
A Study of Architectural Decision Practices

Thomas D. LaToza, Evelina Shabani, André van der Hoek
Department of Informatics

University of California, Irvine
Irvine, CA 92697-7440, USA

{tlatoza, shabanie, andre}@uci.edu

Abstract—Architectural decisions shape a software
architecture and determine its ability to meet its requirements.
To better understand architectural decisions in practice, we
interviewed developers at two organizations. The results revealed
that architectural decisions often become technology decisions,
which are in turn influenced by both technical and social factors.
Meetings and knowledge repositories help to communicate
architectural decisions, but code reviews are ultimately necessary
to ensure conformance. Costly changes to architectural decisions
are caused by the discovery of an Achilles’ heel, an important
scenario that cannot be supported by an architectural decision.
These findings suggest an important need for social development
tools that help developers more easily and successfully share
valuable technology knowledge and more effectively make
technology choices.

Index Terms—architecture, architectural decisions, empirical
study, developer practices

I. INTRODUCTION
Software architectures take shape through architectural

decisions that together determine the resulting software
architecture and its fitness to purpose. An extensive array of
methodologies have been proposed to help developers make
architectural decisions [2][5][11], communicate their rationale
to team members [10], and share knowledge of architectural
patterns [9]. Software architecture researchers conceive of
architecting as a scenario driven process, where developers
consider scenarios and use a combination of previous
experiences, analytical consideration, and intuition to make
architectural choices that satisfy these scenarios [7]. A number
of methodologies such as the Architectural Tradeoff Analysis
Method [1] outline techniques for developers to analyze and
compare architectural alternatives for their ability to meet the
requirements and needs of stakeholders.

While many methodologies have been proposed, less is
known about the social dynamics of architectural decision
making in practice. What factors are most influential in the
architectural decisions developers make? How do developers
communicate architectural decisions to their team? What
causes architectural decisions to be revisited? How might the
risk of making a poor architectural decision be reduced?

To answer these questions, we conducted a small study in
which we interviewed professional software developers at two
software companies. In contrast to portrayals of architectural
decision making as a green-field endeavor where each decision
is considered for its ability to satisfy requirements, we found

that architectural decision making was driven by important
technology decisions. These decisions, in turn, were influenced
by a range of both technical and social factors. Meetings and
knowledge repositories played an important role in sharing
architectural decisions. But some of the crucial implications of
the decisions in practice were communicated and enforced
through code reviews, where developers could give tailored
feedback to new developers on their understanding of the
architecture. Finally, we found examples where developers
made architectural decisions that they later chose to revisit.
These decisions were caused by an Achilles’ heel of the
technology that was discovered only in its use, where there was
no way for the technology to support an important use case.
Building on these findings, we suggest that architectural
decision making could be more effectively supported by social
development tools that help developers more successfully
assess the factors they consider in making technology
decisions.

II. RELATED WORK
A large number of processes and methodologies have been

proposed for making architectural decisions [2][5][11]. In these
methods, developers identify architectural concerns, understand
the developmental, operational, and political context in which a
system exists, identify architecturally significant requirements,
and conduct architectural analysis to define the problem the
architecture must solve. Developers generate candidate
architectures and evaluate tradeoffs through design knowledge,
analysis knowledge of the problem, and realization knowledge
gleaned from prototyping.

Studies of software architects have found that they often
neglect to adequately document and share their decisions (e.g.,
[6]). In response, a large body of literature has examined
systems and techniques for recording and sharing architectural
knowledge within an organization [9]. Approaches include
processes, knowledge managements systems, and portals. But
the focus is on sharing architectural knowledge within an
organization. Another approach to share architectural decisions
is through catalogs of patterns [4]; books have begun to collect
such patterns for specific technologies (e.g., [3]).

III. METHOD
We conducted a series of semi-structured interviews with 5

developers at a small health information technology company
(Site A) and 6 developers at a small telecommunications

978-1-4673-6290-0/13 c© 2013 IEEE CHASE 2013, San Francisco, CA, USA

Accepted for publication by IEEE. c© 2013 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/
republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

77

startup (Site B). The primary language of both codebases was
Java. Participants ranged in experience from recently hired
developers to the architect and CTO of the company, with an
average of 5 (Site A) and 12 (Site B) years of professional
experience. Interviews ranged in length from 26 min to 44 min
(average of 33 min) and focused on the architecture of their
system, important decisions, revisited decisions, knowledge
sharing practices, and code reviews.

IV. RESULTS

A. Making Architectural Decisions
Developers at Site B portrayed architectural decision

making as a social process that occurred in meetings between
developers. “Everyone gets involved, it’s not just one person
making the decision.” These meetings helped to reach
consensus on decisions and communicate decisions to the team.
But, at the same time, most of the developers felt the
architecture was primarily the product of a single senior
developer. Developers at Site A also made decisions socially,
but reported meetings as a response to questionable decisions
rather than the default practice.

Developers reported that technology decisions were some
of the hardest and most important decisions. Technology
decisions were first motivated by requirements (e.g.,
performance, scalability, reliability) and key use cases (e.g., a
server in a datacenter crashes). But the decision making process
was driven less by finding the perfect match to the desired
requirements and more by a range of other factors (Table I).
The perceived popularity of a technology played an important
role, sending a signal that others believed the technology to be
the best solution. Developers also considered if the technology
was likely to endure long term, the documentation quality and
perceived effort required to learn it, and the experience of
operations stakeholders its deployment.

Important technology choices led to key design principles
that narrowed possible architecture choices. “I think by
choosing something like [Apache] Wicket it kind of enforces a
pattern on you.” Cognizant of this reality, developers evaluated
technologies by judging the architectural styles they might
create. Developers preferred technologies that reduced
coupling in their system, allowing separate concerns to be
encapsulated in separate modules of the system and reducing
ripple effects through the system when functionality was
added. And developers preferred technologies with APIs that
abstracted considerations to which they wished to remain
oblivious. For example, developers were very aware of the
extra considerations a NoSQL database imposed that a SQL
database did not.

Developers preferred technologies that were lightweight –
that did not introduce unnecessary complexity from unneeded
features – and disliked technologies that were “bloated”. Yet,
the needed features varied by context. One developer reported
that a previous company had chosen JMS for its ability to
enable fault tolerance by queuing messages when a service is
down; at Site B, it was used for grouping and discarding
unnecessary messages.

Different factors may support different decisions, and
developers may differ in their perception of each factor. In
these cases, developers with seniority may play an important
role in adjudicating decisions, with their personal preferences
biasing choices. At Site B, several developers felt that an
architectural decision was strange, but a more senior developer
felt it to be the best choice. Corporate requirements also play an
important role – a developer reported that a larger company
where they had worked previously had mandated the use of in-
house technology.

TABLE I. FACTORS DEVELOPERS REPORTED CONSIDERING IN MAKING
TECHNOLOGY CHOICES

Factor Example

Scalability “It is easier to scale Tomcat out vertically than
JBoss.”

Extensibility “It is easier to plugin open source tools”

Popularity NoSQL databases are the “hot thing”.

Personal bias Preference to put logic in the database

Corporate bias Corporate requirement for in-house frameworks to be
used

API usability SQL provides more abstraction than NoSQL, through
features such as rollbacks, atomicity, and foreign key
constraints

Learnability Preference for middleware that developers believe
they can learn; preference for middleware with clear
documentation.

Expected
longevity

Preference for technologies that endure

Reduce coupling JSON allows optional parameters to be added while
allowing components that ignore it to be oblivious.

Simplicity J2EE is “bloated” because much of its functionality is
not needed.

Deployment Operations experience supporting MySQL
deployment

B. Communicating Architectural Decisions
Developers used wikis to document major decisions (Site

A) and explain the API to end-users (Site B). Developers
reported consulting the wiki when making new decisions and
looking to understand rationale. But despite these uses,
developers felt that only “10% of design decisions and
constraints make it to the Wiki, because who has time to write
into the wiki.” Others felt the key barrier was not a lack of
effort or commitment but the rapidity with which the codebase
evolved, feeling that the explanations of decisions were
complete but outdated. This replicates findings from studies of
design rationale [8]. Finally, developers felt that the small size
of their organizations made verbal communication particularly
important.

Code reviews served an important role in ensuring code’s
compliance to architectural decisions and communicating these
decisions to new developers. Much of the focus of code
reviews was on code and design level issues – unclear code,
dead code, bugs, naming convention violations, code
duplication, not following established patterns, and committing
test code. But developers also looked to ensure that

78

architectural decisions were respected by, for example,
ensuring code was implemented using the correct libraries.
This was particularly important when developers’ past
experiences led to code writing habits that conflicted with
architectural decisions. One developer reported code that had
been implemented in a batch-oriented style – scheduled to run
at a fixed time every night – rather than in the project’s event
driven style. Another developer gave an example of persisting a
list of 300,000 items in an http session, which both violated the
architectural decision to be as stateless as possible and created
a significant performance problem.

C. Revisiting Architectural Decisions
Developers at Site B used an agile, iterative development

process. Despite the use of agile, developers still spoke of the
value of “design[ing] it right the first time” and the use of
prototypes and mockups to avoid mistakes. But upfront design
to achieve performance was explicitly discouraged, with a
preference to instead optimize for bottlenecks observed in
production.

Largely through two complete rewrites of the system, many
architectural decisions had been revisited (Table II). Explaining
the situation in hindsight, developers described the decision’s
Achilles’ heel: an important use case it could not support. For
example, an early decision to rely exclusively on SQL
databases would not allow tables to contain billions of rows.
Developers viewed the architecture as shaped by learning
through experience: “I can tell you that a lot of decisions that
we made in the old one were wrong, and the ones that we are
making now are much better, but we inevitably will still have
mistakes.”

TABLE II. TECHNOLOGIES AND PATTERNS DEVELOPERS REPORTED
REVISITING

Technology or
Pattern

Achilles’ Heel

J2EE version 1 Entities stored as a database row are stored as a
CORBA object, which has much unnecessary data

SQL databases Cannot scale to billions of rows

Annotation-based
AOP

Cannot insert calls in all cases

Unnormalized
database

Schema changes require changes to all consumers

In-memory state
persistence

When deployment node goes down, state lost

V. LIMITATIONS
Like all studies, our study has important limitations. Most

significantly, it was conducted at two sites, and some of the
practices observed may be specific to the culture, experience,
requirements, and domain of the sites studied. The results are
also limited by the reliance on interview data, which was
limited by the topics discussed and biased by the recollection of
extreme and salient examples. Thus, the results might not be
representative of more typical practice. Further work is
required to investigate the generality of these findings.

VI. DISCUSSION
Architectural decision-making is traditionally seen as a

process wherein developers consider requirements, propose
architectural alternatives, and make a decision as to which
alternative best satisfies the requirements. Our results found
architectural decision-making to be largely shaped by
technology decisions. While developers still sought to satisfy
requirements, developers found and evaluated technologies
rather than architectural decisions. Technologies then imposed
important constraints on subsequent architectural decision
making. Within these constraints, there was sometimes room
for further architectural decisions, but technology decisions
were viewed as the most central.

Developers reported revisiting architectural decisions,
resulting in expensive architectural changes. Revisiting an
architectural decision was driven by an Achilles’ heel – a
crucial scenario that the architecture needed to support but
which the technology or pattern made difficult or impossible.
Some of these limitations might be foreseeable – in retrospect,
developers viewed them as obvious. If only they had the hard-
earned knowledge they gained through experience upfront,
they might have decided differently. Moreover, many of the
limitations seemed to reflect broad issues, applicable to the
technology or pattern’s use in a range of contexts. This
information, gained at great expense, appears highly valuable
to other consumers of a technology or pattern.

While architectural change may be inevitable, especially in
an agile process, our results suggest an opportunity for social
software development tools to reduce architectural change by
helping developers to more effectively share their hard-earned
technology experience. Resources such as books, tutorials,
forums, and QA sites communicate technology knowledge. But
most are focused on making use of a technology, not evaluating
it for adoption. When such information is available, it is often
difficult to find and hard to aggregate, and difficult to compare
technologies. A technology’s website often helpfully provides a
succinct description of its main benefits and selling points. But
this information presents the case for a technology by its
creators and does not feature information about a potential
Achilles’ heel adopters might encounter. And comparisons
with alternative technologies are likely to be biased.

Our results suggest design requirements for a social
software development website that helps developers to quickly
browse and compare technologies they are considering. The
site should be operated by a third party that does not have a
vested stake in any of the technologies reviewed. The site
should provide and aggregate signals for the factors developers
consider when examining a technology (Table I). Such
information could be crowdsourced, allowing developers to
post about their experiences, with the site aggregating opinions
to make judgments. Particularly important to share and
highlight are potential Achilles’ heels, suggesting a possible
“gotcha” an adopter might experience with a technology. Other
developers might respond to these with techniques for working
around the issue or even debate its importance. And this
information could also be valuable to the technology
developers themselves, providing valuable feedback on their

79

technology’s perceived important limitations and comparisons
against potential competitors.

VII. CONCLUSIONS
Architectural decision-making is motivated by requirements

but ultimately constrained and intimately connected to
technology decisions. Developers today face challenges in
making good technology decisions, sometimes resulting in
expensive architectural changes. This provides an important
opportunity for social software development tools to help more
effectively share developers’ hard-earned knowledge.

ACKNOWLEDGMENTS
We thank the participants of our study. This research was
funded in part by NSF grant IIS-1111750. Any opinions,
findings and conclusions or recommendations expressed in
this material are those of the authors and do not necessarily
reflect those of the National Science Foundation.

REFERENCES
[1] L. Bass, P. Clements, and R. Kazman, Software Architecture in

Practice. Pearson, 2003.
[2] D. Falessi, G. Cantone, R. Kazman, and P. Kruchten, “Decision-

making techniques for software architecture design: a
comparative survey.” ACM Computing Surveys, 43, 4, Oct
2011.

[3] M. Fowler, Patterns of Enterprise Application Architecture.
Pearson, 2003.

[4] N. B. Harrison, P. Avgeriou, and U. Zdun, “Using patterns to
capture architectural decisions.” IEEE Software, 24, 4 (July
2007), 38-45.

[5] C. Hofmeister, P. Krutchen, R. L. Nord, H. Obbink, A. Ran, and
P. America, “A general model of software architecture design
derived from five industrial approaches.” Journal of Systems and
Software, 80, (2007), 106-126.

[6] J. F. Hoorn, R. Farenhorst, P. Lago, and H. van Vliet, “The
lonesome architect.” Journal of Systems and Software, 84, 9
(Sept. 2011), 1424-1435.

[7] P. Krutchen, “Mommy, where do software architectures come
from?” Proceedings of the Workshop on Architectures for
Software Systems (IWASSI), 1995.

[8] T. D. LaToza, G. Venolia, and R. DeLine, “Maintaining mental
models: a study of developer work habits.” Proc. of the
International Conference on Software Engineering (ICSE),
2006, 492-501.

[9] R. M. Parizi and A. A. Abdul Ghani, “Architectural knowledge
sharing approaches: a survey research.” Journal of Theoretical
and Applied Information Technology, 4, 12 (2008), 1224-1235.

[10] J. Tyree and A. Ackerman, “Architecture Decisions:
Demystifying Architecture,” IEEE Softw., vol. 22, no. 19-27,
2005.

[11] L. Xu, D. Richardson, and H. Ziv, “A survey of software
architecture decision-making techniques.” ISR Technical Report
UCI-ISR-07-10, Dec. 2007.

80

