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Abstract—Debugging is an essential yet often tedious part of
the software development process. Omniscient debuggers have
long aimed to make debugging easier by recording execution
traces, enabling more direct debugging interactions. Although the
concept of omniscient debugging has been explored extensively in
research, it has seen limited adoption in industry until recently.
The emergence of new commercial tools like Replay presents an
opportunity to reevaluate the impact of omniscient debugging. In
this paper, we conducted a controlled experiment with 20 partici-
pants with a commercial omniscient debugger, Replay, and a tra-
ditional debugger, Chrome DevTools. We investigated whether the
omniscient debugger improved developer productivity and how it
influenced debugging behavior. We coded developers’ navigation,
rerun, and runtime value collection behaviors and summarized
their debugging strategies. Our results show that developers with
the omniscient debugger were not more successful or faster than
those using the traditional debugger. Omniscient debugger users
reran the program less, but there was no significant difference
in the number of files or functions they explored or the number
of runtime values they collected. Omniscient debugger users
faced navigation and runtime value collection challenges, which
may have hindered their effectiveness. Our results suggest that
commercial omniscient debuggers must include more of the
high-level support for interacting with traces found in research
prototypes to successfully help developers in debugging tasks.

Index Terms—debugging, omniscient debuggers

I. INTRODUCTION

Debugging is the process of identifying, locating, under-
standing, and fixing defects in software. It is a necessary yet
tedious part of the software development process, which often
consumes more time than creating the software [1]]. Debugging
can be difficult for many reasons. Developers often first
encounter a bug through its symptom, which might appear as
a missing behavior, unintended behavior, or an error message.
Different types of symptoms can influence the difficulty of
the debugging task. An error message can make debugging
easier because the developer will have a clear starting point
by searching for the text contained in the error message. From
this starting point, the developer must trace back to the root
cause. The gap between the symptom and the ultimate cause
is described by the concept of cause/effect chasm [2]]. A large
chasm—due to large spatial, temporal, or data flow gaps—can
make debugging more challenging.

One influential approach to tackling the challenges of
debugging is the omniscient debugger [3]], [4]. Omniscient
debuggers record the execution trace of the program and use
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the trace to help developers debug. Omniscient debuggers can
enable developers to step backward, while regular breakpoint
debuggers can only step forward. This allows developers to
go back when they stepped forward too far without rerunning
the program, as well as to trace backward from the symptom
of the defect to its cause [5]. Omniscient debuggers may also
enable developers to navigate directly to the code responsible
for a program output or that responds to an event, saving the
developer time to find the code manually. The recorded trace
can also be used to help developers answer their questions.
For many years, omniscient debuggers that record every
expression during execution remained available only in re-
search prototypes or in systems for small programs suitable
for educational use. In 2012, Undo began offering support
for omniscient debugging for Linux system programming [[6].
In 2021, Replay began offering a commercial omniscient
debugger for debugging front-end web applications [7]]. In this
paper, we examine how such an omniscient debugger may
impact how developers debug. More specifically, we examine:

RQ1. When do omniscient debuggers improve debugging

productivity?

RQ2. How do omniscient debuggers change navigation
behavior when debugging?

RQ3. How do omniscient debuggers change how develop-
ers rerun the program when debugging?

RQ4. How do omniscient debuggers change how develop-

ers collect the values of expressions?

We conducted a controlled experiment with 20 participants,
comparing debugging behavior between developers using an
omniscient debugger (Replay) and a traditional debugger
(Chrome DevTools). We coded and compared the navigation,
rerun, and view value behaviors of the developers, examined
their debugging strategies, and investigated how the tool either
supported or failed to support their debugging process. Overall,
we found that the use of the omniscient debugger did not
significantly improve the productivity of developers. While the
omniscient debugger reduced the number of reruns, it did not
significantly reduce the effort of navigation or value collection.
Our results suggest that, despite the frequent focus on stepping
backward as the central interaction enabled by omniscient de-
buggers, other interactions, such as connecting output to code,
may be more important for effectively supporting debugging.



II. RELATED WORK

Our work builds on prior studies examining the process and
challenges of debugging, new forms of proposed debugging
tools, and prior studies of omniscient debuggers.

A. Debugging theories and challenges

A number of theories and models have conceptualized the
work developers do when debugging. According to program
slicing [[8], developers do not examine programs contiguously,
but follow mentally constructed program slices, a subset of
the program that could influence the value of an expression.
According to information foraging theory [9], [10]], developers
navigate through the code to find the “prey” (location of
the bug) based on its “scent” (e.g., linguistic similarity of
function identifiers and the bug report) and face challenges
choosing which function to read next. Eisenstadt 2] identified
reasons why debugging is difficult, including large temporal or
spatial chasms between cause and symptom. Developers spend
an average of 35% of their time simply navigating between
dependencies, and 46% inspecting task-irrelevant code [11]].
According to hypothesis-based theories of debugging [12],
[13]], developers form and test hypotheses, which are often
difficult to conceptualize and incorrect [14]. Debugging has
also been described as a process of asking and answering
questions about the code and runtime behavior [15], [16].

Many tools have been conceived to help developers debug
more effectively. For example, automatic fault localization
tools [[17] identify statements that may contain the bug, and
automatic program repair tools [18] generate patches that fix
the bug without human intervention. However, while most
developers use the debugging features in IDEs [[19], they tend
to avoid complex features and primarily use breakpoints [20].
When compared to not using a debugger, developers spend
more time debugging and performed more navigation actions
when using one, possibly because debuggers are used in more
difficult bugs [21f]. The same study also found that, in most
sessions, developers maintained the same editing behavior
regardless of whether they used a debugger. Automated debug-
ging tools may be helpful if they directly provide the correct
fix [22]]. However, for tools that do not directly provide a
fix, the accuracy of the tool may not be as important, as a
study [23|] found that the rankings of the suggested faulty
statements did not impact the performance of developers.
Studies have also found that developers prefer human support,
such as asking their colleagues for help, over debuggers [24].

B. Omniscient debuggers

Building on the earlier concept of a reversible debugger [25]]
introduced by Lieberman in 1995, the concept of an “omni-
scient debugger” was introduced by Lewis in 2003 and refers
to a debugger that allows developers to examine the runtime
value of variables at any time by recording every state change
in a program [3]. One way to enable developers to interact with
this recording is to enable stepping backward to a statement
that was executed before the current statement, rewinding
the state of the program [3[], [6[, [[7]l, [25]-[28]]. Researchers

believe that stepping backward allows developers to trace back
from the symptom of the bug to its root cause [3], [26]-[28]].
It can also eliminate the need to rerun the program if the
breakpoint is set after the faulty statement [3]], [27].

However, the ability to step back may not be enough if
the chasm between the symptom and the cause is large.
Instead of just stepping back sequentially through control flow,
some omniscient debuggers support explicitly navigating data
and control flow relationships. Using dynamic slicing [29],
the Slice Navigator [30] allows developers to step between
statements within a slice to directly rewind to the statement
that last modified the value of a variable. Object-centric
omniscient debuggers [31|—[33]] allow developers to track an
object to see its changes over time and across method bound-
aries. Whyline [5]] and NuzzleBug [28] allow programmers to
directly ask “why” and “why not” questions about program
behavior and provide the causal chain of the behavior using
dynamic slicing.

Using the recorded trace, some omniscient debuggers sup-
port directly navigating to the code responsible for a program
output or that responds to an event. Given an output or
an event, they identify it in the recorded trace, navigate to
the relevant statement, and rewind the program state to that
point in the execution. This is thought to reduce manual
fault localization because developers can locate the faulty
statement with a related program event, which is something
that the developer can directly observe [34]. For example,
systems allow developers to rewind the execution to when
a line of output is printed (ODB [3] and Replay [7]), a
graphical element is drawn (ZStep 95 [25]), or a user event
occurs (Timelapse [34] and Replay [7]). Starting from the
program output, developers can step backward to locate the
fault. Alternatively, if the defect happens after a user action,
they can jump to that program event and step forward to the
faulty statement.

Some omniscient debuggers use queries on the execution
trace to help developers test hypotheses and answer ques-
tions. Expositor [35] and Time-Traveling Queries [36] allow
programmers to write queries on the trace to answer their
questions about the code and showed that commonly asked
questions during debugging [[16] can be expressed using
queries [36]. These two omniscient debuggers support the ver-
ifying of hypotheses and answering of questions, while other
tools also support the forming of a hypothesis or question.
Hypothesizer [37]] suggests possible hypotheses to develop-
ers, querying the trace to find patterns of program behavior
that support a hypothesis. It also helps developers test the
hypothesis by displaying relevant information extracted from
the trace. Because real-world programs can quickly generate
vast numbers of state changes, scalability is a major barrier to
using omniscient debuggers in practice, and achieving better
performance and scalability has been a major focus [38]-[41].

Several user studies have evaluated the productivity of
research prototypes built to explore the concept of omniscient
debugging. Some of these studies have found productivity
benefits. Time-Traveling Queries [36] was found helpful for
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Fig. 1. Replay records the execution trace, showing a list of recorded user events (A), some of which have a corresponding “jump to code”. Developers
can play back the recording (F) and see the webpage output (B). In the gutter next to each line (C), developers can view a hit count of the times a line has
been executed. Developers can insert console log statements (D) to view expressions they want to examine, and Replay automatically reruns the program and
updates the console output (E). Developers can also jump from output in the console to the corresponding console log statement (E).

developers to answer program comprehension questions, re-
ducing the number of actions required to answer these ques-
tions. The Java Whyline [5] was found to help developers
debug faster and more successfully by helping them rely
mostly on answering questions, rather than text searches for
relevant content. Hypothesizer [37] was found to improve
time and success by supporting developers in the process of
forming and testing hypotheses, helping developers to have a
deeper understanding of the defect. The omniscient debugger
for Scratch, NuzzleBug [28]], was evaluated in an educational
setting. Students were significantly more successful in 1 of 8
tasks, with the biggest benefits for bugs in complex programs.

Other studies have found no productivity benefits of omni-
scient debuggers. A study of Timelapse [34] found no signif-
icant improvement in time or success, in part because less-
skilled developers became distracted by Timelapse’s features.
The Omission finder [42] is an add-on of the omniscient
debugger Traceglasses [43]] that helps identify execution omis-
sion errors (some statements should have been executed but
were not). A user study with 24 participants [42] found that
the Omission finder only reduces the task time when there is
an execution omission error and if the execution trace is long.
It also found that developers who used Traceglasses (without
Omission finder) had similar task times as those who used a
traditional breakpoint debugger.

Together, these findings suggest that the productivity ben-
efits of omniscient debuggers may depend on other factors,
such as the type or difficulty of the debugging task or the

specific capabilities of the tool. In particular, these studies
suggest that the productivity benefits depend on providing
higher-level aid to developers, where tools that did not help
required developers to examine the execution trace themselves.
In this paper, we further explore this question, offering the
first user study evaluating a real-world commercial omniscient
debugger and examining in detail how omniscient debuggers
impact debugging behavior across different types of defects.

III. REPLAY

Replay is one of the first commercial omniscient debuggers
for web applications [7]]. Developers debug with Replay by
first demonstrating a defect or behavior of interest and record-
ing an execution trace using the Replay browser. Developers
then have full access to the execution trace. Replay offers:

o Step backward as well as forward (Figure [2)

o Causal navigation: Developers can see a list of recorded
mouse and keyboard events, and jump to the code that
responds to an event. They can also jump from console
output to the corresponding console log statement in the
code. (Figure [T}-A, E)

o Live console logs: Developers can insert a new console
log statement in the code, and Replay will then auto-
matically simulate rerunning the recorded session with
the new console log statements and display the updated
output. (Figure [T}-D)



« Hit count: Looking only at the source code, developers
can see the number of times each line of code was
executed in the gutter. (Figure [T}-C)

Based on these features, we formulate the following hy-
potheses on how Replay may change developer behavior.

H1. Developers visit fewer files and functions, and they
focus on the relevant functions faster. (RQ2) Step backward
enables tracing from symptoms to causes without exploratory
navigation, while causal navigation provides direct links from
events to relevant code locations.

H2. Developers rerun the program less, and they rerun
with different purposes. (RQ3) This is because the ability to
record the execution reduces the need to rerun the program.
Live console logs and hit count might also eliminate the need
to rerun the program for value inspection or determining if a
line of code is executed.

H3. Developers use different debugger features to view
the value of expressions and view different types of expres-
sions. (RQ4) Specifically, live console logs may reduce the
friction of using print statements since developers no longer
need to rerun the program, potentially shifting developers’
preferred methods for runtime value collection. Developers can
also view more complex expressions with print statements.
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Fig. 2. Developers can control the current position in the execution recording.
They can execute the recording backward or forward until hitting a breakpoint
(left two buttons), step backward or forward one statement (middle two
buttons), and step into the function under the cursor or return from the current
function (right two buttons).

IV. METHODOLOGY

To investigate the impact of omniscient debuggers on de-
bugging behavior and answer our research questions, we con-
ducted a controlled experiment with 20 participants. Specifi-
cally, we compared the use of Replay to Chrome DevTools, a
widely used tool for front-end web debugging. Our materials
and data are publicly available. [44]

A. Farticipants

After obtaining IRB approval, we recruited 20 participants
from four sources: 10 from a graduate-level software engi-
neering course at our university, 6 from a graduate student
mailing list at our university, 1 from LinkedIn, and 3 from
personal contacts. All were currently masters students or
junior software engineers. We required participants to have

at least 7 years of programming experience and experience
with React and JavaScript. This threshold was established
after early participants with less experience were unable to
make progress, leading us to revise our inclusion criteria.
Participants ranged in programming experience from 7 to
20 years, with a median of § years. Most had professional
experience as a software engineer, ranging from 0 to 10 years,
with a median of 3.29 years. Participants had from 0 to 4
years experience with React, with a median of 1 year. When
asked to estimate the number of lines of JavaScript they have
written, 2 participants responded with 100 to 1000 lines, 9
reported 1000 to 10000 lines, and the rest 9 reported more
than 10000 lines. We did not ask participants about their
familiarity with Excalidraw. However, their behavior during
the study suggested that all were new to the code base.

B. Tasks

Participants worked on tasks on Excalidraw [45], a virtual
whiteboard web application. Excalidraw is a popular open
source project on GitHub with 73.1k stars. It uses the React
framework, contains 289 TypeScript files, and is approxi-
mately 80,000 kLOC. To systematically examine debugging
behavior for different types of defects, we inserted 4 defects,
each occupying a different quadrant along two key debugging
challenge dimensions: the size of the cause-effect chasms and
the presence or absence of an error message (Table [[). Bugs 1
and 2 were selected from the Excalidraw GitHub issue tracker.
Bugs 3 and 4 were manually created. Bug 3 was designed
to have a corrupted state introduced early that causes visible
failures later. Bug 4 involved incorrect hex string formatting.

We provided relevant background for three of the bugs,
when the task was likely too difficult to complete within 40
minutes (Bug 1) or required app-specific terminology (Bugs 2
and 3). For Bug 1, we provided a pointer to the function that
rendered the element with the bug. For Bugs 2 and 3, we gave
a brief explanation of unfamiliar terms.

TABLE I
BUGS USED IN THE STUDY

Bug Chasm Symptom Description
1 large no error message  Cannot clear name when editing
frame name
2 small no error message  Incorrect alignment when binding
3 large error message Cannot add arrow to library
4 small error message Cannot insert image

C. Procedure

The experiment was conducted remotely on Zoom. Par-
ticipants completed tasks by remotely controlling the ex-
perimenter’s laptop via Zoom. Participants first completed
the consent form and the demographics survey. The demo-
graphics survey asked participants about their programming
experiences, familiarity of the programming language and
framework used in the tasks and their tool usage habits when
debugging web applications. After the survey, they were shown



tutorials of both Replay and Chrome DevTools. For each
tool, participants first read a tutorial with text and screenshots
introducing the key features, and then completed a warm-
up task. Participants then completed two debugging tasks,
one with Chrome DevTools and one with Replay. They were
allowed to explore or modify the code using VSCode and to
search on the web. Participants were asked to think aloud while
working.

We divided the four tasks into two sets. Set A included
Bug 1 and Bug 4, and Set B included Bug 2 and Bug 3. Each
participant got either Set A or Set B. In this way, the two
bugs that each participant received had different symptoms
and sizes of the cause-effect chasm. We counterbalanced the
order of the two tasks within the set and the order they use
the debugging tool, creating 8 conditions. Participants were
assigned to these 8 conditions sequentially based on the time
of their study. If a participant was excluded because they were
unable to make progress, the next participant was assigned to
the excluded participant’s condition.

After completing the tasks, participants took part in a
semi-structured interview. Questions focused on participants’
strategies for the two tasks, the challenges they encountered,
the ways in which tool support did or did not help address the
challenges, and the features they found helpful.

Midway through the study, the interface of Replay was un-
expectedly updated. Specifically, the ability to add breakpoints
and the resume and rewind buttons were removed (the left- and
right-pointing triangle buttons in Figure [2). This may have
changed the way participants rewind to a specific line.

D. Analysis

To examine how debugging behavior may change with use
of an omniscient debugger, we examined debugging behavior
by qualitatively coding our screen recording data. We focused
on three categories of codes: navigation, view value, and
rerun. To construct the code book, the first author selected
the first 4 screen recordings to build the initial code book.
We then refined the codebook, and the two authors applied
the code book iteratively to the same screen recordings and
compared the results. After coding 7 screen recordings (2
hours in total), we performed an inter-rater reliability test and
reached a Cohen’s Kappa of 75.25% for navigation codes,
81.7% for view value codes, and 77.94% for rerun codes,
indicating substantial to almost perfect agreement [46]. The
first author then coded all the recordings with the final version
of the code book. During this process, we found two new types
of navigation action codes that we did not encounter when
constructing the code book, so we added them to the code
book after the inter-rater reliability test. We argue that adding
these two new actions will not affect the reliability of the code
book, so we did not perform a new inter-rater reliability test.

Navigation codes capture a change to the currently visible
top-level function or declaration, or switching to another editor
or debugging tool. For each code, we recorded the new file,
new function, and the navigation action that the developer per-
formed to reach the new function. We categorized navigation

actions into navigation actions that “use the debugger”, such
as stepping into a function or using Replay’s jump to code
feature, and those that “do not use the debugger” such as
scrolling, clicking on a file, and editor features like going to
the definition of a function (Table [II).

View value codes capture actions to view the runtime value
of an expression (Table [II). This includes hovering on an
identifier in the debugger to see its current value as well as
adding a print statement and rerunning to see the value in
the console. We did not code instances when the debugger
displays runtime values without any intervention from the
developer. For example, Chrome always displayed the values
of the variables currently in scope. We did not create codes
unless the developer clicks on it to expand its fields.

TABLE 11
NAVIGATION ACTIONS WITH OR WITHOUT THE DEBUGGER

Action Description Use debugger?
Scroll Scroll mouse wheel to function no
Go to Go to the definition of a function no
Click on file Click on a file in the file explorer no
File search Perform search within one file no
Global search Click on a global search result no
Switch tab Switch to another open tab no
Switch tool Go to another tool no
Step Step into/out of the current function  yes

Hit breakpoint
Jump to code

Breakpoint hit, jumping to a function  yes
Jump from event or console log to  yes
code in Replay

Console error Click warning/error link in console yes

Debugger Click on call stack, or breakpoint yes
links* item in the debugger

Pause on ex- Use the “pause on caught/uncaught yes
ception® exception” feature in chrome

*: added after the inter-rater reliability test was done

We created a rerun code every time the developer repro-
duced the bug in the web browser and recorded the purpose for
the rerun. The purpose was determined by the actions before or
after the rerun. We identified 4 purposes for which participants
rerun, and they are listed in Table

TABLE III
ACTIONS TO VIEW THE VALUE OF AN EXPRESSION

View action Description

Pop up
Expand locals
Chrome watch
Print statement
Console

Hover over variable to see value in a pop up
Expand a variable in the local variable view
Add a watch in Chrome

Add a print statement

Type an expression in the console

V. RESULTS

We provide the answers to our research questions in this
section. Before examining the impact of Replay on productiv-
ity and debugging behavior, we first analyze how participants
utilized Replay’s three features that was captured in our codes
(Table[V). We can see that nearly all participants used the three
features. However, as the following analyses reveal, feature
usage did not translate to improved debugging productivity.



TABLE IV
PURPOSES FOR RERUNNING THE PROGRAM

Purpose Criteria

Initial rerun Reproduce in Chrome or Replay before
any investigation efforts

If the previous action is code behavior
modification

If the participant collected runtime value
during the rerun, or added a print state-
ment before the rerun

If the previous action is adding a break-

point

Observe behavior change

Collect runtime value

Determine if code is run

Other If does not fall under the purposes above
TABLE V
REPLAY FEATURE USAGE PATTERNS
Feature Participants who used ~ # uses per session
Jump to code 17 2 (1-5)
Record/Rerun 19 2 (1-2)
Print statement 17 2 (1-6)

Note: number of uses is reported as “median (interquartile range)”

A. RQI. When do omniscient debuggers improve debugging
productivity?

We compared the success rate and the task time for the
four bugs when developers use Chrome or Replay (Table [VI).
Because the task times of some conditions are not normally
distributed (Shapiro-Wilk test p < 0.05), we used Mann-
Whitney U tests to compare the time distributions. Overall,
we found that, for both task time and success rate, there were
no significant differences between developers using Chrome
and those using Replay.

To examine if Replay helps developers find the key function
related to the bug, we defined a milestone function (MS1) for
Bugs 2, 3, and 4 and coded the time participants reached this
function. Since we already provided participants the function
that rendered the element in Bug 1, we exclude this bug for
analysis of MS1. For participants still working to reach MS1 at
the end of the session, we coded their time as the full session
time (40 minutes). We found that Replay did not help users
reach MS1 significantly faster (Figure [3).

TABLE VI
SUCCESS RATES AND TASK TIME IN MINUTES PER BUG
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Fig. 3. Box plot of the time participants reached MS1

B. RQ2. How do omniscient debuggers change navigation
behavior when debugging?

Developers need to navigate in the code to identify the bug.
With features such as causal navigation, we hypothesized that
developers would visit fewer files and functions, and would
focus on the relevant files and functions faster. However, this
hypothesis is not supported by our observations.

1) The number of files and functions developers visit is
similar: We calculated both the number of files and functions
that the developer visited in each debugging session. There
were no significant differences between Chrome and Replay
in either overall (Mann-Whitney U test p = 1.0 and 0.68,
respectively), nor for individual defects (Table [VII).

TABLE VII
NUMBER OF FILES AND FUNCTIONS VISITED

Bug Tool Files visited Functions visited
e G 308 poom G p-ow
B Qo sGe P09 s p=092
R
R I T e

Note: numbers are reported as median (interquartile range)

2) The number of navigation actions is also similar, but
developers used different types of navigation actions: We
counted the occurrences of different navigation actions from
the coded data. First, we compared the total number of
navigation actions during debugging with Chrome and Re-
play (Figure f}a) and found no significant difference (Mann-
Whitney U test p = 0.409). We then examined the number
of navigation actions which “uses the debugger” or “does
not use the debugger” (Figure @}b,c). The median number of
navigation actions that “uses the debugger” was 3x higher for
Replay users than for Chrome users, and this difference was
significant (Mann-Whitney U test p = 0.0439). There is no
significant difference for navigation actions that “do not use
the debugger” (Mann-Whitney U test p = 0.776).



a. All navigation actions b. “Uses the debugger” ¢. “Does not use the debugger”
160 o 140 4 140 o
140 1 120 4 120

o
120 100 4 100 4

100 1

2 80 4 80 -
2 804
© 60 4 60 o
60 - o
40 40 4
40 4
20 204 20
04 0 é 0

Chrome Replay chrome Replay chrome Replay

Fig. 4. Number of navigation actions

2 _ .
2 function call H S function
Bugs  (Bug) [Event)--- 2trcten: 2t Error Je--- ... (Setstte
1 function 1 function
Bug 4

A
»

Timeline of execution

[ : milestone 1 3 : jump target of Replay

need to follow when stepping.
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message in the app state (“Set state”), and the code that renders the output
(“Render”). In Bug 2, the bug is in the MS1 function, while in Bugs 3 and
4, participants need to further navigate to find the bug after they reach MSI.

3) Replay’s “jump to code” feature did not help partici-
pants reach MS1 faster: In Replay, “jump to code” takes the
developer directly from a user event or console output (but
not graphical output) to the code that responds to the event
or prints the output. We expected this to give the developer
a clear starting point to examine the code, enabling them to
navigate toward the cause of the defect. We expected it to be
particularly useful when working with unfamiliar code, as in
our experiment. However, in RQ1, we observed that Replay
users did not reach the MS1 function faster than Chrome users
(Figure [3). Although two-thirds of the Replay participants
initially used “jump to code”, fewer than one-third of those
participants succeeded in navigating from the click event to
MS1—and two participants never reached MS1 at all.

We found three barriers that kept “jump to code” from
reducing the navigation burden. First, the “jump to code” target
was before, not after, the function they need to navigate to, so
it could not be used with other omniscient debugging features,
like stepping back. The ability to step back is an important
feature of omniscient debuggers and can be used to trace back
from the symptom of the bug to its root cause [3]. However,
Replay’s “jump to code” target for user events is typically
before MS1 (Figure [3). Therefore, they could not use the step
back feature. The jump target for program output (console or

96 ] 40 <li

key={idx}

data-testid={actionName}

onClick={() => {
// we need update state before executing the action in case
// the action uses the appState it's being passed (that still
// contains a defined contextMenu) to return the next state.
onClose(() => {

actionManager.executeAction(item, "contextMenu");

3

3}

103 1
104 1

Fig. 6. The jump to code target of Bugs 2 and 3

graphical) is typically after the defect. While Replay supports
jumping from console output to code, because there was no
console output for the four bugs, it could not be used. Had
Replay supported jumping from graphical output to the code
like ZStep 95 [25] or Whyline [5]], developers might have been
able to use the step back feature to locate the fault faster.

Second, it was difficult for participants to rewind the trace
to a specific line when they needed to inspect the application
state at that line. They needed to add a breakpoint at the
line, and then use the rewind/resume buttons (Figure E]) to
hit the breakpoint. Three participants (P3, P6, P9) incorrectly
clicked the play recording button (Figure [I}F) instead of
rewind/resume, so the recording did not pause as expected.
Another way to rewind is to select “Fast forward to line X" in
the line’s context menu. However, this was not discoverable.

In Bugs 2 and 3, this usability issue reduced the effec-
tiveness of the “jump to code” feature. Replay displayed the
event for a context menu click that triggered the bug. After
participants clicked the “jump to code” button for this event,
Replay rewound the recoding to an onClick event handler
(line 103 in Figure [6), which registered another call back that
executes the action containing the bug (line 104). Although
lines 103 and 104 were adjacent, they were not executed
sequentially, so developers could not navigate to line 104
using step over or step into. Because it was challenging to
rewind the recording directly to line 104, participants could not
successfully navigate to MS1 and had to revert to traditional
debugging techniques. While Replay was able to help jump
to the event handler, participants were not able to locate the
function containing the bug.

Third, certain user interactions were not recorded by Replay.
In Bug 4, the bug was triggered after an image insertion event.
Participants first clicked the “insert image” button on the web
page, then selected an image in the operating system window.
Although the first click on the button was recorded, the
interaction in the OS window, specifically the “Open” button
that inserted the image into the web page was not recorded.
Therefore, the “jump to code” feature was not helpful.

4) Replay did not help navigate causal dependencies: Bug
3 had a large chasm, because the defect was caused by a
corrupted state that was modified in a different function. As
shown in Figure [5] once developers identified the corrupted
state (at the “Error” location), they needed to navigate to the
“Bug” location where the state was set. However, since the
corrupted value was not passed as a parameter, it was not
obvious where the modification occurred.



Replay did not help navigate this chasm. Although its step
back feature allows developers to go backward in time, it offers
no guidance on where to step to locate the code that modified
the relevant state. In contrast, research prototypes such as
Whyline [5], dynamic slicers, and object-centric omniscient
debuggers [31] may offer more effective support. These tools
directly address questions like “Why does this variable has this
value?”, or “Where was the value set?” by performing dynamic
slicing or tracking the changes of objects. Unlike Replay, they
not only allow developers to go backward in time, but also
guide them toward the relevant code locations.

C. RQ3. How do omniscient debuggers change how develop-
ers rerun the program when debugging?

In traditional debugging, developers often insert breakpoints
or print statements to inspect program states. If they miss a
critical state or need to re-examine a previous one, they must
restart the program and reproduce the scenario, which can be
time-consuming. With Replay, developers do not need to rerun
to inspect program states. Therefore, we hypothesized that
Replay users would rerun the program less frequently, and
that Replay and Chrome users would rerun the program with
different purposes. Our data supported these hypotheses.

We counted the number of reruns in each debugging session.
Across all 20 Chrome sessions, the median number of reruns is
10, while the median is 2 for Replay sessions. This difference
is significant (Mann-Whitney U test p = 0.000019). We also
compared the number of reruns for each bug (Table [VIII), and
the number of reruns of Chrome users is significantly higher
for Bugs 3 and 4 (p < 0.05).

TABLE VIII
NUMBER OF RERUNS

Bug Tool # reruns U test p =
Bugl %ﬁ;"; Bow) s
Bug2 %};ﬁ‘g ; 83; 0.070
Bug3 %he;"l‘;ye 122((129‘21)7) 0.045
Bug4 %};ﬁ?ye 102((12?'21)5 ) 0020

Note: numbers are reported as median (interquartile range)

Replay and Chrome users differed in their purposes for
rerunning the application (Figure [7). Replay users used rerun
for two specific purposes. Developers first used the “initial”
purpose to record the bug in the Replay browser, enabling them
to then reproduce it in its entirety in the Replay browser. In
Bugs 3 and 4, which were caused by invalid inputs, 5 out of 10
participants also reran the program with a valid input so that
they could compare the runtime states in the two scenarios.
Replay users also used rerun to “observe behavior change”.
This is when they test their hypothesis for a potential fix by
modifying the code and rerunning in the browser.
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Fig. 7. Average number of reruns by purpose

Chrome users reran the program for a wider variety of
purposes. In addition to the two purposes of Replay users, they
also reran to collect runtime values and to determine if code
is executed in a specific scenario. When the developer added
a print statement before the rerun, or viewed runtime values
during the rerun, we coded it as “collect runtime values”.
If they did not collect any runtime value, but they added a
breakpoint before rerunning, we coded it as “determine if code
is run”. This typically happened when developers suspect a
function is related to the bug, and they want to test if it is
executed when they trigger the bug. Replay users do not need
to rerun to find out if code is executed because the hit count
feature shows the developer how many times a line is executed.
About 35% of the reruns involve collecting runtime values, and
13% have the “determining if code is run” purpose.

In summary, we found that developers reran the program
less when using Replay because they do not need to rerun to
collect runtime values or determine if code is run.

D. RQ4. How do omniscient debuggers change how develop-
ers view the values of expressions?

One of the key expected benefits of omniscient debuggers
is enabling developers to collect the value of a new expression
without having to rerun the program. We examined the impact
of this feature on how developers choose to collect runtime
values. Specifically, we examined the number of expressions
viewed, the debugger features developers used to view them,
the types of expression developers viewed, and the barriers
that hindered developers during this process.

We define a value collection action as a deliberate step a
developer takes to retrieve the runtime value of an expression.
This includes hovering over an expression to view its value
in a pop up, as well as the act of adding a print statement
and reproducing the bug (if needed). We first compared the
number of value collection actions and the number of unique
expressions collected by developers and found no significant
difference (Table [[X).

For both Chrome and Replay users, the hover pop up was
the most common way to collect runtime value, both using
it around 75% of the time (Figure [8). In Chrome, developers



TABLE IX
NUMBER OF VALUE COLLECTIONS AND UNIQUE EXPRESSIONS VIEWED

Bug Tool # collection actions Unique expr viewed

Bugl %herpol?ye B ((98_-11%43) p=10 ((77_-191)) p=09
Bus gy 14228 =% ggr)  p=021
Bug4 %};ﬁﬁ}e 12 E?]lg)z) p=021 18 Eg:?)Z) =017

Note: numbers are reported as median (interquartile range)

need to first add a breakpoint and then rerun the program.
When the execution is paused, they can hover over an identifier
and the runtime value of that identifier will appear in a pop
up. In Replay, developers first ensure the recording is rewound
to when the variable is in scope, and then they can hover over
the identifier to see its value. However, the hover pop up can
only view expressions that appear in the source code and that
ends with an identifier or field access (e.g. arr [3] .field).
If it ends with a function call (e.g. Array. from (bytes)),
they need other methods to view it.

One such method is the “console”, which both Chrome
and Replay developers used approximately 5% of the time.
When the execution is paused at a statement in Chrome or
the recording is rewound to a statement in Replay, developers
can type an expression into the console, and its value will
be evaluated in that context. Two Chrome users (P3 and P7)
and two Replay users (P3 and P19) made use of the console.
Another method to view more complex expressions is the print
statement. In Chrome, developers inserted print statements by
modifying the code in the editor, rerunning the program, and
then viewing the console output. In Replay, developers only
needed to add the print statement in the recording, and Replay
automatically updated the output in the console. The print
statement constituted 7.4% of the runtime value collection
actions for Chrome users and 18.4% for Replay users. Replay
reduced the work involved in using the print statement, and
we observed that developers used print statements more with
Replay (Mann-Whitney U test p = 0.0003).

We analyzed the types of expressions that developers ex-
amined. We classified expressions into complex and simple
categories. A “simple” expression is one that can be viewed
using pop up, meaning that it ends with an identifier or field
access. A “complex” expression is one that cannot be viewed
using a pop up. We found that viewing complex expressions
is relatively uncommon in both Chrome and Replay sessions.
Only 3 of 20 Chrome sessions and 5 of 20 Replay sessions
involved complex expression views. Additionally, 4.65% of
all Chrome runtime value collections and 3.37% of Replay
runtime value collections focused on complex expressions.

While developers with Replay used print statements more,
they encountered some difficulties. To add a print statement in

Chrome Replay

pop up pop up

chrome watch expand locals

expand locals

print statement

print statement

console console

Fig. 8. The techniques developers used to collect runtime values

// generate image id (by default the file digest) before any
// resizing/compression takes place to keep it more portable

I: const fileld = await ((this.props.generateIdForFile?.(
imageFile,

I: ) as Promise<FileId>) || generateIdFromFile(imageFile));

Il if (!fileld || fileId.length !== 40) {

console.warn(

// generate image id (by default the file digest) before any
// resizing/compression takes place to keep it more portable

fileld (+] Q
/1v > [ J
ll const fileId = await ((this.props.generateIdForFile?.(
imageFile,
I: ) as Promise<FileId>) || generateIdFromFile(imageFile));
B if (1fileld || fileId.length !== 40) {

console.warn(

Fig. 9. The process of creating a print statement in Replay

Replay, the developer needs to click the plus sign (£3), then
a print statement panel will appear above the line (Figure [9).
This is equivalent to adding a console. 1og statement above
the line where the plus sign is clicked. When four participants
(P4, P5, P8, P15) wanted to see the runtime value of a variable
right after it was defined, they added the print statement by
clicking on the definition line. Because the console.log
statement was added above the definition line, this would result
in a reference error. This was confusing for participants, and
they sometimes attributed the reference error to an incorrect
cause, such as that the statement was not executed.

In summary, we found that Chrome and Replay users
collected similar numbers of runtime values, with most being
collected in both cases using the hover pop up. Replay users
used print statements more than Chrome users. Almost all
runtime values collected are simple expressions.

VI. THREATS TO VALIDITY

Internal Validity. The results could be influenced by the
order in which participants see the tasks, as familiarity gained
from the first task might make the second easier. We mitigated
the effect of ordering by alternating the orders of the tool and
the task, creating eight experimental conditions in total.

External Validity. The generalizability of our findings
may be limited by sampling bias, as our participants were
primarily master’s students and junior engineers. However,
our demographic survey indicates that they had professional
experience in software engineering. All participants had at
least 7 years of programming experience, and 75% had at



least 2 years of professional software engineering experience.
Another potential threat to external validity is whether the
selected tasks are representative of common debugging sce-
narios. To address this, we designed the study using a popular
open-source web application and selected two bugs from its
issue tracker. We did not choose the other two bugs from the
issue tracker because we also wanted to include bugs that may
happen during development, not only ones reported later by
users. The four bugs in our study covered a range of debugging
challenges, varying the size of the cause-effect chasms and the
type of bug symptoms.

As with all lab studies, our participants worked with an
unfamiliar codebase, which differs from real-world scenarios
when engineers debug systems they are familiar with. To com-
pensate for this, we provided participants with key knowledge
needed to begin work on the tasks. We opted not to conduct a
longitudinal study where participants could work on their own
codebase, as we wanted to control the conditions to observe
the causal impact of omniscient debuggers.

Our participants were first-time Replay users, and the results
might differ for more experienced users who could potentially
benefit more from the tool. While expert users would likely
navigate the interface more fluently and encounter fewer
usability issues, they would still face the same fundamental
navigational limitations inherent to Replay’s design, which we
explore in the discussion section.

Construct Validity. The definition and interpretation of the
codes in our code book may be subjective. To mitigate this
threat, we built the initial code book from our video data, re-
fined the definitions until two authors could independently and
consistently annotate segments of the data, and demonstrated
substantial to almost perfect agreement in inter-rater reliability.

VII. DISCUSSION

In this paper, we conducted the first controlled experiment
examining the impact of a commercial omniscient debugger,
which was publicly released and sold as Replay. We found
that, despite hopes that omniscient debuggers might dramati-
cally ease debugging, they did not improve task success or
completion time. This is similar to some prior evaluations
of omniscient debuggers such as Timelapse [34] and Trace-
glasses [42]], and in contrast to others [S]], [37].

To examine why, we conducted the most detailed analysis
to date of how omniscient debuggers change developer be-
havior. We found that participants faced two types of barriers:
usability issues and fundamental navigational limitations. The
usability issues included difficulties rewinding the execution
trace to specific lines of code and confusing reference errors
when print statements were not placed correctly. However, the
more significant barriers were the limitations in how Replay
supports navigation during debugging. We found that, despite
expectations that stepping backward is the key feature and
enabler of omniscient debuggers, providing better connection
from symptom to cause may be more important. Replay has a
“jump to code” feature that links events to the relevant code,
but it was not particularly helpful. The ability to link the output

to the corresponding code may be more important. Previous
research prototypes have supported this, such as jumping to
console [3] or graphical [25]] output statements, or jumping to
code that sets values affecting graphical elements [5]. Replay
itself supports jumping to console output, but not graphical
output. Since our tasks produced no console logs, participants
only used jump to event.

It is important to distinguish between jump to event and
to output. With jump to event, developers typically select an
event that triggers the bug and then step forward. During the
process, they may encounter irrelevant functions that they do
not know if they need to step into. In Bugs 2 and 3, although
there are only 2 function calls between the jump target and
MSI function, there are 5 other irrelevant functions that they
need to decide whether to step into or not. After developers
used the “jump to code” feature and found a starting point,
their debugging experience was close to traditional breakpoint
debugging, with limited support on where to step or what
to inspect next. In contrast, when using jump to output,
developers will typically choose the undesired output caused
by the bug, which is after the bug, and then reason back. The
backward reasoning approach is more aligned with omniscient
debuggers, which allow developers to step backward, and
which may have a much smaller branching factor, reducing
the search space. The debugger can take advantage of this,
with backward reasoning techniques like dynamic slicing. In
Bugs 3 and 4, the error message comes from an errorMessage
field in the app state. If Replay supported jump to output,
the developer could first jump to the state update statement
(the “Set state” box in Figure [5), and then trace back to find
the statement that generated the error message. If the chasm
between the state update and the error message was too large
to step through, as in Bug 3 (5 function calls), the debugger
could further help the developer by tracing back to the error
generating code (the “Error” box) using slicing techniques.
Tools might also add support for jumping from an HTML
element to the React code that renders it, as we have noticed
two participants (P11, P19) trying to locate the code manually.

We also found that some effective debugging strategies
were underutilized, contrary to our expectations. For defects
with an error message dialog, we expected developers to start
debugging by locating the relevant code using the message
(by searching for it, or clicking the link to the error in the
console). However, only 8 out of 20 developers did so initially,
and they reached MS1 much faster (median 1.8 min vs. 14
min; p = 0.0033). Although this strategy was effective, many
developers did not use it, possibly because they were not
familiar with it. This suggests that there are potential benefits
to increasing awareness of different debugging strategies for
various types of defects [47]].

While the wide release of omniscient debuggers commer-
cially is an important milestone in their development, our work
suggests more remains to be done to ensure their value in
practice. In particular, the more high-level interactions with
the execution trace that research prototypes have explored is
crucial to fully realizing the value of omniscient debugging.
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