Check for
Updates

2024 39th IEEE/ACM International Conference on Automated Software Engineering (ASE)

How many pomodoros do professional engineers need to
complete a microtask of programming?”

—Two Industrial Case Studies of Freelancers and Employees using Microtask Programming—

Shinobu Saito™
shinobu.saito@ntt.com
NTT Computer & Data Science Laboratories
Tokyo, Japan

Emad Aghayi
eaghayi@gmu.edu
George Mason University
Fiarfax, VA, USA

Abstract

Microtask programming enables software engineers such as free-
lancers and part-time employees to contribute to software projects
even when they can not spend much time on them. It decomposes
software design into small, self-contained specifications. The de-
composed specifications enable them to complete implementation
and review task in a short time. In this paper, we empirically in-
vestigate the time required for software engineers to complete
microtasks in an industrial setting and explore their perceptions of
microtask programming by investigating two industrial projects
using it. The projects were carried out in different companies and
differed in the employment of the engineers. One contracted 9 free-
lancers, and the other asked for 8 part-time contributions from
employees at work on other projects. We conducted a survey and
a focus group with the engineers. Based on the development data
of the case studies, we found that almost all microtasks were com-
pleted in less than four pomodoro repetitions, namely about two
hours in the pomodoro technique. These data shows that engineers
who cannot work full-time on a project can undertake microtasks
if they can spare one-third of their work day. We also examine how
engineers who are employees experience microtask programming
similarly and differently from freelancers.

CCS Concepts

- Software and its engineering — Application specific develop-
ment environments.

Keywords

Microtask, Programming, Specifications

“The plural of pomodoro in Italian is pomodori, but we describe it as pomodoros.

This work is licensed under a Creative Commons Attribution International 4.0 License.
ASE °24, October 27-November 1, 2024, Sacramento, CA, USA

© 2024 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-1248-7/24/10

https://doi.org/10.1145/3691620.3695263

2002

Yukako Iimura
yukako.iimura@ntt.com
NTT Computer & Data Science Laboratories
Tokyo, Japan

Thomas D. LaToza
tlatoza@gmu.edu
George Mason University
Fiarfax, VA, USA

ACM Reference Format:

Shinobu Saito, Yukako limura, Emad Aghayi, and Thomas D. LaToza. 2024.
How many pomodoros do professional engineers need to complete a mi-
crotask of programming?: —Two Industrial Case Studies of Freelancers
and Employees using Microtask Programming—. In 39th IEEE/ACM Inter-
national Conference on Automated Software Engineering (ASE °24), October
27-November 1, 2024, Sacramento, CA, USA. ACM, New York, NY, USA,
11 pages. https://doi.org/10.1145/3691620.3695263

1 Introduction

Engineers who work as freelancers and part-time employees cannot
join projects full-time. By and large, such engineers want to work
with flexible hours against a background of the rise of work style
diversity. After the COVID-19 pandemic, it is reported that Work
From Home (WFH) allowed engineers to work at different times
than they did before [7], making it more difficult to work continu-
ously at pre-determined hours to match the working hours of other
members. Organizations need to offer ways for such engineers to
contribute to projects even though they only use short, fragmented
time for the projects.

Microtask programming [13] offers a potential solution for in-
dustrial projects to receive contributions from those who do not
work full-time. Programming tasks are broken down into very short,
discrete tasks: microtasks. To do so, the design of the software is
decomposed into a set of small, self-contained specifications, each
with a clear and independent objective. These decomposed specifi-
cations, which we call micro-specifications [16, 17], enable engineers
to contribute without prior project knowledge. They can complete
implementation and review tasks in a short time (i.e., microtasks).
As each microtask can be completed in isolation from other on-
going work, microtasks do not require engineers to expend time
coordinating with other engineers.

On the other hand, programming tasks are separated by makers’
schedule, not managers’ schedule [8]. The manager’s task is sep-
arated by one hour, but the programming task should take much
more time. No matter how much microtask programming is used,
one hour is too short and inefficient for engineers to perform ad-
equately. In an industrial development project, how many hours
can programming microtasks be separated by? A well-known time
management technique is the pomodoro technique [5]. It involves

https://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3691620.3695263&domain=pdf&date_stamp=2024-10-27

ASE 24, October 27-November 1, 2024, Sacramento, CA, USA

setting a 25-minute timer for concentration on a specific task, fol-
lowed by a 5-minute break. Each 25-minute interval is called as a
“pomodoro,” which means tomato in Italian. The technique recom-
mends taking a long break after four pomodoro repetitions, namely
2 hours = 4 X (25 minutes + 5 minutes). Based on this, we believe
that programming tasks can be separated into two-hour units.

There are two primary characteristics of microtask program-
ming: 1) short-term work with minimally sufficient information
and 2) individual work in constrained communication. Most profes-
sional engineers would not have had the opportunity to program in
this way before. Microtask programming requires a shift in devel-
opment style for participating software engineers. To be successful,
industrial projects aiming to use microtask programming need to
pay close attention to how its engineers perceive it.

Existing studies of microtask programming focus on its techni-
cal feasibility in an experimental setting [2, 4, 6, 11, 13, 14]. These
studies have not empirically investigated the time required for pro-
fessional engineers to complete microtasks in an industrial setting,
nor closely examined their perceptions of microtask programming.
In this industrial paper, we aim to answer the following research
questions:

RQ1: Can professional engineers complete a microtask of
programming in two hours (= four pomodolo repetitions)?

RQ2: How do professional engineers perceive working with
minimally sufficient information in constrained communi-
cation via microtask programming?

RQ3: Does microtask programming affect the motivation
of professional engineers?

To answer the questions, we examine two industrial projects
which made use of microtask programming. The two were car-
ried out by different companies and differed in the employment of
engineers. One contracted 9 freelancers, while the other asked 8
company employees to work part-time. We conducted a survey and
focus groups with 17 professional engineers (9 freelancers and 8
employees) about their experiences with microtask programming.

The remainder of this paper is organized as follows. Section 2
describes related work in microtask programming. Section 3 intro-
duces microtask programming and a platform, which we developed,
to manage microtask programming workflows and monitoring.
Section 4 describes the context of two industrial projects which
make use of microtask programming and analyzes investigate the
completion time of microtasks. Section 5 explains the results of
the survey and focus group with the participants. We identified
the differences between two groups: freelancers and employees.
Section 6 discusses the implications from the results of the case
studies, and Section 7 concludes.

2 Related Work

Organizations traditionally employ employees, who each work
during the same business hours during the time period of the project.
This is in part because of project meetings: not only fixed, regular
meetings (e.g., daily stand-up) but also ad-hoc meetings. These may
require the participation of all members of a team. These situations
might be characterized as meeting heavy [18]. For this reason,
industrial projects may have limited work-time flexibility.

2003

Saito et al.

One approach to addressing this problem is microtask program-
ming, which decontextualizes work to reduce the need for coor-
dination and context. Microtasking is one of several models for
crowdsourced software development [22]. Crowdsourcing has been
applied to software engineering activities such as design [14], im-
plementation [2, 4, 11, 13], and testing[6]. Commercial providers
such as TopCoder, uTest, and UserTesting.com offer platforms for
crowdsourcing software engineering. Studies of TopCoder have
revealed that the number of contemporary projects, documentation,
and crowd workers has a key impact on project quality [19].

Newcomers to software projects face onboarding barriers to
install necessary tools, identify and download dependencies, con-
figure the environment, understand the codebase, and identify a
task. As a result, newcomers spend considerable effort onboarding.
Programming environments may offer developers a preconfigured
development environment to help reduce onboarding barriers. Mi-
crotask programming aims to further reduce onboarding barriers by
decontextualizing work into microtasks. For example, Apparition
provides a dedicated environment where engineers create micro-
tasks for crowd workers to design and implement Ul elements [11].
CodeOn provides an environment where developers can ask for
help from other developers [4]. Studies of microtask programming
have found that workers can be onboarded in less than one hour
and complete microtasks in under five minutes [1, 2, 12]. However,
companies currently have low awareness of these approaches and
their potential to reduce onboarding barriers [15].

Based on the success of open source outside companies, compa-
nies have adopted inner-sourcing [3]. In an inner-source project,
any employee within a company may contribute to the project [20].
Inner-sourcing provides new models for encouraging internal col-
laboration among developers within a company [10]. Inner-sourcing
may increase development efficiency and code quality while de-
creasing development cycles [3]. However, there are no industrial
case studies, other than our prior work [16], related to microtask
programming in the context of inner-sourcing.

3 Microtask Programming

3.1 Two Types of Micro-Specifications

A microtask consisted of the implementation of a small, self-contained
specification (i.e., micro-specification) or the review of an imple-
mentation microtask. Each microtask directly corresponds to a
micro-specification. We define two types of micro-specifications:
frontend and backend [16, 17].

Frontend micro-specifications specify how to build a user in-
terface (i.e., system screens) while backend micro-specifications
specify how to build backend logic (i.e., classes). To create frontend
micro-specifications, the UI design images are decomposed into UI
components and Ul parts. Fig. 1 gives an overview of the relation-
ships among Ul parts, UI components, and system screens. Inspired
by Atomic Design [9], Ul parts are the basic building blocks of the UI
(e.g., input boxes, buttons). Ul components group several related UI
parts. Ul parts and UI components are together grouped into system
screens. Fig. 2 shows an example of a frontend micro-specification
for the Offer UI component. It contains two parts: parameters and

How many pomodoros do professional engineers need to complete a microtask of programming?

Ul Parts Screens

Ul components

ROUTE SEARCH CRITERIA

Figure 1: Screens are decomposed into Ul components,
which are decomposed into UI parts [17].

tye rquire detault desc
(pentedityentpeopietbu
shisiitiddentrouehim o

efpintseach)

i Speciy theicon' ype. S the ypeof BBican. Parameters of the

[UlParts

iconPoston (ettight) Position o iconrelativ o abe. Default s right.

cassName sting Speciy the lassNamefs)forCSS, I you need.

Spec: req0_SBIL1
Create a new component with the followings:

Design Image of
the Ul Parts

Basic usage

Example Result

<BBRoundelconLabel

Basic usages
pen'>Offer 1</BBRoundelconlabel> 9

(Example code
L and result),
Layout details,
Behaviors

Use “BBLabel".
Set contents to “chidren”

8 pixel of space
upper and lower

Background color:yar(~bg-color-light)

10.5 pixel of
oo

15 pixel of space left

and right Border-radius: 19.5px

Figure 2: A micro-specification for Offer UI component

design images. By referring to a design image depicting the appear-
ance of the user interface alongside a description, engineers may
implement the UI component using the parameters.

An example of micro-specifications for the backend, as shown
in Fig. 3. Typically, one method in a Java class corresponds to
one micro specification. To begin work on a backend microtask to
implement a part of a method, an engineer read a description of
related abstract data types, an overview of the method’s purpose,
and micro-specifications describing its expected behaviors.

3.2 Two Types of Roles

Microtask programming cannot be used to develop all the source
code of a system. As discussed in the later case study section, pro-
gramming tasks for one part of the system will be carved out as
microtasks. So, we defined two roles: Microtask worker and Dedi-
cated worker [16, 17]. The former is not full-time engineer who uses

2004

ASE ’24, October 27-November 1, 2024, Sacramento, CA, USA

get calculation condition.js

- Abstract Data Types

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

* ### ADO: return data type

* @typedef {object} AFOTO0utput

* @property {D phicll} Pl / informatior
o 1
* #4## ADO1-1: demographics information data type

* @typedef {object} Demographic //demographics information
* @property {string} demographicCd //demographics code

* @property {string} range //age range code

9

* Function overview
* function definitions.

ax
* ### AFO1 get calculation conditions masters

* ###1# behaviors

{ Micro-specification 1
* 1. Call persistent API {@link .getDBD« with no p T
* set the values of parameters and API return to {@link Demographic}
1 * - Demograpic.range: Strings. concatenate range.min and range.max return of {@link ExternalAPLEADemographi:
* 2. When number of result of {@link ExternalAPL.EADemographic} equals 0,

* then make error object {@link APIError) and teh exception,
* -error message: "Failed to get demographics information master”

(o I
T Micro-specification2
* @returns {AFO10utput} // calculation conditions

function getCalcConditionMasters() {

Figure 3: A micro-specification for the backend module.

available fragmented work time periods to complete microtasks.
The latter is full-time engineer who is responsible for development
tasks other than microtasks. They handle systems design and then
create micro-specifications by decomposing design documents. Un-
like microtask workers, the dedicated workers complete tasks that
require more project knowledge such as the system architecture
and database structure of the project.

3.3 Two Types of Constraints on
Communication

To enable microtask workers to contribute whenever and wherever
they want, coordination between workers is strictly constrained
in microtask programming. The first constraint is that there are
no meetings or synchronous, face-to-face communication between
dedicated workers and microtask workers. For example, when a
microtask worker asks a dedicated worker a question regarding
a micro-specification, the microtask worker issues a new inquiry
ticket via the ITS. A dedicated worker is then assigned the ticket
and responds. However dedicated worker may sometimes want to
communicate with all microtask workers immediately. To do so,
dedicated workers may use tools such as a wiki or chat. The second
constraint that microtask workers did not have an opportunity to
communicate with other microtask workers, either synchronously
or asynchronously. Moreover, microtask workers did not participate
in any type of meetings during the whole period.

3.4 Two Types of Workflows and Platform

Since there are two types of microtasks, there are two workflows:
implementation and review workflows. To manage the workflows,
we developed a platform: Microtask WOrkflow and Reward calcu-
lation Platform (MWORP). It is a clinet-server application which
consists of two key components: Microtask workflow automation

ASE 24, October 27-November 1, 2024, Sacramento, CA, USA

» Fetch/ MWORP
Commit » Monit
microtasks | | [Microtask Workflow | 5| Microtask Rewards | - rea/,;’rgrs points
“1 Automation M Calculation [~
[— ==
> v Y
ode Edimr'(— Code Repo. Activity
o
[] Ul Development < _% records ﬂ
[)) Sandbox »
Microtask | |microtask Client Monitor Client Dedicated
Worker Worker
(Freelancer) Code Repo. (Employee)
v
S, Issue Ticket &
N . “ System e » Set
> Review Centralized server rewards points
of microtasks

[Function for microtask programming [___| Existing tool
—> Worker operation == Tool interaction

Figure 4: A platform, MWORP, provides workflow automa-
tion to fetch and automatically assigns microtasks to work-
ers as well as calculates reward points based on the progress
of them. Other functionality is provided through existing
tools.

and Microtask reward calculation (Fig. 4). Microtask workflow au-
tomation automatically manages workflows of two types of micro-
tasks. Microtask reward calculation measures microtask workers’
contributions to the project.

The centralized server of MWORP includes an issue tracking
system (ITS) and a code repository of a version control system
(VCS). The dedicated worker creates the micro-specifications and
then uses the ITS to issue a ticket describing them. As each micro-
specifications corresponds one-to-one to a microtask, tickets and
microtasks are equivalent.

There are two types of MWORP clients: microtask clients and the
monitor client. Microtask workers interact with microtask clients
to fetch, implement, and commit their microtasks. Microtask clients
include a local git repository, Microtask Workflow Automation (VS
Code plugin), the code editor (VS Code), and the UI development
sandbox (storybook.js). The monitor client enables dedicated work-
ers to monitor the progress of the microtasks completed. MWORP
is agnostic to the programming tools used by workers. The ITS and
VCS are fixed by the platform due to API dependencies.

The MWORP microtask workflow automation assigns and man-
ages microtasks automatically to help microtask workers focus on
the implementation and review activities while minimizing dis-
tractions. This streamlines interactions with the ITS and the code
repository by automating three processes: (1) fetching microtasks
from the ticket pool in the ITS, (2) changing the ticket status based
on the microtask progress, and (3) handling interactions between
the local repository and the main repository in the VCS. As shown
on the Fig. 6, they interact with the client through the command
line in the terminal window of the code editor.

34.1 Implementation Workflow. Fig. 5 shows the implementation
workflow. It consists of the following three steps:

Step 1. Fetch microtask: When microtask workers enter the "mi-
crotask fetch" command in the terminal as shown in Fig 6, the
microtask workflow automation identifies a ticket whose current
state is not closed, and assigns the ticket to the microtask worker.
Then, the microtask client shows the URL of the ticket and identifier
of the microtask in a pop up, pulls the remote repository in the

2005

Saito et al.
g Master
2 || Code B
g | Branch -
@ || Repo. '}
2 R #i Pull the repository T push and
N n $ Make a pull request
® B 1 B 1 Bl
£1[1Ts _ f i H M
8 Assign a ticket “ N Backend i A
to microtask . _Backend Frontend (CfLan‘g? .

Code Branch worker and 1 - “\c et status

Repo. change ticket lﬁ " : e) ready for
2 status 1 \Display ADisplay . ANcCommit review
5 " I fieese e B
G || sandbox ! H v [
S I H
B i A4 A H
S || Code Editor I e H
8 Show I 1
2 Moo i D1 1 H

icrotas|
Workfiow '
Automation T
[] Fetch Check |Write/Test||Write Preview Ull Commit

‘m‘ micotask resources|codes codes rendering | microtask

Microtask Worker

Figure 5: In the implementation workflow, microtask work-
ers fetch a microtask, implement it, and commit it.

The ticket for the implementation task
sonsiz st (B
Implement req9_SC09_1

Execute “fetch” command at terminal

DEBUG CONSOLE

TERMINAL

9% microtask fetch

of task

behavior No

NOTIFICATIONS s v
© You get a implementation task(SGNS,_TEST). Refer to the @ x
T Tk e e SR ST

re9.5C09.1

Source Files

-] .The paths to the source

The Pull request for the review task
Message of fetching review task Implementation Task (SGNS13-25) has implemented.

NOTIFICATIONS

ul
<

Ovo {ask(SGNS_TEST). Refer to the foll 5). Branch name : featurereq1 1 SGNS13.25,dev. 200

qﬂ he URL to Pull Request ... F"

o
In other,if you want to cancel this task, you needs to execute
“cancel” comman

t

Comments Commits || Fies

Pathnames affected by commit

‘, The paths to the targets of review

Figure 6: A screenshot of executing the "fetch" microtask
command in MWORP.

cloud to the local repository on the microtask client, and creates a
new develop branch.

Step 2. Implement the microtask: Mircotask workers write code
and execute unit tests. Workers use VS Code for backend microtasks,
and the Storybook UI development sandbox for frontend microtasks.
When microtask workers want to stop work before completion,
they may enter the "cancel" command. After a worker cancels a
microtask, it will never again be assigned to them.

Step 3. Commit microtask: After the microtask worker enters
the commit command, the develop branch is pushed to the remote
repository, a pull request is created, and the ticket status in the ITS
is updated.

3.4.2 Review Workflow. The review workflow has three steps:
Step 1. Fetch microtask: The interaction between microtask work-
ers and the microtask workflow automation is the same as in the
implementation workflow. MWORP shows the URL of the pull re-
quest. In the pull request, microtask workers find the path to the
source code (Fig 6).

How many pomodoros do professional engineers need to complete a microtask of programming?

Table 1: Characteristics of Case Study 1 and 2

Case 1 Case 2
Company
Name Company X Company Y
Employees About 3,000 About 2,000
Industry type Telecom IT service
Development Product
Product type B2B SPA Bot Apps
Prog. language JavaScript TypeScript
Period of time
Total construction time 7 weeks 5 weeks
Microtask prog. time 5 weeks 4 weeks
Project organization
Microtask worker 8 9
Dedicated worker 2 3
Contract type
Dedicated worker Employment Employment
Microtask worker Freelancing Employment
Micro-specifications
for Frontend 27 -
for Backend 14 31
Total 41 31
Items of contributions
Implemented by
Microtask worker 35 31
Dedicated worker 6 0
Reviewed by
Microtask worker 34 30
Dedicated worker 7 1
Development Size (LOC)
by Microtask worker 3,184 (56%) 890 (71%)
by Dedicated worker 2,531 (44%) 357 (29%)
Total 5,715 (100%) 1,247 (100%)

Step 2. Review the implementation: When reviewing frontend
microtasks, workers may also use the UI development sandbox to
render Ul images. After reviewing the implementation, workers
decide to accept or reject the contribution. If the implementation is
accepted, the worker merges the pull request to the main repository.
If the implementation is rejected, the worker closes the pull request.
Step 3. Commit microtask: After the microtask worker enters
the commit command, the ticket status is updated in the ITS.

4 Case Studies: Microtask Programming in
Two Industrial Projects

We conducted two case studies of the use of microtask programming
across two varying contexts. Table 1 lists the characteristics of each
case. Each was conducted at a different company: X (Telecom) and
Y (IT service). The cases differed in the employment arrangement
of members using microtask programming. In Case 1, external
freelancers were contracted while the company Y’ employee were
temporary assigned in Case 2. All project members in each project
were different persons. None of the members had used microtask
programming before.

2006

ASE ’24, October 27-November 1, 2024, Sacramento, CA, USA

Table 2: Microtask workers’ development experiences

Years of Experimence Freelancers in Employees in

Case 1 Case 2
0-1 year 0 (0%) 0 (0%)
2-5 years 1(12.5%) 0 (0%)
6-10 years 3(37.5%) 0 (0%)
11-20 years 2 (25.0%) 3 (33.3%)
Above 21 years 2 (25.0%) 6 (66.7%)
Total 8 (100%) 9 (100%)

Table 3: Execution results of implementation microtasks

Result Case 1 Frontend Case 1 Backend Case 2
Accepted 22 (66.7%) 13 (72.2%) 31 (53.4%)
Rejected 11 (33.3%) 5 (27.8%) 0 (0%)
Canceled 0 (0%) 0(0%) 27 (46.6%)
Total 33 (100%) 18 (100%) 58 (100%)

4.1 Development Product and Period of Time

4.1.1 Case 1. Company X developed a B2B single-page application
(SPA) for a bus company with two main features: bus route recom-
mendations based on advertisements and interactive geographic
mapping. The project was developed in JavaScript. The total period
of software development was seven weeks. After creating a software
design during a two week period, the project then implemented
the design through microtask programming during a period of five
weeks. This project had 10 geographically distributed contributors:
2 dedicated workers and 8 freelancers. The two dedicated workers
were a requirements engineer and a software designer who were
employees of Company X. They worked full-time on the project.
The eight freelancers were recruited from outside Company X and
had not previously worked with the company. Most (87.5%) of them
had over six years of experience as described in Table 2. Freelancers
were asked to make use of their fragmented time to work at their
convenience.

4.1.2 Case 2. The project in company Y developed a bot appli-
cation for their existing commercial product (business chat). It
supports chat users by sending automated notifications for sched-
uled events. The bot was developed using TypeScript. After creating
the software design documents for the product during a period of
one week, the microtask programming phase then took place over a
period of four weeks. Project members consisted of three dedicated
workers and nine microtask workers who were employed by Com-
pany Y. All had over ten years of experience at it, as listed in Table 2.
None had previously interacted before the project. Three dedicated
workers worked full-time on the project while nine microtask work-
ers had been assigned to different projects. So, microtask workers
need to make use of their time to contribute to the project using
microtask programming. Therefore, before the project started, the
project manager asked microtask workers’ report lines to allow
them to use their fragmented work day time (9 am to 7 pm) to
contribute to the project.

ASE 24, October 27-November 1, 2024, Sacramento, CA, USA

4.2 Microtask Workers’s Compensation

Both projects assigned a point value, reward points, to each mi-
crotask to be completed. Points are set based on the contents of
the microtask. After completing a microtask, the microtask worker
receives the reward points. The compensation mechanisms in each
case differed. In Case 1, freelancers received money based on their
reward points. They were not paid a base salary. In Case 2, as
the microtask workers were employed by the company, they were
paid their regular salary. The reward points they received did not
translate into any additional compensation.

4.3 Implemented Functionality

4.3.1
It involved 41 micro-specifications, including 27 frontend and 14
backend micro-specifications. 8 microtask workers completed 85%
of the implementation microtasks (35 of 41) and 83% of the review
microtasks (34 of 41) while 2 dedicated workers completed the re-
mainder. 5,715 lines of code were written. The dedicated workers
wrote 44% of them, while microtask workers wrote about 56%.

Table 3 shows the results of microtask execution by the microtask
workers. As mentioned above, they completed 35 implementation
microtasks, of which 22 are for frontend and 13 are for backend. The
frontend implementation microtasks were rejected 11 times by the
review microtasks, while the backend implementation microtasks
were rejected 5 times. This means that 33 (=22+11) frontend and 18
(=13+5) backend microtasks were finally executed.

4.3.2 Case 2. This project, unlike Case 1, involved only backend
micro-specifications, as the product is a chatbot application. The
bot had three features and consisted of 16 TypeScript classes. The
classes were decomposed into backend micro-specifications. As in
Case 1, one method in a class corresponds to one micro specification.
The number of methods per class ranged from one to three. Overall,
there were 31 backend micro-specifications for 31 methods across 16
classes. Nine microtask workers completed 100% of implementation
microtasks (31 of 31) and 97% of review microtasks (30 of 31). 1,247
lines of code were written. About 29% were implemented by the
dedicated workers and about 71% by the microtask workers.
Unlike Case 1, none of the microtasks were rejected in Case 2 as
listed in Table 3. All 31 implementation microtasks were accepted
by review microtasks. On the other hand, microtask workers in
Case 2 cancelled microtasks a total of 27 times, once while starting
them. Therefore, a total of 58 (=31+27) microtasks were executed.

4.4 Monitoring Microtask Progress

Reward points for microtask workers are calculated based on the
results of microtasks to be completed. By using them, MWORP also
enables dedicated workers to monitor project progress (i.e., check
the microtask’s status). Fig. 7b shows burn-up charts for each case
created by the MWORP monitor client during the project period.
Like a scrum master creating an agile release plan, the dedicated
workers referred to these to track the progress of the microtasks
they released and then decided when to release new microtasks.
Both projects did not have any meetings, including face-to-face
or project progress meetings, during the whole project period. All
microtask workers individually completed microtasks without the

Case 1. The project developed both types of micro-specifications.

2007

Saito et al.

45
40
35
30
25
20
15
10

09/11
0913
09/15
0917
09119
09/21
09/23
09/25
09/27
09/29
10/01
10/03
10/05
10/07
10/09
10111
10113
10115
10117
1019
10/21

(a) Case 1
35

30
25
20
15
10

06/01
06/03
06/05
06/07
06/09
06/11

Yo}
—
=
©
o

06/13
06/17
06/19
06/21

3 06/25

——Available

(b) Case 2

Figure 7: Burn-up charts of (a) Case 1 and (b) Case 2 used
by dedicated workers to track the progress of microtasks re-
leased as well as plan the release of new microtasks.

assistance of any other microtask workers or dedicated workers.
They worked whenever and wherever they wanted. Fig. 8a and
Fig. 8b show timelines of microtask workers’ activities in Case 1
and Case 2, respectively. The Y axis represents the date and the X
axis the time of day. Weekends and holidays are displayed in red.
The distributions of working hours were different in each case. In
Case 1, freelancers chose when to use their fragmented time to
work, preferring to work early in the morning, late at night, or on
weekends and not at a fixed time. In Case 2, employees were not
allowed to work early morning or late at night by their company.
They instead worked during working hours from 9 am to 7 pm.
In both cases, workers were able to use their fragmented time to
contribute to the project using microtask programming.

4.5 Elapsed Time of Microtasks

To measure the elapsed time for microtask completions in each
case, we used the timestamps recorded in each ITS ticket within
MWORP. Fig. 9 plots the distribution of elapsed time in each case.
Overall, most microtasks of programming could be completed in 2
hours. Some of the implementation tasks exceed 2 hours, but almost
all review microtasks are within 1.5 hours, even less than 2 hours.

4.5.1 Case 1. The left two violin plots show the completion times
for frontend and backend microtasks in Case 1. The average com-
pletion time for the 33 frontend implementation microtasks was 83
minutes, and that for the 18 backend implementation microtasks

How many pomodoros do professional engineers need to complete a microtask of programming?

03:00 06:00 15:00 18:00 21:00

——98
i - — e —
— - —
R r— o—
— —
Py e
[R—
= =
Microtask worker Microtask worker2 Microtask worker3 Microtask workerd Microtask workerS Microtask worker Microtask worker? Microtask worker
(a) Case 1
09:00 10:00 11:00 12:00 13:00 14:00 15:00 16:00 17:00 18:00
06/01 — -
0607 rmmmmm— e
06/03| e —_ -
06/04 —_— — -
06/05| " = e e e — - -
06108 = - — — —— ——
06/09) - -
06/10| e
01| o = — —— —
06/12| = — —_—e—ra
0615 s
o — == —
L S — = —
06/18] e —_— -
06/19|wm - _ L -
06/22 - - == —
06/23
06/24
06125 — - JU—
06126 —_—
Microlask worker2 Microtask workerd Microtask workerd
(b) Case 2

Figure 8: Timeline views of the fragmented work time of mi-
crotask workers in (a) Case 1 and (b) Case 2. Each bar plots a
single microtask from fetch to completion, with the date on
the Y axis (weekends and holidays highlighted in red) and
time on the X axis. Each microtask worker is indicated with
a distinct color.

was 31 minutes. On the frontend, 79% (=26/33) implementation
microtasks and 100% (=33/33) review microtasks were completed
within 2 hours. On the backend, 78% (=14/18) implementation mi-
crotasks and 94% (=16/17) review microtasks were completed within
2 ours.

4.5.2 Case 2. The right violin plot shows completion times in Case
2. The bot application was composed of only backend features.
The average completion time was 74 minutes for implementation
microtasks and 24 minutes for review microtasks. 81% (=47/58)
implementation microtasks and 100% (=40/40) review microtasks
were completed within 2 hours.

5 User Study: Exploring Perceptions and
Motivations of 17 Engineers

To understand professional engineers’ perceptions of microtask

programming and changes in their motivations during the project

period, we asked all freelancers and employees in the cases to com-

plete a short questionnaire. We then conducted a group interview

2008

ASE ’24, October 27-November 1, 2024, Sacramento, CA, USA

450 - Implementation

400 4 Review g .
o 350 4)
S O D
!3 300 g ‘ g
5 250+
s ® ® !
§ w0 @ ® ®
£ e A ® ®

501 @ ® @

| o 45 & & .

Case 1 Frontend Case 1 'Backend Ca;e 2
Figure 9: Distribution of completion times for implementa-
tion and review microtasks in Case 1 and Case 2. Most mi-
crotasks could be completed in four pomodoro repetitions,
which is less than two hours. Some implementation micro-
tasks exceeded 2 hours, but almost all review microtasks

were within 1.5 hours, even less than 2 hours.

Table 4: Questionnaire

No. Type Question

Q-1 Likertscale What do you think about working in a small unit?

Q-2 What do you think about working in asynchro-
nous communication with designers?

Q-3 What do you think about with non-
communication of co-workers?

Q-4 Yes/No Did you maintain your motivation during the pe-

riod of microtask programming?

in each group. In this user study section, we report the answers to
the questionnaire and the opinions from the group interview.

5.1 Questionnaire Survey

We conducted a questionnaire survey of workers in both cases.
We asked all freelancers and employees to evaluate the two pri-
mary characteristics of microtask programming: 1) short-term work
with minimally sufficient information and 2) individual work in
constrained communication. Survey questions also examined the
impact of microtask programming on the motivation of workers.
As shown in Table 4, the survey included four items, Q-1 to Q-4,
evaluating three dimensions: difficulty, preference, and motivation.

5.1.1 Perceived difficulty and preference of short-term work with
minimally sufficient information. Participants rated the level of diffi-
culty of working in a short period of time with minimally sufficient
information (Q-1: What do you think about working in a small
unit?). Fig. 10 shows the results. Opinions varied between free-
lancers. Some felt that completing short tasks was easy, while oth-
ers did not. A little less than 70% of employees reported difficulties
with the short-term tasks.

5.1.2 Perceived difficulty and preference of individual work in con-
strained communications. We asked the participants to answer two

ASE 24, October 27-November 1, 2024, Sacramento, CA, USA

What do you think about working
in a small unit?

Freelancers

Employees §11.1%

0%

20%
mVery hard mHard = Neither/nor

40% 60% 80% 100%

Easy mVery easy

Figure 10: Perceptions of the difficulty of short-term work
with minimally sufficient information (Q-1).

What do you think about working in asyncronous
communication with designers?

Freelancers 12.5% 25.0%

Employees

11.1%

0% 20% 40% 60% 80% 100%

mVery hard mHard = Neither/nor Easy mVery easy

Figure 11: Perceptions of the difficulty of asynchronous com-
munication with a dedicated software designer (Q-2).

questions about their experiences with communication in micro-
task programming. First, we asked them to rate their experience
communicating with dedicated workers (Q-2: What do you think
about working in asynchronous communication with designers?
)- Second, we asked them to rate their experience communicating
with other microtask workers (Q-3: What do you think about with
non-communication of co-workers?). As shown in Fig. 11, over
60% of freelancers reported that using only asynchronous commu-
nication with dedicated workers was inconvenient. About 45% of
employees in Case 2 had difficulty doing that. Fig. 12 shows that
over 60% of freelancers reported that having no communication
with other workers was inconvenient. About 55% of employees
reported difficulties without being able to easily communicate with
other workers.

5.1.3 Impact on Motivation. We asked workers if they had stayed
motivated (Q-4: Did you maintain your motivation during the pe-
riod of microtask programming?). As shown in Fig. 13, motivation
varied between freelancers and employees. Half of freelancers re-
ported that they stayed motivated, while more than two-thirds of
employees were demotivated.

5.2 Focus Group

We conducted a focus group for each case. A moderator asked
questions about the two characteristics of microtask programming:
short-term work with minimally sufficient information and indi-
vidual work in constrained communication. The moderator invited

2009

Saito et al.

What do you think about with non- communication of

co-workers?
1 2.5%!1 2.5%

11.1%

Freelancers

11.1%

Employees

0% 20% 40% 60% 80% 100%

mVery hard mHard wmNeither/nor =Easy mVeryeasy

Figure 12: Perceptions of the restricted communication with
co-workers (Q-3).

Did you maintain your motivation during
the period of microtask programming?

Employees

Freelancers

Yes
50%

Figure 13: Motivation when microtask programming (Q-4).

them to discuss freely about the positive and negative aspects of the
characteristics. Table 5 summarizes the perceptions of freelancers
and employees.

5.2.1 Short-term work with minimally sufficient information. Both
freelancers and employees had split perceptions of the impact of
the short-term and minimally sufficient information nature of mi-
crotask programming on their work. Some felt that completing
short tasks (i.e., microtasks) was a positive. For example, one em-
ployee reported that microtasks were helpful because they can
make use of their small, available time whenever they choose to
use it. Other freelancers reported a need for additional information
about the project’s status and the work of other members to work
more efficiently and effectively.

5.2.2 Individual work with constrained communication. All free-
lancers reported that having no communication with other workers
was inconvenient. For instance, one freelancer reported that they
wanted face-to-face communication to address misunderstandings
with other workers. Some employees recognized the benefits of not
having any communication at all because they can use their time
free from others.

6 Discussion

Programmers’ tasks should take longer while managers’ tasks are
separated by one hour, as described in Section 1. From the results of
the two case studies, most of the microtasks could be completed less

How many pomodoros do professional engineers need to complete a microtask of programming?

ASE ’24, October 27-November 1, 2024, Sacramento, CA, USA

Table 5: Perceptions of Microtask Programming

Characteristic Freelancers in Case 1

Employees in Case 2

Positives
1) Short-term with m

minimally sufficient

. ; want to make money."
information

"Task size was small. So, I finished tasks [in a short time] even
though I started to work after my children went to sleep.
"I did not imagine the overview of the target system. I just did

what I had to do. It’s not important to know it

"I did not know the overview of that. But, it did not matter to

"I want to do small, easy tasks to complete a lot of tasks and

Positives
"I was grateful that I didn’t have to worry about where to do it

"If T have one hour of available time, it would be nice to be
assigned a microtask that can be completed in one hour"
"Short-temr work will be easy to engage in multiple projects. I
will be happy to be involved in development if the project
selects a [programming] language that I am more comfortable

me. I only focused on my scope. with"

"I was glad to get to experience a new technique in this small

project.”

Negatives Negatives

"When [micro-]specifications have ambiguous points, it’s chal-

lenging for me to implement them.

"I don’t know the system overview. So, I can’t come up with

ideas for improvements.”

"I don’t feel I create software products. I didn’t feel a sense of

accomplishment at all"

"The size of the microtask is too small. I felt there were many
split losses."

"If I had known the purpose and use cases of the app, I could
have conducted unit tests using parameters that simulate
actual operations.”

. . Positives Positives
2) Individual work in " . .
. None It was an advantage to be able to take time freely [without
constrained . . B
communication others interruptions].
uni . .
"No need to coordinate participant schedules and I was able to
work in my own free time"
Negatives Negatives

"As usual, I often ask the software designer. I wish I asked [dedi-

cated workers] by using chat and call"

"I think other workers misunderstood the specifications. F2F
meeting is good for solving the misunderstanding. I wanted to

share information with workers."

"I wish I had a quick call with the software architect."

"I couldn’t get the information I was looking for due to a misun-
derstanding of the dedicated workers."

"Information is exchanged via a question ticket [with dedicated
workers], I could not get an immediate answer to questions, even
for small questions."

"Since I didn’t know nearly enough about the people I was work-
ing with, I didn’t feel a sense of unity as a project.”

"It would have been better to have everyone share their infor-
mation with project members when there were problems.”

than two hours. The pomodoro technique states that a typical full-
time worker can complete three sets of four pomodoro repetitions in
one day. This means that engineers who cannot work full-time can
undertake most microtasks if they can spare one-third of a full-time
engineer’s time. This means that those who are not contributing full-
time to a project can use microtask programming to contribute. This
is a key finding for industries examining the potential to introduce
microtask programming to their projects.

f Answer to RQ1 ~N

Can professional engineers complete a microtask of program-
ming in two hours (= four pomodolo repetitions)?

o Implementation microtasks. About 80% of the implemen-
tation microtasks were completed in 2 hours (= 4 pomodoro
repetitions).

e Review microtasks. Almost all review microtasks were
completed in 1.5 hours (= 3 pomodoro repetitions), even
less than 2 hours.

J

Short-term work with minimally sufficient information, which is
the first primary characteristic of microtask programming, enabled
microtask workers to work in fragmented work times. In both

2010

cases, most periods of the time were less than two hours due to
the small specifications. Workers were able to work whenever they
wanted. In this way, microtask programming offered workers work-
time flexibility. While they experienced the benefits of microtask
programming, workers had split feelings about the use of short-
term tasks. Some felt that less information is a positive while others
felt it was a negative. Employees felt that dealing with the short-
term nature of tasks was more difficult than freelancers. We also
found that freelancers and employees had the same preferences
regarding this characteristic.

The second primary characteristic of microtask programming
is to work individually in constrained communications. Microtask
workers communicated with dedicated workers only through is-
sue tickets and they did not communicate with other microtask
workers at all since self-contained specifications did not require
them to communicate with others. Our examination indicates that
regardless of contract type, nearly half of microtask workers felt
that constrained communications were inconvenient even though
each microtask was able to be completed in isolation from other
ongoing work. However, we found that freelancers and employees
had slightly different perceptions regarding their preferences for
constrained communications.

ASE 24, October 27-November 1, 2024, Sacramento, CA, USA

r Answer to RQ2

How do professional engineers perceive working with mini-
mally sufficient information in constrained communication
via microtask programming?

1) Short-term work with minimally sufficient information

o Difficulty. Nearly 40% of freelancers felt that dealing with
smaller tasks was hard. Over 60% of employees said it was
very hard or hard.

Preference. In both groups, some liked short-term work,
while others disliked it. Supporters liked short-term work
because they felt it helped them make better use of their
fragmented time by starting and finishing work at times
convenient for them. Detractors felt that the information
was too limited to effectively contribute to the project. Con-
sequently, they felt no sense of accomplishment or satisfac-
tion in their work.

2) Individual work in constrained communication

o Difficulty. Over 60% of freelancers felt inconvenienced by
the asynchronous communication with dedicated workers
and lack of communication with co-workers. Around 50%
of employees felt that this was inconvenient.

o Preference. Almost all freelancers disliked the constrained
nature of communications. They wanted more face-to-face
communication with both dedicated workers and other mi-
crotask workers. In contrast, some employees appreciated
the restricted communication, as it meant fewer interrup-
tions such as chat or email messages from others and less
need to coordinate minor tasks like meeting scheduling.

N J

We found that some differences between contract types were
observed in changes in their motivations through the experience of
microtask programming. We identified similarities and differences
in the experiences of freelancers and employees. Our examination
reveals that this new approach still needs to improve the quantity
and frequency of information provided to workers as well as the
communication modalities available between members. At the same
time, it is important to consider engineers’ preferences for micro-
task programming to ensure those making use of it are motivated.
Finding new ways to share additional information about project
context and workers’ contribution to the progress of the project
may help improve motivation.

K Answer to RQ3 ~

Does microtask programming affect motivations of profes-
sional engineers?

o Freelancers. 50% of freelancers reported not being moti-
vated when working using microtask programming.

e Employees. About 70% of employees reported not staying
motivated during the project period.

J

One potential reason for the differences in motivation between
the two types may be the differences in their compensation. In

2011

Saito et al.

particular, freelancers were compensated based on the amount
of work they completed, while employees were not. Future work
should examine the impact of compensation and incentives on
motivation.

6.1 Limitations and threats to validity

One potential threat to internal validity is that project participants’
productivity and their perceptions of microtask programming might
be affected by other factors, such as the situation of other projects
they participated in during the case study period. For example,
if they were particularly busy as a result of their participation in
other projects, they might have had less available time to participate
in their microtask programming project and then had a reduced
focus on their microtask. Consequently, they might have had more
negative reactions to microtask programming and report being
more demotivated.

As with any case study, one potential threat to external valid-
ity is that we only analyzed two projects. However, these projects
were conducted in different companies. Microtask workers in each
project were contracted by two difference mechanisms: freelancing
and employment. Another threat is that our platform (MWORP)
requires a specific ITS and VCS. It uses only their essential func-
tions of them, however. So it is technically feasible to use other
ITS and VCS for MWORP. Moreover, it does not depend on spe-
cific programming tools. Microtask programming is not inherently
domain-specific and would be relevant for other projects beyond
developing applications such as SPA and bot.

Reliability is the ability to repeat a study and observe similar
results [21]. To reinforce our study’s reliability, we defined and
documented the microtask programming workflows and managed
a platform for supporting/automating them. By following the work-
flows and using the platform, other researchers or practitioners
may replicate the case study in their context.

7 Conclusion

This industrial showcase paper examined two industrial projects
and then empirically reveals the time required for a microtask of
programming in the industrial setting. Those projects were carried
out in different companies and differed in the types of contracts of
the engineers using microtask programming (i.e., microtask work-
ers). One contracted 9 freelancers, and the other asked 8 employees.
Based on the two case studies, we found that the microtask work-
ers could complete most microtasks in less than four pomodoro
repetitions (i.e., two hours). We also evaluated the perceptions of
the professional engineers in their use of microtask programming.
Through a survey and focus group in each case, we found similar-
ities and differences in how freelancers and employees perceive
microtask programming.

While the focus of this study was exclusively on the implemen-
tation and review work in construction phase, we plan to apply
the concept of microtasking to other software development phases
such as software design and system testing.

Acknowledgments

The authors wish to thank M. Oda, K. Kataoka, and M. Yamane for
their invaluable support with our case studies.

How many pomodoros do professional engineers need to complete a microtask of programming?

References

(1]

[2
(3]
[4]

[

E. Aghayi, "Large-Scale Microtask Programming," 2020 IEEE Symposium on
Visual Languages and Human-Centric Computing (VL/HCC), Dunedin, New
Zealand, 2020, pp. 1-2.

E. Aghayi, T. D. LaToza, P. Surendra, S. Abolghasemi, Crowdsourced Behavior-
Driven Development, Journal of Systems and Software, Volume 171, 2021, 110840.
M. Capraro and D. Riehle. 2016. Inner Source Definition, Benefits, and Challenges.
ACM Comput. Surv. 49, 4, Article 67 (December 2017), 36 pages.

Y. Chen, S. W. Lee, Y. Xie, Y. Yang, W. S. Lasecki, and S. Oney. 2017. Codeon:
On-Demand Software Development Assistance. In Proceedings of the 2017 CHI
Conference on Human Factors in Computing Systems (CHI °17). Association for
Computing Machinery, New York, NY, USA, 6220-6231.

F. Cirillo, The Pomodoro Technique: The Acclaimed Time-Management System
That Has Transformed How We Work, Crown Currency, 2018.

A. Dwarakanath et al., "Crowd Build: A Methodology for Enterprise Software De-
velopment Using Crowdsourcing,' 2015 IEEE/ACM 2nd International Workshop
on CrowdSourcing in Software Engineering, Florence, Italy, 2015, pp. 8-14.

D. Ford, M. -A. Storey, T. Zimmermann, C. Bird, S. Jaffe, C. Maddila, J. L. Butler,
B. Houck, and N. Nagappan. 2021. A Tale of Two Cities: Software Developers
Working from Home during the COVID-19 Pandemic. ACM Trans. Softw. Eng.
Methodol. 31, 2, Article 27 (April 2022), 37 pages.

P. Graham, Maker’s Schedule,
https://www.paulgraham.com/makersschedule. html
Atomic Design: https://atomicdesign.bradfrost.com/
InnerSourceCommons: https://innersourcecommons.org

R. Krosnick, "Creating Interactive User Interfaces by Demonstration using Crowd-
sourcing,’ 2018 IEEE Symposium on Visual Languages and Human-Centric Com-
puting (VL/HCC), Lisbon, Portugal, 2018, pp. 277-278.

T. D. LaToza, A. Di Lecce, F. Ricci, W. B. Towne and A. van der Hoek, "Microtask
Programming,’ in IEEE Transactions on Software Engineering, vol. 45, no. 11, pp.
1106-1124, 1 Nov. 2019.

T. D. LaToza, "Crowdsourcing in Software Engineering: Models, Motivations, and
Challenges," 2019 IEEE/ACM 41st International Conference on Software Engi-
neering: Software Engineering in Practice (ICSE-SEIP), Montreal, QC, Canada,

Manager’s Schedule,

2012

[14

[15

[16

(17

(18

[19

[20

[21

[22

]

]

]
]

ASE ’24, October 27-November 1, 2024, Sacramento, CA, USA

2019, pp. 301-301.

T. D. LaToza, M. Chen, L. Jiang, M. Zhao and A. v. d. Hoek, "Borrowing from
the Crowd: A Study of Recombination in Software Design Competitions,’ 2015
IEEE/ACM 37th IEEE International Conference on Software Engineering, Flo-
rence, Italy, 2015, pp. 551-562.

R. Prikladnicki, L. Machado, E. Carmel, and C. R. B. de Souza. 2014. Brazil soft-
ware crowdsourcing: a first step in a multi-year study. In Proceedings of the 1st
International Workshop on CrowdSourcing in Software Engineering (CSI-SE
2014). Association for Computing Machinery, New York, NY, USA, 1-4.

S. Saito, Y. limura, E. Aghayi, and T. D. LaToza. 2020. Can microtask programming
work in industry? In Proceedings of the 28th ACM Joint Meeting on European
Software Engineering Conference and Symposium on the Foundations of Soft-
ware Engineering (ESEC/FSE 2020). Association for Computing Machinery, New
York, NY, USA, 1263-1273.

S. Saito and Y. limura. 2020. Hybrid sourcing: novel combination of crowdsourcing
and inner-sourcing for software developments. In Proceedings of the 15th Inter-
national Conference on Global Software Engineering (ICGSE °20). Association
for Computing Machinery, New York, NY, USA, 81-85.

Scrum Myths: Scrum is "Meeting Heavy":
https://www.scrum.org/resources/blog/scrum-myths-scrum-meeting-heavy

K. -]J. Stol and B. Fitzgerald. 2020. Two’s company, three’s a crowd: a case study of
crowdsourcing software development. In Proceedings of the 36th International
Conference on Software Engineering (ICSE 2014). Association for Computing
Machinery, New York, NY, USA, 187-198.

K. -J. Stol and B. Fitzgerald, "Inner Source-Adopting Open Source Development
Practices in Organizations: A Tutorial," in IEEE Software, vol. 32, no. 4, pp. 60-67,
July-Aug. 2015.

R. K Yin, Case Study Research: Design and Methods (Applied Social Research
Methods) 2nd Edition, SAGE Publications, 1989.

M. Zulfigar, M. N. Malik and H. H. Khan, "Microtasking Activities in Crowd-
sourced Software Development: A Systematic Literature Review," in IEEE Access,
vol. 10, pp. 24721-24737, 2022.

