required encoding 
of continuous information into discrete spike trains increases 
the number of hyperparameters in SNNs. Hyperparameters 
in a neural network are variables like learning rate, batch size, 
etc., and their tuning is an essential process in achieving optimal 
performance. Four participants [P5, P7, P10, P12] raised concerns 
over the abundance of the hyperparameters that need to be tuned 
with SNNs. As P5 states "...When I’m doing hyperparameter sweeps, I 
spend a lot more time on an SNN over a conventional Neural Network, 
because yep, more things to play with... thresholds, ...various types of 
batch normalization, ...a lot of degrees of freedom that I’m not sure will 
make my application better. So yeah, maybe I’ll run 200 trials for a DL 
algorithm and be satisfied but with an SNN, that might end up being 
600 trials... I haven’t really done a direct one-to-one benchmark, but 
it could easily be five times the time on like a miscellaneous dataset". 

Key Insights: One of the ways in which the challenge of com-
plexities within NC systems may be alleviated is through designing 
modular and reconfigurable systems. Three participants [P7, P9, 
P11] reported that being able to abstract neural network modules 
as much as possible and implement them easily without having to 
understand them from inside out would be better, especially for 
exploration or demonstration purposes. NC can benefit from draw-
ing inspiration from current ML frameworks like TensorFlow or 
PyTorch that support such modular networks which can be used by 
beginners to explore their effectiveness. P1 states: "The modularity 
in the system, making that easier... making it easier to run modules in-
dependently would be good. But that’s not something that’s precluded 
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Figure 3: A standard workflow for neuromorphic computing applications. Starting from event-based vision and audio datasets, 
developers utilize custom tools and libraries to program their SNN-based algorithms. Simulators are used to emulate the 
performance of the developed algorithms before their deployment on neuromorphic hardware. 

by Nengo, or Lava. It’s more of a programming practice that I’m 
still developing with these models... I’d like to see a tool where... you 
can latch on to the model and get that (model functionality) without 
specifying it explicitly in the code itself... I think that would be the 
that would be the number one on my wish list if I could get that". 

Considering the difficulty in tuning SNNs, HCI could contribute 
to developing more interactive, feedback-oriented tools that assist 
developers in understanding the effects of hyperparameter tuning 
in real-time. 

Finally, being able to clarify the value proposition for NC 
would significantly simplify the decision-making process for new 
developers who’re willing to explore NC for their applications. Four 
participants [P5, P6, P9, P11] reported that it is important to clearly 
establish the list of domains in which NC shows particular promise 
for greater performance and applicability compared to traditional 
computing. P6 reported that having a graphic that highlights the 
benefits of neuromorphic for some specific uses, if made ubiquitous 
in the neuromorphic community, would make it clear for early 
developers in the field. P11 reported that there should be a clear 
explanation of why neuromorphic excels on such domains and 
shows promise for greater performance than current technology. 

Without this distinction, a lot of early development effort in learning 
neuromorphic can be misguided, and developers would merely be 
copying traditional deep learning problems in neuromorphic. 

For developers who are more experienced with traditional ML/AI 
workflows, mirroring development flows and patterns of suc-
cessful non-neuromorphic tools could be another strategy to 
ease the transition to implementing neuromorphic systems. Several 
participants [P1, P2, P5, P7, P9, P11] agreed that when neuromorphic 
tools are similar in look, feel, and functionality to more traditional 
developer tools, it is easier for curious developers to try, test, and 
switch to neuromorphic systems. For example, P9 discussed how 
libraries for NC should be more similar to the libraries for popular 
ML and DL platforms with which more developers are already fa-
miliar: "So for example, with Pytorch and SNNtorch, that is kind of like 
bringing in something that people are comfortable with, I don’t want 
us to be so exotic that people are afraid of learning". Programming 
practices such as abstraction, code modularity, standard compil-
ers, and debugging strategies that currently exist in traditional 
programming are helpful and can be applied for neuromorphic 
programming as well [P1, P3, P4, P5, P9]. 
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Participant Speciality Development Tools Hardware Tools 

1 
Nengo (Visualization), 

Intel’s LAVA framework (Mapping and Programming) Intel Loihi (NM Processor) 

2 
ABR neuromorphic compiler (Nengo), 

pytorch, TensorFlow, Nengo DL (Libraries and Frameworks), 
SNN toolbox (Multi-functional) 

-

3 - VHDL, Verilog, Vivado (Hardware Description Languages) 

4 SNN toolbox, SNNTorch (Libraries and Frameworks) Loihi, SpiNNaker, SVP (SpiNNaker Virtual Plasticity) 
(Programmable Hardware Platforms) 

5 
SNNTorch, PyTorch, Spiking Jelly, 

Intel’s LAVA DL (Libraries and Frameworks), 
Nengo (Visualization) 

SpiNNaker, Python, Embedded C, Loihi 

6 
Nengo, Nengo IDE (University of Waterloo), 

Lava, NX SDK 
-

7 Lava, Brain 2 (Simulator) -

8 
TENNLab neuromorphic framework (C++), 

Lava, Pytorch, SNNtorch 
-

9 TENN Lab framework, Pytorch, SNNtorch Loihi, Lava framework 
10 Slayer (Library), NVIDIA’s reference architecture Loihi 
11 Slayer (Library), Lava, Loihi (Multi-functional) BrainScale, DYNAPS (Hardware Platforms) 

12 EON simulator, CrossSim (Simulators) Intel Loihi, 
TrueNorth, FPGA implementation (Hardware Simulation) 

Table 3: Categorized Hardware and Development Tool usage as reported by the participants. 

4.3.2 Buggy Simulator Tools and Unavailability of Hardware. Neu-
romorphic simulators are meant to mimic neuromorphic hardware, 
thereby aiding experimentation, helping developers understand 
network interactions and neuron behavior, and accelerating the 
development of neuromorphic systems. However, many partici-
pants highlighted that existing simulators and development 
tools are buggy [P5, P7] and their APIs suffer from poor usability, 
particularly for beginners [P3]. P7 attributed this to a goal-oriented 
development process focused on specific hardware, neglecting be-
ginner users. 

Several participants [P1, P2, P3, P6, P7, P9, P10] reported difficulty 
with the use of simulators and transitioning from the simulator to 
hardware and vice-versa. As P3 reported, simulators only describe 
the hardware and results obtained on simulators are ’never’ repli-
cated on hardware. P6 reported that many current simulators do 
not simulate hardware constraints like the limit of neurons that 
can be supported by the hardware accurately, which causes failures 
in code. P7 agreed, reporting that while it is sometimes better to 
not have to be mindful of hardware constraints, it can cause issues 
when transferring the simulated models onto the hardware. P1 and 
P11 reported that the I/O speeds are generally slower in simulators 
than hardware. 

Half of our participants [P1, P2, P4, P5, P6, P12] agreed that 
there is a lack of available neuromorphic hardware. This poses 
a challenge for neuromorphic development, as it often requires 
developers to switch back and forth between simulators and real 
hardware, increasing the time spent on and complexity of the task. 
P4 states "...if we want to have actual neuromorphic hardware, there 
are not many companies that actually sell such systems readily avail-
able on the market. And yeah, I think that’s the biggest resource 

constraint that we have.". P6 and P12 agreed that the lack of read-
ily available hardware impedes algorithm development, and can 
dissuade novice enthusiasts of NC from entering the field. 

Access to NC hardware is usually limited to large research facili-
ties, or companies that can afford the resources to enable access to 
the hardware. P12 also reported that there is a lack of open-source 
neuromorphic devices, where anyone seeking a device faces further 
red tape of committing to research and usage agreements, adding 
to the logistical challenges for a neuromorphic developer. 

Additionally, P5 and P6 reported that some chips that were de-
veloped in an academic setting were available but are limited in 
scope. P5 felt that ’academic chips’ are not necessarily designed 
with the broader community in mind. When hardware is avail-
able, it often requires significant hardware debugging. P10 reported 
having to work with Jupyter Notebook instead of their preferred 
development environment VS Code, and having to set up proper 
configurations for each remote layer, resulting in a slower workflow 
when compared to working with a local IDE. 

4.3.3 Lack of Documentation, Models, Libraries, Best Practices and 
Benchmarks. All the participants unequivocally expressed that there 
is a lack of knowledge resources and proper documentation 
making it difficult to find pertinent information regarding 
algorithmic development in NC and increasing the barrier 
to entry for novices. Participants [P1, P6, P7, P10] reported that 
there is no online question-and-answer platform that programmers 
can refer to when they encounter unexplained errors that contain 
information about NC specific problems, such as Stack Overflow, re-
quiring them to have to answer many questions by themselves. This 
increases developers’ learning time and their overall development 
time. 
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Because the community of developers is small, the focus is pri-
marily on implementation, not documentation and pedagogy. Par-
ticipants [P1, P2, P5, P7] reported that the documentation for exist-
ing hardware and development tools is not as good as they would 
expect. P5 felt that the highly skilled researchers working on the de-
velopment of new software packages and hardware had insufficient 
incentives to be creating robust documentation and P7 felt that 
this dearth of resources was due to a lack of financial investment 
in NC. P1 states "There’s not like a Stack Exchange for NC. Which 
is something I’m mildly worried about. Because I’m probably not 
going to be in this lab forever (in losing regular contact and access to 
experts)". 

Similarly, participants [P5, P7, P10] reported that the currently 
available tutorials are inadequate, with individuals moving into 
the neuromorphic field relying heavily on just the few available 
tutorials. P5 attributed the relative success of SNNTorch to the tu-
torials that it has, but reported that, although beginners go through 
the tutorials, the information they retain is low. With regard to 
sample starter applications, P7 and P10 reported that the tutorials 
are not available and when they are, the right kind of tutorials are 
difficult to find, especially for applications that are not from major 
vendors. While scholarly articles can serve as knowledge resources, 
participants [P5, P9, P10, P12] reported that there are few such 
articles and that they are usually complicated, too specific, or do 
not provide holistic solutions. P10 states "we probably have, like, 1%, 
as many papers out there. And the papers that are out there, most of 
the good ones are written by neuroscientists not by programmers, or, 
you know, computer scientists. And so they tend to be more esoteric". 

Participants [P3, P10] noted that models are scarce, hard to 
select based on requirements, and challenging to implement 
and optimize. P3 mentioned that developing neuromorphic ap-
plications with languages like Verilog or Matlab requires building 
models from scratch, along with new documentation for simulation. 
This challenge also applies to encoding-decoding techniques, as 
developers must learn these anew for each system. Model devel-
opment from scratch is also necessary when testing hardware for 
training SNNs, since pre-existing models are typically unavailable 
[P3]. While tools for ANN to SNN conversion exist [11, 29], P3 
pointed out that the converted models aren’t always compatible 
with all hardware languages, adding more complexity. In contrast, 
building ANNs in Python is much simpler due to the availability of 
pre-built models. 

The repetitive building from scratch is due to a lack of standard 
practices in neuromorphic software development, as noted 
by multiple participants [P2, P8]. Unlike the established workflows 
in deep learning for key steps like design, encoding, training, and 
testing, neuromorphic development varies by hardware, as for ex-
ample each developer has their own signal processing approach 
to perform encoding. P2 mentioned that much of the development 
is novel, with no standard references available. Similarly, P8 re-
ported little to no standardization in signal types, encoding, or 
simulation techniques, making knowledge from one system often 
non-transferable to another. In traditional programming, libraries 
allow developers to reuse code and save time, but P6 noted that 
available NC libraries are relatively new and mainly offer basic 
functions like min() and max(). While non-NC-specific libraries can 
sometimes be used, there is insufficient support for event-based 

data processing, which is a key aspect of NC. This lack of standard-
ization complicates comparing implementations and hinders the 
creation of broader standards for neuromorphic programming. A 
notable exception is Lava by Intel, an NC library recently devel-
oped to provide standard operations similar to those in traditional 
computing. 

Participants [P6, P8] reported a lack of specialized tools inter-
facing with neuromorphic hardware while supporting network 
visualization, simulation, and optimization. Though neuromorphic 
algorithm development can start on standard tools like VS Code, 
such tools lack the necessary hardware optimization and visualiza-
tion features. P6 emphasized the importance of GUIs and visualizers 
for research, noting that building such tools is a significant soft-
ware challenge. P8 added that no widely accepted UIs exist, as each 
hardware platform uses its own tools. Aside from Nengo[11], most 
tools lack real-time network visualization, which helps developers 
debug, optimize, and assess neural networks. P6 also shared that 
the absence of proper visualization tools significantly delayed their 
progress. 

Interfacing challenges extend beyond development tools to the 
limited interchangeability of programming languages. Unlike ma-
chine learning, where Python-based frameworks are widely used, 
neuromorphic applications are developed in various languages, re-
quiring support across them. However, P8 noted that there is no 
standard neuromorphic framework supporting multiple lan-
guages, since most frameworks are designed for specific hardware 
from universities or research labs and are not cross-platform. As 
previously mentioned, each framework has its own workflow and 
practices, making it difficult to accommodate the full variety of 
systems. 

Participants also reported a lack of established benchmarks 
for neuromorphic systems, including a lack of appropriate datasets, 
evaluation metrics, and system level benchmarks that account for 
the deep coupling between NC hardware and software implemen-
tations. This makes comparing different neuromorphic implemen-
tations difficult and does not allow NC implementations to be com-
pared to the existing state-of-the-art solutions in DL. Participants 
[P2, P5, P8, P12] believe this lack of benchmarking is because NC is 
still incipient and has a relatively small community. The newness 
and small community also make the field of NC prone to rapid 
change. Developers find it increasingly challenging to adapt to 
these swift changes in concepts due to the lack of robust bench-
marks. P5 says "what is a good metric of success, what is the most 
commonly accepted way to achieve X, Y, and Z?... We’re all just figur-
ing it out. It’s such a volatile field. Things are changing all the time... 
Quite often things that we believe are really good, turn out to just be 
reimplementation of things that already existed in the past". 

In deep learning, there are standardized datasets for evaluating 
algorithmic performance such as ImageNet [26] for image classi-
fication tasks or CIFAR-10 [40] for image generation tasks. These 
datasets can give developers a better sense of their algorithm’s per-
formance and can show which techniques make their models more 
efficient, learn faster, or increase stability. P12 reported a lack of 
standards for NC datasets, claiming that pairing the right dataset 
with the right model can be difficult due to the lack of established 
guidelines. 
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Finally, another crucial challenge lies in selecting appropri-
ate evaluation metrics for NC. DL benchmarks often prioritize 
accuracy, making them unsuitable for fully assessing neuromor-
phic algorithms, which may offer benefits such as low latency, low 
power consumption, or minimal footprint with marginal impact on 
accuracy. Nevertheless, both P5 and P9 noted that accuracy remains 
the primary metric for evaluating spiking neural network (SNN) 
implementations. Additionally, applying conventional DL bench-
marks to traditional deep learning issues undermines the broader 
scope and unique aspects of NC [P9]. P9 further argues that metrics 
derived directly from DL performance can differ considerably from 
those relevant to NC. P5 also mentions that appropriate perfor-
mance metrics for NC models should be closely aligned with the 
specific problem being addressed. For instance, using neuromorphic 
architectures for object detection may result in the lowest power 
when paired with event-based cameras rather than RGB cameras, 
rendering datasets like ImageNet ineffective for fully evaluating 
neuromorphic solutions. However, because NC is a comparatively 
small field, it is often expected to be evaluated against existing 
deep learning algorithms using existing datasets and benchmarks, 
posing a significant challenge for the adoption of neuromorphic 
solutions. This underscores the necessity for distinct system-level 
benchmarks that consider the full stack of hardware and software 
solutions. 

Unfortunately, traditional benchmarks are not well-suited 
for assessing neuromorphic systems. Even edge solution bench-
marks like MLPerf, which evaluate latency and energy as well 
as algorithmic accuracy, might be inadequate for neuromorphic 
solutions. Two participants [P5, P9] highlighted the challenge of 
estimating power requirements and selecting from different perfor-
mance metrics, recommending that additional metrics be included 
in evaluations. P9 also proposed that the neuromorphic community 
should focus on different metrics like resilience, energy efficiency, 
and latency. However, they acknowledged that integrating design 
and performance metrics into a single framework is extremely chal-
lenging, as defining and selecting the most relevant metrics for a 
NC application or algorithm is not straightforward. 

Key Insights: Based on our participants’ suggestions, it is ev-
ident that a coordinated effort to create and maintain dedicated 
online platforms, coupled with incentives for active participation, 
could transform the NC knowledge resources landscape. Such plat-
forms would not only serve as knowledge hubs but also strengthen 
the sense of community, fostering collaboration and collective 
problem-solving. Aside from these, creating and incentivizing 
good documentation with information at all levels of abstraction 
will empower developers to use the information for lower-level 
development such as programming neurons to higher-level usage 
such as adopting an API into their development pipeline [P5, P7]. 

Focusing on pedagogical materials such as example-driven 
tutorials [P1, P10] and the need for user friendly APIs [P3] 
would also serve as useful strategies in increasing knowledge dis-
semination for novice NC developers. Additionally, creating com-
prehensive "Getting Started" resources [P2, P11] that provide 
accessible introductory resources for beginners to navigate the in-
tricacies and establish foundational knowledge was deemed useful. 
"It’d be nice to have something like... Andrew Ng’s machine learning 

journey, I think it’s a very short document. And it goes through a big 
list of like tips if you’re doing the typical back prop or a conventional 
machine learning. It’d be nice to have a version of that for like the 
neuromorphic implementations, the tips and tricks for if you’re facing 
this type of problem, or like what type of neurons might be good for 
certain problems" (P2). 

To ensure that beginners have a clear learning pathway, GUIs 
for beginners and real time network visualizers could enable 
an abstract understanding of the network and the spiking activities 
occurring within the neurons, and help debug issues. This guide-
line is supported by many of our participants [P2, P5, P6, P8, P10, 
P11, P12], with P5 stating: "...the moment you start using GUIs, and 
visualizations that kind of abstracts away the lower level detail that 
we want to play with. But for beginners being inducted into the field, 
I think it’s fantastic." 

Furthermore, having known best practices and guidelines 
for developers with information such as what is the right work-
flow for developing a particular kind of neuromorphic application, 
what is the right encoding method for a particular type of data, 
what performance metric is suited for a particular problem, and 
what kind of dataset should be used to benchmark a particular type 
of algorithm would benefit the community at large [P5]. This is nec-
essary so that developers can fall back on established best-practices 
for key decisions instead of having to invent and create new solu-
tions for each challenge they face. This also allows the community 
to better evaluate the progress made on algorithm development 
when its performance can be directly compared to other algorithms. 

The lack of standard benchmarks and practices also presents an 
opportunity for HCI designers to facilitate community-driven plat-
forms that encourage sharing and standardization of best practices 
and resources. More pointed guidelines on how the HCI commu-
nity can support a better development ecosystem for NC by taking 
inspiration from what’s already been done in the past for other 
fields are discussed in section 5. 

4.4 Suggested Prerequisites and Resources for 
Getting Started with Neuromorphic 
Computing 

In this section, we present findings related to skills and resources 
that our participants thought could benefit novice developers in NC. 
These emerged from participants’ responses regarding knowledge 
prerequisites and starter applications that would be interesting for 
newcomers. 

4.4.1 Starter Applications for New Developers. The vastness of com-
putational neuroscience knowledge, along with the lack of knowl-
edge resources for understanding the neuromorphic domain make 
entry to the field challenging for beginners. One approach is to 
create starter applications as entry points to the field [17, 67]. A 
fourth of our participants acknowledged that starting with tuto-
rials for pre-existing tools is helpful for learning the basics 
of neuromorphic programming. P1 and P5 mentioned Nengo 
[56] and P11 mentioned Intel’s Lava [23] tutorials and the associ-
ated visualizations as having the right amount of complexity for 
beginners, with just enough abstraction of the neural processing 
and progressive disclosure of necessary information. 
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Most participants [P2, P3, P5, P6, P8, P10] mentioned that an 
effective introduction to the field could be starting with less com-
plex problems that allow for fast model training and using datasets 
suited to the neuromorphic domain. Participants [P4, P5, P7, P10, 
P12] emphasized that new developers should focus on problems 
where NC offers clear advantages, such as speed and power 
efficiency, over non-spiking implementations. Several partici-
pants [P6, P8, P9, P10] suggested examples such as adaptive control 
for robotics or other small robotics application. P12 suggested that 
solving such problems with open-source tools like Nengo [11] and 
simulators like Brian [32] and Nest [31] is a good way to start 
learning. 

If novices opt to start with a classic DL problem, P4 suggested 
digit recognition using the MNIST dataset as a good starting point 
and P11 further suggested transitioning to analogous neuromor-
phic tasks such as the Oxford Spike Raster translation. However, 
P7 noted that while approaching this well-studied problem can 
help with understanding, learning for truly neuromorphic solu-
tions should focus on neuromorphic-directed event-based inputs, 
and utilize visualizations of the neuronal spiking activities 
such as raster plots that help the learner understand the complex 
dynamics of neurons like firing patterns, stimulation response, and 
more. 

4.4.2 Helpful Skills. Participants reported several skills that could 
be considered as prerequisites to learning programming for neuro-
morphic systems. 

Four participants reported that it is beneficial to begin learn-
ing neuromorphic programming after understanding the 
basics of ML and programming [P1, P2, P5, P7]. Based on their 
personal experience, P2 reported: "I guess one of the earlier issues I 
had was I started the field not knowing much about neural networks. 
So I was kind of learning it from that end (NC)... So that was a bit 
of a challenge in the beginning. So I definitely think it’s nice having 
a bit of a ML background to kind of get the basics and then starting 
to build up how this (NC) is different." Two participants [P5, P6] 
further reported that a strong programming background simplifies 
the transition to neuromorphic programming. Several concepts like 
sandboxing, simulation, optimization, and programming decisions 
translate from traditional to neuromorphic programming. P6 fur-
ther reported that parallel (Java, C, and Python), and lower-level 
programming (VHDL, Verilog, and Simulink) are much closer to 
neuromorphic programming. 

Six participants [P4, P5, P6, P9, P11, P12] stressed the importance 
of building familiarity with neuromorphic hardware and 
understanding how neurons and synapses are implemented on-chip 
in order to more effectively harness the efficiency of the hardware. 
P11 specifically states "understanding the architecture, it’s one of the 
keys, and also like here, and that if you don’t, fully understand the 
limitation and how the systems work, I mean, you kind of will not be 
able to tell like, if you can implement certain things on the chip itself, 
Right? And that is critical". 

Four participants [P5, P7, P9, P12] reported that having a basic 
background in computational neuroscience, the field that uti-
lizes mathematical models to understand how the brain works, is 
helpful, especially as a beginner. However, the field is dense and 
programmers can benefit from some abstraction [P12]. Specifically, 

P12 states "I think the most important thing, at least for me,... is to get 
an intuition of how neurons can compute, how brains can compute 
it all. Right, it’s really on that intuitive level, how can a network of 
neurons implement complex computations, as we observe, like in us 
and in animals, right, does this for me, the most important thing that 
I kind of learned". Four participants [P4, P6, P8, P9] suggest that 
the combination of skills developed through both computer science 
and computational neuroscience makes for an easier transition to 
neuromorphic programming and excelling therein. 

Three participants [P1, P2, P8] suggested better programming 
practices that could help with learning neuromorphic programming. 
P1 and P2 recommended building modular networks that can 
be used abstractly. Specifically, P1 states "getting into the habit of 
building modular, more modular networks, I usually just build, you 
know, kind of small single use networks for exploration, or demon-
stration purposes". P8 reported that learning to leverage preexisting 
documentation from other developers and writing documentation 
are also important skills. 

Key Insights: For HCI researchers, these insights point to areas 
where educational tools and interfaces can be improved to support 
NC learning. One potential approach is creating adaptive learn-
ing environments that adjust content and complexity based on a 
learner’s background in machine learning and programming. These 
environments could feature interactive, problem-solving simula-
tions that gradually introduce more complex neuromorphic con-
cepts, such as spike-based processing or neuromorphic chip ar-
chitectures. Enhancing documentation tools to support a detailed 
understanding of neuromorphic projects could ease the steep learn-
ing curve. Finally, well documented maker kits that are inexpensive 
to acquire and test on could also prove to be a useful tool for novice 
developers in the area, and is an area that HCI researchers are well 
versed in. By designing interfaces and platforms that address these 
educational needs, HCI researchers can make NC more accessible 
and foster a larger, more skilled community of developers in this 
emerging field. 

5 Leveraging Insights from Developer Tools in 
Traditional Computing to Inform Future 
Directions for Neuromorphic Development 

While Section 4 presents the findings from participant interviews 
and key insights relevant to HCI researchers, this section builds 
upon those insights to offer actionable recommendations for design-
ing better tools and systems for neuromorphic computing. Drawing 
on lessons from adjacent fields, such as machine learning and deep 
learning, we identify specific practices and approaches that can 
inspire improvements in the neuromorphic development ecosystem. 
This section is particularly relevant for HCI tool designers seeking 
to create accessible, intuitive, and community-driven platforms that 
address the challenges outlined in Section 4. By connecting the find-
ings to established successes in traditional computing domains, we 
aim to provide a roadmap for advancing the developer experience 
in neuromorphic computing. 

With the first challenges arising when novices attempt to learn 
about NC, the scarcity of knowledge resources accentuates the need 
for more, better-structured, and increasingly in-depth tutorials. The 
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established fields of ML and DL not only have an abundance of 
such resources, but can also lend tools like Torii and Sodalite that 
have been developed to simplify and optimize the development 
of structured curriculum and documentation [35, 37]. By en-
couraging experienced neuromorphic developers to adopt tools like 
these, we can ensure more of high-quality tutorials and documen-
tation. In addressing the questions that arise during the solitary 
exploration of existing knowledge resources, novices to the field 
can benefit from platforms where community members exchange 
acquired knowledge and provide support. Knowledge forums like 
StackOverflow [9] available for conventional software development 
and DL have accelerated the identification and solution of prob-
lems and could similarly benefit an emergent field such as NC. In 
prioritizing the creation of a StackExchange community and sup-
porting more community-driven initiatives, we can ensure 
new developers have the resources required to get their questions 
answered. Lastly, when new developers mature enough to dive 
into existing source code, the lack of detailed justifications on the 
design decisions and large, complex codebases is disheartening. 
This is exactly where the adaptation of information foraging tools 
like Wandercode and RIT [36, 53] can provide recommendations 
about the sequence of attention points in developed code 
and simplify the understanding and learning experience. Taking 
it one step further, assistive tools that have been developed for 
code analysis such as Tutorons and Ivie [34, 73] can be of help by 
providing more verbose and user-friendly line-by-line code 
explanations. Ensuring these tools can give valuable suggestions 
and guidance in the field of NC ensures new developers have all the 
learning resources required to develop the skill-set and confidence 
required to move on to developing SNNs of their own. Adapting 
these tools to NC however, is not always a trivial task. Certain soft-
ware, like documentation or information foraging tools, tend to be 
abstracted away from the underlying codebase and are easier to uti-
lize, simply requiring adoption into a developer’s workflow. Other 
tools that rely more on domain-specific knowledge, like Tutorons, 
would require expert adaptation to be useful in the NC space but 
Ivie proposes an interesting potential solution to this, using LLMs 
to automatically generate explanations. Given the relative new-
ness and lack of neuromorphic documentation, these explanations 
would need to be evaluated for specificity and accuracy before full 
adoption of the tool. 

Stepping into action for the first time with specific problems in 
hand, new developers find themselves overwhelmed by the multi-
tude of datasets and the previously proposed network models in the 
context of NC. The more mature field of DL has already faced and 
addressed these challenges: First, the use of well-established dataset 
repositories like Kaggle or Torchvision Datasets [45] has simplified 
the packaging, distribution, and standardization of datasets for a 
wide range of tasks. Similar efforts have started in the field of NC 
[43] where conventional datasets need to be extended with 
their event-based counterparts, but their adoption would need 
to become wider. Second, in the context of DL, several sophisti-
cated tools have been developed to facilitate the exploration and 
selection of network architectures based on the given task 
[69, 72]. Tools like ExampleNet [72] utilize the collective knowledge 
of previously suggested effective models to provide architecture 
recommendations that range from network type to number and 

width of layers, and from neuron activations to ranges of hyper-
parameter values. Utilizing such tools in the context of NC and 
expanding them with the specifics of SNNs (e.g. spiking neuron 
models, input encoding, etc.) could provide a valuable starting base 
for new developers in the field. 

As developers progress from foundational learning to more ad-
vanced neuromorphic development, the need for detailed, special-
ized tools becomes increasingly essential. For instance, dedicated DL 
tools take the initial hyperparameter recommendations discussed 
above and perform parameter sweeps or grid searches to identify 
their optimal values [3, 14, 22, 65]. Adapting similar tools to the NC 
context could significantly aid developers in fine-tuning SNNs 
without excessive guesswork. The domain transfer would be rel-
atively straightforward as several parameters (learning rate, batch 
size, etc.) translate directly from DL to NC. For others, the tools 
should be extended to handle the larger parameter sets in NC, while 
considering their inter-dependencies (e.g. membrane capacitance 
affects the maximum neuronal firing rate given a number of time 
steps, with all three are seemingly independent parameters). When 
such parameter sweeps are conducted, however, bugs often emerge, 
underscoring the importance of architecture-specific debugging 
tools. DL already offers solutions, like UMLAUT [57], that provide 
architecture-specific debugging recommendations. Such tools could 
be extended to neuromorphic development, to pinpoint specific 
sources of bugs in the heavily parameterized SNNs. In addi-
tion to understanding network architectures, gaining insights into 
the inner workings of networks through real-time visualization 
tools can provide a more intuitive grasp of the network’s behavior, 
especially considering the time-dependent nature of spike-based 
computations. Tools that allow for real-time probing of certain 
parameters during the training phase [61] can have a signif-
icant impact on the model accuracy, but must be adapted to suit 
the temporal dimension of SNNs. Such frameworks developed for 
DL optimization can be adapted and extended for NC, helping to 
streamline model refinement and boost overall performance. 

Unlike conventional DL, accuracy is just one of several key met-
rics used in NC to evaluate a model’s performance. Therefore, profil-
ing a model based on memory allocation, power consumption, and 
latency becomes essential. While there are tools in place to evaluate 
ANNs for some of these metrics [78], adapting them to SNNs is cru-
cial. This is especially important because performance evaluations 
for SNNs can differ significantly when run on actual neuromorphic 
processors compared to conventional hardware. As a result, accu-
rate simulators are necessary to estimate SNN performance both 
on and off dedicated hardware. Though some simulators already 
exist [71], there is a growing need for cross-platform systems 
that enable meaningful comparisons across different hard-
ware. Additionally, once deployed to hardware, better tooling like 
Inline [13] are needed to monitor these metrics. These efforts align 
with the ongoing push in the NC community for advanced bench-
marking [77], addressing both software and hardware performance 
evaluations. 

6 Discussion and Future Work 
Our study highlighted that developers are motivated by the poten-
tial of Neuromorphic Computing (NC) to address critical needs in 
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low-power, real-time computing. However, they face significant 
challenges due to the nascent state of tools and resources avail-
able to support their workflows (RQ1). Through interviews with 
experts, we explored the workflows and tools currently used in 
NC development, emphasizing the need for more robust, modular, 
and standardized platforms to streamline practices and reduce frag-
mentation (RQ2). We also identified critical pain points, including 
steep learning curves, limited educational resources, and difficulty 
scaling solutions from simulation to hardware (RQ3). Addition-
ally, we uncovered the skills, resources, and support structures 
necessary for new developers to onboard successfully into the NC 
ecosystem, highlighting the importance of comprehensive tutorials, 
pre-configured templates, and community-driven platforms (RQ4). 
These findings formed the foundation for the actionable recommen-
dations detailed in Section 5, providing HCI researchers and tool 
designers with practical pathways to enhance the NC development 
ecosystem. 

In recent years, the field of NC has seen significant advancements 
aimed at making the technology more accessible and developer-
friendly, aligning closely with the findings of our study. One notable 
development is NeuroBench, a framework designed for bench-
marking NC algorithms and systems that is collaborative and 
fair [76]. NeuroBench addresses the need for more standardized, 
flexible benchmarks, allowing for hardware-independent testing 
and offering a common open-source toolset to developers. By de-
coupling algorithmic performance from hardware and providing 
a structured benchmark suite, it encourages broader participation 
in neuromorphic research and prototyping, even for those without 
direct access to specialized hardware. 

Progress has also been made in increasing hardware accessibil-
ity, with designers developing approaches to implement SNNs 
on non-neuromorphic hardware. New tools for FPGA-based 
neuromorphic implementation are providing a configurable, open-
source spiking neural core architecture that can be deployed on 
readily available hardware. [21, 47]. Platforms such as Quantisenc 
and Spiker+ offer modular tools for developers to experiment with 
neuromorphic systems on familiar electronics. This architecture 
emphasizes flexibility, giving developers the ability to tailor SNNs 
for specific applications, without requiring deep knowledge of the 
underlying hardware. Other groups are taking accessibility a step 
further, such as efforts out of the University of Tennessee to cre-
ate a neuromorphic starter kit, using only microcontrollers and 
common board computers to assemble neuromorphic systems [54]. 
The project aims to develop open-source electronics and software 
to enable deployment of neuromorphic designs by students and 
designers on familiar platforms such as Raspberry Pi, enabling real 
world prototyping and validation of SNN designs. 

In addition to hardware-related advances, a suite of new software 
tools, including CARLsim++ [50], SNNAX [44], and GenericSNN 
[46] have emerged. These efforts aim to lower the entry barrier 
for neuromorphic programming by providing user-friendly APIs, 
GUIs and simulators while increasing compatibility with existing 
software tools, allowing developers to simulate and experiment with 
SNNs on conventional platforms and accelerating neuromorphic 
adoption beyond niche applications. 

In the context of supporting broader adoption and bridging the 
interdisciplinary gaps identified in our research, these develop-
ments represent substantial progress. Where practitioners once 
faced hurdles such as limited hardware access, the community is 
now equipped with a growing array of tools that democratize access 
to neuromorphic technology. These advancements in neuromor-
phic accessibility also present an exciting opportunity for the CHI 
community. With the growing availability of neuromorphic tools, 
frameworks, and benchmarks, HCI researchers can now more easily 
engage with this evolving field. This opens up new possibilities for 
creating human-centered design solutions that can support broader 
adoption and practical application of NC in everyday systems. 

Our study, however, focused primarily on interviews with ex-
perts to understand their motivations, workflows, and challenges. 
While this provided valuable insights, we acknowledge that observ-
ing participants in their natural workflows could further enrich 
our findings. Future research could adopt traditional contextual 
inquiry methods, such as observing participants as they use NC 
tools, identifying real-time pain points, and validating findings 
through direct feedback. Embedding researchers within partici-
pants’ environments would offer a deeper understanding of tool 
usage and reveal hidden challenges, providing actionable insights 
for designing more effective and intuitive developer tools for NC. 

7 Conclusion 
Our paper identified critical challenges in neuromorphic program-
ming, such as limited learning resources and hardware availability, 
fragmented community support, and difficulties in navigating com-
plex codebases for new researchers. Drawing insights from neigh-
boring fields like ML and DL, we proposed several approaches to ad-
dress these issues, including better-structured tutorials, community-
driven support platforms, and enhanced debugging and perfor-
mance profiling tools. Recent developments in NC, such as stan-
dardized benchmarking frameworks and new developer libraries, 
are helping to lower barriers for entry, making it easier for both 
novice and experienced developers to engage with the field. By 
leveraging these advancements and creating accessible, developer-
friendly tools, we can reduce cognitive barriers, fostering broader 
adoption and innovation in NC. Ultimately, the convergence of NC 
and HCI holds the potential to drive the creation of more intelligent, 
efficient, and scalable edge AI systems. 
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A Interview Questionnaire 

A.1 Demographic Questions/Background 
In this first section, we will talk about you, your background and 
experience. 

1. What is your current role? 
2. What led you to the field of neuromorphic computing? - Your 

background, and what degrees do you have? What did you major 
in? 

3. How many years of programming experience do you have? 
4. How many years of experience do you have as a developer? 
5. What experience do you have in building ML applications? In 

building Deep learning applications? And in building neuromorphic 
computing applications? 

6. Are there any other areas that you have focused on besides 
AI/ML? 

7. What language do you use to build applications with Neuro-
morphic programming? 

8. What tools or IDEs do you use to build applications with 
Neuromorphic programming? 

9. In what ways, if any, are these different from those in tradi-
tional programming? 

A.2 Walkthrough Building an App 
For the next few questions, think about a neuromorphic computing 
algorithm or application you’ve recently built. 

10.What were you trying to accomplish in building it? 
11. Describe your workflow in accomplishing this. 
12. What were some of the challenges you faced in building this 

algorithm or application? 
13. What resources (e.g., websites, APIs, and documentation) did 

you use to answer questions? 

A.3 Specific Challenges 
14. What challenges do you have working with spikes as the primary 
signal? 

• In comparison to conventional programming, what chal-
lenges does working with spikes bring, in the algorithms, 
data structures, patterns you create or the mental models 
you use? 

• Since the current conventions of programming are influ-
enced by the Von-Neumann architecture, what are the chal-
lenges when you program for a system that adopts a Neuro-
morphic architecture? 

15. What differences are there when running code on hardware 
rather than in a simulator? What challenges may this bring? 

16. Have you performed any optimization on your algorithms? 
What are the barriers you faced during such optimization? 

17. When you have a challenge, what external resources or people 
do you use to help address these challenges? 

18. How does the development time in neuromorphic computing 
compare with standard implementation? 

19. In terms of resource availability, how does neuromorphic 
compare with respect to standard implementation? 

20. Are there resources you’d like to see that don’t yet exist? 

A.4 Potential Solutions 
21. What types of tools or libraries would be helpful? How might 
they differ from the tools or libraries that exist now? APIs? 

22. If there was a simple starter application to illustrate neu-
romorphic computing, what would it demonstrate? E.g.: A ‘Hello 
World’ program in Neuromorphic Computing, like: Print a number, 
‘n’, that is input by the user for n number of times. 

23. What new strategies or skills have you developed to help 
cope with the challenges of neuromorphic computing? 
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