Questions about Object Structure during Coding Activities

Marwan Abi-Antoun Nariman Ammar
Department of Computer Science
Wayne State University
{mabiantoun, nammar}@wayne.edu

ABSTRACT

Recent tools have been designed to help developers under-
stand the potential runtime structure of objects in a system
at compile time. Such tools let developers interactively ex-
plore diagrams of object structure. But do developers ask
questions about object structure? If so, when?

We conducted a small pilot study of developers working
on coding tasks designed to require thinking about relation-
ships between objects. Developers did indeed ask a number
of questions about various types of relationships such as con-
tainment, ownership, object identities and aliasing. Finally,
some of our results revealed usability challenges tools should
address to more effectively answer these questions.

Categories and Subject Descriptors

D.2.3 [Software Engineering]: Coding Tools and Tech-
niques— Object-oriented programming

General Terms

Experimentation, Documentation

1. INTRODUCTION

During coding tasks, developers ask questions about code
in order to gather the information they need to successfully
make changes [27, 20]. One type of questions developers ask
is about relationships between classes or objects in code,
including composition and inheritance relationships [27].

Many tools help provide information about these relation-
ships to developers. Several UML tools allow developers to
author or reverse engineer diagrams depicting these relation-
ships between classes, e.g., [6]. But is the information about
class and object structure that these tools provide sufficient
to answer the developers’ questions?

When providing information to developers, it is impor-
tant to distinguish between type relationships and object
relationships. Type relationships depict potential relation-
ships that might exist between any instance of the type. In

Permission to make digital or hard copies of all or part o twork for

personal or classroom use is granted without fee providatidbpies are
not made or distributed for profit or commercial advantage that copies
bear this notice and the full citation on the first page. Toyoofherwise, to
republish, to post on servers or to redistribute to listguies prior specific
permission and/or a fee.

CHASE '10, May 2, 2010, Cape Town, South Africa

Copyright 2010 ACM 978-1-60558-966-4/10/05 ...$10.00.

Thomas LaToza
Institute for Software Research
Carnegie Mellon University

tlatoza@cs.cmu.edu

contrast, object relationships depict relationships between
individual instances of a type. Type relationships describe
the system at compile time, whereas object relationships de-
scribe how individual instances may be related at runtime.

Recently, tool designers have hypothesized that there ex-
ist questions that developers ask that require developers to
think in terms of object structure rather than class struc-
ture. For example, an object might contain a collection of
constituent objects. In a diagram of class structure, a re-
lationship between the object, the collection class, and the
constituent object classes would be shown. In addition, the
class diagram would depict relationships between the collec-
tion class and all the other classes that use it. For widely
used classes, e.g., Vector, this might make such a diagram
difficult to use.

To solve this problem and still enjoy the benefits of a di-
agram depicting all possible relationships that might occur,
Abi-Antoun and Aldrich developed a tool to statically ex-
tract the runtime structure of an object-oriented application
[2]. The diagram depicts a hierarchical object graph by or-
ganizing objects into an ownership or containment hierarchy.

To investigate whether developers ask questions about ob-
ject structure and whether a tool depicting potential object
relationships might help answer these questions, we con-
ducted a small pilot study in a lab setting. Participants
worked on several coding tasks and were provided with both
class diagrams and object diagrams, including an interactive
tool for viewing object structure.

We found that developers do indeed ask questions about
object structure that could not be answered through only
the use of a class diagram.

Outline. This paper is organized as follows. In Section 2,
we explain the distinction between class structure and ob-
ject structure in detail. Next, in Section 3, we describe the
study’s method. In Section 4, we describe our results. In
Section 5, we discuss validity and other limitations. Finally,
we discuss related work in Section 6 and conclude.

2. BACKGROUND

Our study was performed on the JHotDraw system [12],
an open source framework which is rich with design patterns,
uses composition and inheritance heavily, and has evolved
through several versions. For this study, we used Version 5.3,
which has about 200 classes and 15,000 lines of Java.

Before we discuss the study, we compare class diagrams
and object diagrams using a small example, MicroDraw,
which illustrates the core of JHotDraw. We used Eclipse
UML to extract automatically a class diagram from the

‘ O Figur ionListener ! [@c |
e)
| I
|
|
|
|

o |

o DrawingEdito :I # myDrawingEditor :
0.1 _‘
A |
[(© Abstractcomman|

| I
[
\
\
1

© AbstractFigure
— o
0.1 4&
|
|

“orawins [@ Drawing |

0.1

 JavaDrawApp I

[Vector |& ——— —— —
Figure 1: MicroDraw: UML class diagram.

code(Fig. 1).

The MicroDraw architects indicate that MicroDraw fol-
lows the Model-View-Controller design pattern [8], using
annotations (not shown). So, the runtime architecture has
three top-level groups or tiers, MODEL, VIEW and CONTROLLER,
and contains instances of the core types as follows:

e MODEL: has instances of Drawing and Figure objects.
A Drawing is composed of Figures that know their
containing Drawing. The class StandardDrawing im-
plements the Drawing interface.

e VIEW: has instances of DrawingEditor and Drawing-
View objects. The StandardDrawingView class im-
plements DrawingView interface. JavaDrawApp imple-
ments DrawingEditor.

e CONTROLLER: has instances of Command objects.
AbstractCommand implements the Command interface,
as well as FigureSelectionListener. Drawing-
Editor, which is in the VIEW group, extends from
FigureSelectionListener.

Flat object graphs. Previous tools, e.g., [11], can rep-
resent the runtime structure of MicroDraw as a flat object
graph (Figure 2(a)). While such a graph may be useful with
a small number of objects as in this case, such diagrams
become too cluttered and unwieldy for larger systems, and
using them to gain program understanding becomes difficult.

Hierarchical object graphs. To provide architectural ab-
straction, an object graph must distinguish between objects
that are architecturally relevant from those that are not.
Abi-Antoun and Aldrich proposed the Ownership Object
Graph (OOG), which provides architectural abstraction pri-
marily by ownership hierarchy, by pushing low-level objects
underneath more architecturally relevant objects. Thus,
only architecturally relevant objects appear at the top level.
In turn, each one of those objects has nested groups and
objects that represent its substructure, and so on, until low-
level, less architecturally relevant objects are reached.

In addition, an OOG can provide abstraction by types, by
merging objects in each group based on their declared types
in the program, using the notion of subtyping and by having
a developer specify the architecturally relevant types. For
example, the OOG can collapse instances of NewCommand,
UndoCommand, RedoCommand into a Command object.

The MicroDraw OOG is in Figure 2(b). In this document,
our visualization uses box nesting to indicate containment
of objects inside groups, and groups inside objects. Dashed-
border white-filled boxes represent groups. Solid-filled boxes
represent objects. Solid edges represent field references. An
object labeled obj:T indicates an object reference obj of

drawingView:
StandardDrawingView
A

7 3
fSelectionListeners:
Vector<FigureSelectionListener>

A}
command:
AbstractCommand
I
AN,
> app:
JavaDrawApp

«r
standardDrawing:
StandardDrawing

(a) Flat object graph.

drawingView:
— StandardDrawingView

T e e e\ === mm - -y

|

|

|

|

| 1 !

| . R 1

| [fSelectionListeners: 1

| JavaDrawApp [I|["]| Vector<FigureSelectionListener> |1

| | L Il 1

| o EP i

| L - - - - - e e = =W

| | |

| | IEW :

I “~ZzzZzzjzzzz—-—-—-—-- !
IR T ¥ !
I'| standardDrawing: | : command: :
I'| sStandardDrawing | | AbstractCommand :
: ! I I
MODEL | | CONTROLLER |

(b) Hierarchical Ownership Object Graph (OOG).
Figure 2: MicroDraw object structures.

type T, which we then refer to either as “object obj” or as
“T object” or “an instance of the T class”.

Strict encapsulation. We indicate that the fSelection-
Listeners object is strictly encapsulated within a drawing-
View object. The visualization represents this as a thick
border on the REP group, a private group of drawingView.
Private groups represent domination, i.e., the absence of ref-
erences to an object from outside the owner.

In this example, a FigureSelectionListener reference
can point to either a Command or a DrawingEditor ob-
ject; this subtyping illustrates one of the features of object-
oriented languages that makes them challenging to analyze.

3. METHOD

To see if developers ask questions about object structure,
and what type of questions they ask, we conducted a small
exploratory study in a laboratory setting. We observed three
participants working for two hours on several coding tasks
using Java and Eclipse. Developers were provided with both
class diagrams and object diagrams, including an interactive
tool for viewing object structure.

3.1 Study Design

For the study, we selected the JHotDraw subject system
(Version 5.3), because we previously annotated it and ex-
tracted from it several OOGs [2]. However, to avoid intro-

_lentMain___MainModelVector_FigureSelectionListener__Main__Model_
_lentMain___MainModelJavaDrawApp_Main__Model__Main__Model__Main__Model_
_lentMain___MainModelAbstractCommand_Main__Model__Main__Model__Main__Model_
_lentMain___MainModelStandardDrawing_Main__Model__Main__Model__Main__Model_
_lentMain___MainModelStandardDrawingView_Main__Model__Main__Model__Main__Model_
_lentMain___MainModelStandardDrawing_Main__Model__Main__View__Main__Controller_
_lentMain___MainModelJavaDrawApp_Main__Model__Main__View__Main__Controller_
_lentMain___MainViewStandardDrawingView_Main__Model__Main__View__Main__Controller_
_lentMain___MainControllerAbstractCommand_Main__Model__Main__View__Main__Controller_
_lentMain___MainViewStandardDrawingView_Main__Model__Main__View__Main__Controller__StandardDrawingViewLISTENERSVector_FigureSelectionListener__Main__View_

ducing an additional confound to the experiment, we gave
the participants the JHotDraw code without annotations.

We also provided the participants with the documentation
for JHotDraw (See Section 3.3) in order to find out whether
the questions were best answered with the documentation or
with the diagrams. For realism, we based the tasks on real
defects and enhancement requests from the defect tracking
system for JHotDraw 5.3 [13, 14, 15, 16, 17].

We gave the participants both object and class diagrams.
This way, if a developer found an answer to a question, we
wanted to find out whether he could answer that question
using the class diagram or the object diagram. We also
wanted to identify the questions for which the developers
decided to use the object diagram.

We gave the participants a hard-copy printout as well as
an interactive viewer for both diagrams, to avoid the con-
found of a developer preferring to use one over the other.
Indeed, one of the participants requested using the interac-
tive UML tool for the class diagram.

The tasks varied between Participant 1 and Participant 2
because the former referred little to the object diagram. So
we picked different tasks for Participant 2, in the hope that
he would use the object diagram more. We asked Partici-
pant 3 to do the same task as Participant 2 (See Section 3.4).

3.2 Participants

We recruited three participants with diverse levels of ex-
perience. T'wo were currently graduate students in computer
science at Carnegie Mellon University, while the third was a
recent graduate and practicing software engineer. The par-
ticipants were paid a nominal fee for their time.

Participants also rated their experience with design pat-
terns, Java programming, Eclipse IDE, knowledge of UML,
and familiarity with JHotDraw as follows:

Participant 1 (P1) was not familiar with JHotDraw or any
similar application. He was familliar with Java, but was not
very familiar with the standard design patterns except for
some of them. Finally, he was slightly familiar with UML.

Participant 2 (P2) had looked at JHotDraw previously. He
had intermediate Java skills and good knowledge of design
patterns. He did not implement a GUI application before,
but he had a good knowledge of Swing from his previous
experience. Finally, he had a good knowledge of UML.

Participant 3 (P3) was not familiar with JHotDraw, but
he had three years of experience in Java. He was unfamiliar
with design patterns. Finally, he had used UML before.

Overall, the participants were unfamiliar with some of the
advanced Eclipse features, e.g., to show the inheritance hi-
erarchy.

3.3 Toolsand I nstrumentation

Participants were provided with the Eclipse IDE (Version
3.3) and were allowed to use any Eclipse feature. We used
Camtasia to record the screen. Participants were asked to
think aloud and prompted if they forgot to do so. We also
captured the audio of the participants and the experimenter
using Camtasia.

We provided the participants with a hard-copy of a JHot-
Draw class diagram, and the interactive tool (Eclipse UML
[6]) we used to generate the diagram. The participants were
also provided with a hard-copy of a JHotDraw object dia-
gram, and an interactive viewer for the object graph [24].
Finally, we provided the participants with tutorials by the

«interface»
FigureSelectionListener

?

«interface»
DrawingEditor

?

JavaDrawApp

Figure 3: MicroDraw: inheritance hierarchy dis-
played for the object app:JavaDrawApp in the OOG.

JHotDraw original designers [7] (for the slightly older Ver-
sion 5.1), a description of the design patterns used by JHot-
Draw [18], and the JavaDoc for JHotDraw. The study ma-
terials are available online [24].

The OOG viewer offers the following features (numbered
below, and referred to in Section 4.2):

e Display inheritance hierarchy (F1): the tool can
display the inheritance hierarchy of the types of the
field declarations that an object merges (Fig. 3);

e Collapse/expand internals (F2): the hierarchical
representation of the OOG allows a developer to col-
lapse or expand the sub-structure or the internals of a
selected object;

e Control unfolding depth (F3): a developer can
control the visible depth of the ownership tree;

e Control object labels (F4): Each object in an ex-
tracted object graph represents at least one field or
variable declaration in the program. An object might
have multiple types, and the object graph uses one of
those types as the label. The OOG can label objects
with an optional field or variable name and an optional
type name. The type used in the label can also include
a labeling type (discussed below);

e Set additional labeling types (F5): the object
graph extraction non-deterministically selects a label
for a given object o based on the name or the type
of one of the references in the program that points to
0. A developer can specify an optional list of label-
ing types for labelling objects. The tool adds the type
decoration to an object’s label, if it merges at least
one object of that type. For example, if the developer
adds as a labeling type the FigureSelectionListener
interface, the latter would appear as a decorator on
the app:JavaDrawApp object in the OOG (Fig. 2(b));

e Trace to code (F6): the tool can show the list of
field declarations and their types that may refer to a
given object in the diagram. In addition, the devel-
oper can trace from an object in the diagram to the
corresponding lines of code;

e Navigate (F7): the tool supports zooming in and
out, panning, scrolling, and other standard operations;

e Search tree (F8): the tool supports searching for an
object in the ownership tree by type or field name;

e Find label (F9): the tool supports searching for an
element on the diagram by its label.

3.4 Tasks

We asked the participants to perform the following code
modification tasks. Participant 1 was given four bug fixes:

framework.DrawingEditor
framework.JavaDrawApp
framework.FigureSelectionListener
java.lang.Object

Task 1.1: Bug: “Keyboard delete not undoable:” if the
user deletes a figure using the delete menu item, this action
is undoable. But if he uses the delete key, the action cannot
be undone.

Task 1.2: Bug: “View-specific undo stack:” if the user
opens two windows, modifies a drawing in one window, then
switches to the other window (activates it), the undo com-
mand applies to the recently deactivated window.

Task 1.3: Bug: “Undo ChangeAttributeCommand
broken wrt GroupFigure:” if the user modifies a graphical
attribute such as fill color on a shape which groups two or
more figures, the change is not undone correctly.

Task 1.4: Bug: “Undo delete doesn’t restore z-order:’
deleting a set of figures, then undoing the delete, does not
honor the original z-order of the figures.

)

Participant 2 was given two feature requests:
Task 2.1: Feature: “Prompt user on delete:” popup
a message box: “Are you sure you want to delete: ‘figure
name’ Yes|No. If yes, delete the figure. If no, cancel delet-
ing the figure. The action should be undoable.
Task 2.2: Feature: “Update the status bar when a
figure is deleted:” whenever a figure is deleted the number
of figures in the drawing should show on the status bar. This

must work correctly with Undo/Redo.

Participant 3 was given the same task as Participant 2:
Task 3.1: Feature: “Update the status bar when a
figure is deleted.”

3.5 Procedure

Our participants first worked through a brief tutorial on
Eclipse code navigation features (such as using the call hi-
erarchy, navigating to method declarations, and reference
searches) to ensure they effectively used Eclipse. To sim-
ulate some of the architectural knowledge that an experi-
enced developer might possess, we provided the participants
with all necessery documentation that they might need to
understand the desing and architecture of JHotDraw (See
Section 3.3). Participants were then given a set of tasks and
received a brief explanation on how to reproduce the bug us-
ing the JHotDraw user interface. This portion of the study
lasted 10-15 minutes on average.

The participants had as much time to understand the task
description as they liked. Participants then navigated to the
code described in each of the tasks which was also explained.
They were allowed to spend as much or as little time as they
wanted on each task. The participants were still working
when their time expired.

At the end of the two hours, participants were asked a
series of exploratory interview questions about how they
worked, what they found challenging, and how well they
believed they did.

3.6 Analysis

We transcribed thinkaloud recordings and screen capture
video into action logs consisting of a total of 1114 lines.
Next, we used qualitative protocol analysis. We built a
list of activities that we saw the developers engage in and
coded what developers did using this model. Our analysis
remained qualitative because the tasks varied slightly be-
tween developers.

4. RESULTS

We first discuss the changes that the participants imple-
mented. We then present our observations, and support
them with evidence from the transcripts. Where applicable,
we use a quote from a participant P, working on task T,
using the notation (P, T).

4.1 Code Changes

Participant 1 was able to complete three out of the four
tasks. However, he did not do any code modification. This
participant relied on his domain knowledge and asked high
level questions about the design and architecture of the sys-
tem. He also referred to the class diagram and the OOG
viewer to help him understand the inheritance hierarchy es-
pecially for the third task.

Participant 2 was able to finish Task 2.1, but did not
do any code modification. He spent almost 2 hours on the
Task 2.2, without completing it. This participant was not
fond of using external diagrams, and insisted on browsing
the code. It also took him a long time to figure out where to
place the code which was provided to him. His attempt at
modifying the code was unsuccessful. Moreover, he proposed
adding a lot of unnecessary code in order to implement the
requested feature.

Participant 3 was able to complete Task 3.1 and test the
modification. The first attempt took him 1 hour, but it was
a hack. So we asked him to redo the same task in a way
that better fits JHotDraw’s design. He redid the task more
quickly the second time. This participant referred to the
class diagram and the OOG to understand composites and
listeners.

4.2 Observations

4.2.1 Value of Diagrams

High-level views of the program structure can be useful to
developers making code modifications. The first canonical
use case for a diagram is that of a new developer who knows
nothing about the object structures. Since achieving that
understanding by looking at the code may be difficult, the
developer uses the diagram to obtain a high-level overview
of the object structures at a glance.

“I am not familiar with JHotdraw or any other
similar application and I really don’t know where to
start and I think this will be a pain” (P1, T1.1)

“Could you give me a hint about what context the
code came from?” (P2, T2.2)

The second use case is when a developer is using a diagram
to locate where to put some code:

“Until now, I was unable to find a place where the
figure is being added [...] and I am stuck. Eclipse
does not help any more.” (P2, T2.2)
The following are observations related to object struc-
tures, organized hierarchically using a numbering scheme.

4.2.2 Object Sructure

When working with object-oriented code, developers of-
ten ask questions about objects, and relations between ob-
jects. This observation is supported by several activities.
We break down that observation into several observations
that the evidence supports directly.

Is part of. Developers ask questions or state facts about

whether an object is logically or conceptually part of another
object.

File Edit Align Attributes

drawingView11 :
StandardDrawingView

JHotDraw - ..
drawingView12 :
StandardDrawingView

p‘mages Window
]!

drawingView21 :
StandardDrawingView

JHotDraw —

drawingView22 :
StandardDrawingView

StandardDrawing StandardDrawing
status bar |
Figure 4: JHotDraw uses the Multiple Document Interface (MDI) style.

Selection Tool

“Maybe I would start with the Drawing object
and that should have a list of listeners.” (P2, T2.2)

“Okay what is figures? It is a Vector in Compos-
iteFigure.” (P3, T3.1)

“I should go to StandardDrawing and it has a set
of listeners, fListeners.” (P3, T3.1)

Is owned. Developers ask questions or state facts about
whether an object is strictly owned by, or encapsulated
within another object.

“[...] the window itself has a reference to the
UndoManager but you can’t tell from this diagram
whether each window has its own UndoManager, or
whether it is just one global manager” (P1, T1.2)

“The difference would be: before, many windows
shared one UndoManager, new version each window
has its own UndoManager” (P1, T1.2)

In another case, the developer wondered whether several
Drawing objects shared the same status bar object.

“Why there is always one status bar? [...] so you
don’t want it to be with respect to each DrawingView
[...] so it [the status bar] is with the main window,
it is not with the individual drawing” (P3, T3.1)

Is in tier. Developers ask questions or state facts about
whether an object is in some tier.

JHotDraw is implemented according to the Model-View-
Controller style, though this is not represented by plain Java
code. In fact, the suppressed annotations specify the archi-
tectural tiers directly within the code. Moreover, the static

package structure says little about the runtime tiers.
The developers were often wondering where to get hold of
the “document” or where to get hold of the “view”.

“And where is my Document? Application? Fig-
ure? Drawing? So that has a list of Figures. So let’s
try to drill into that since we did not have any suc-

cess here [...] T am looking for the Drawing object
[-..] DrawingChangeEvent [...] sorry, I just got dis-
tracted [...] getting a little vague at this point, that

takes me back to Drawing.” (P2, T2.2)

“I’'m not a big design document type person, but
what I would be interested in is looking in the code to
try to understand where are the view and model” ibid

Composites. Implementations of the Composite design
pattern seem hard to understand with only a class diagram.
For example, in JHotDraw, StandardDrawing extends Com—
positeFigure to enable nesting a Drawing inside another
Drawing. This is in addition to a Drawing object having a
list of constituent Figure objects.

The developers were not able to understand these relations
from looking at the class diagram alone. The OOG displays
these relations much more explicitly. By expanding the sub-
structure of the Drawing object (F2), the developer could see
the Vector of Figure objects inside the Drawing object. In
turn, the Vector object points to the Figure object, which is
a sibling of Drawing. In addition, the OOG viewer can also
display a partial class diagram (F1), which can also confirm
that StandardDrawing is-a Figure.

As an aside, this finding is interesting because it slightly
contradicts the design. There is only a brief mention of
it in the Release Notes of Version 5.1. Moreover, in the
framework package, interface Drawing does not extend Fig-
ure! Indeed, the JHotDraw designers explicitly asked to
“not commit to the CompositeFigure implementation since
some applications need a more complicated representation”
[7, Slide #16].

How to get object x. Developers ask questions or state
facts related to whether they already have a reference to an
object o or need to somehow obtain such a reference.

“How I will get hold of the DrawingEditor object?
[...] basically I need to know the instance of the
current window” (P3, T3.1)

“T know I need to get the view from here so how
do I do that?”(P3, T3.1)

“[...] how to get that Drawing object” (P2, T2.2)

How to go from x to y. Developers ask questions or
state facts related to navigating the object structure, to go
from object X to object Y.

“Let’s say I am in the StandardDrawing class and
I want the JavaDrawApp object which is a Drawing-
Editor [...] what would save me a lot of time is to
say now I am at the Drawing and I want to go to the
DrawingEditor, show me my options.” (P2, T2.2)

Cardinality. Developers ask questions or state facts re-
lated to the cardinality of an object relation (1-to-1 or 1-to-
many).

“Also I would like to know the cardinality so Win-
dow has one or more StandardDrawingViews.” (P1,
T1.2)

“Well, I would change the cardinality from mul-
tiple Windows, one UndoManager to multiple Win-
dows, multiple UndoManagers.” (P1, T1.2)

“The class diagram says that the DrawingEditor
has one DrawingView and the StandardDrawingView
may or may not have a Drawing |[...]| the visual syn-
tax does not tell you if there is a pointer to one or
more.” (P1, T1.2)

Navigation. The developers navigated the object struc-
ture using several of the features of the interactive OOG
viewer (Section 3.3), e.g., to show or hide the internals of
a selected object (F2), or to trace from an object or edge
on the diagram to the code (F6). In some cases, the devel-
oper was too intimidated by the user interface of the OOG
viewer, and the experimenter stepped in to assist.

4.2.3 Object + Type Srructure

When working with object-oriented code, developers often
switch between asking questions about the type structures
and about the object structures. Indeed, the type and the
object structure are complementary. For “is a” type ques-
tions, it is often hard to separate the cases where the de-
veloper is referring to an Object a of type A which extends
from or implements type X, as opposed to simply referring
to a class C' which extends from or implements type Y.

The developer often needed access to the code structure,
even when looking at the object structure. The OOG viewer
has several features to expose some information about the
code structure in the object structure in various ways (See
Section 3.3). First, the label of each object in the OOG
includes some type information (F4). Second, the developer
can select additional types of interest, typically, the listener
interfaces (F5). Third, the developer can display partial
class diagrams (F9). Finally, the developer can trace each
element in the OOG to the code (F6).

Is a. The developer often asked questions or stated facts
related to the Is-A relationship. He often answered these
questions by navigating the code structure. In many in-
stances, the developers asked questions such as “who im-
plements X”, where X is some type, and used the Eclipse
features to examine the type hierarchy.

Is subtype of. When developers search for objects of
type T, they must look for all objects of type 7" where T
is a subtype of T'. In order to achieve abstraction, the OOG
can merge several objects into one canonical object.

4.2.4 Object Identity

When working with object-oriented code, developers of-
ten need to distinguish between different instances of the
same type. To make informed code changes, the develop-
ers must understand the following object relationships. One
JavaDrawApp instance can display multiple Drawing objects
(documents). In turn, each document can be represented
using multiple views (DrawingView).

Having multiple views of the same document allows the
users to view independently two parts of the same document,
or scroll or zoom the views separately.

Launching the application creates a new JavaDrawApp ob-
ject. Every time the user invokes the “File|New” or the
“File|Open. ..” menu item, a new Drawing object is created.
By default, a new DrawingView object is automatically cre-
ated to display the Drawing. When the user creates addi-
tional views of the same document by selecting an active
view of a document, then using the “Window|New View”
menu item, an additional DrawingView object is created,
but shares the same underlying Drawing object.

Because JHotDraw supports the Multiple Document In-
terface (MDI) style of interaction, the user can create or
open multiple documents at once (Fig. 4).

Observers. Implementations of the Observer design pat-
tern are hard to understand based on the static code struc-
ture alone. In object-oriented design patterns, much of the
functionality is determined by what instances point to what
other instances. For instance, in the Observer design pat-
tern [8, p. 293], understanding “what” gets notified during
a change notification is crucial for understanding the sys-
tem. But “what” does not usually mean a class, it means a
particular instance.

For example, in Fig. 4, the objects drawingViewll and
drawingViewl2 must listen to notifications from the object
drawingl only, and must not listen to any notifications from
the drawing?2 object.

Listener interfaces are often implemented by different
types, which in turn are instantiated in different places
in the program. For example, in JHotDraw (and Micro-
Draw), both Command and DrawingEditor implement the
FigureSelectionListener interface. Instances of Drawing-
Editor are in the MODEL tier, and instances of Command are in
the CONTROLLER tier (Fig. 2(b)). The complexity increases
significantly when multiple listener interfaces are present.
For example, JHotDraw has no fewer than six application-
specific listener interfaces, in addition to the listener inter-
faces from the libraries it uses.

“So something had to fire off the view update,
so what I am thinking about is that all registered
observers are notified if the drawing view has been
changed.” (P2, T2.2)

“So there has to be some kind of a listener
... FigureChangeListeners?” (P3, T3.1)

“DrawingView itself is a DrawingChangeListener.
Okay” (P3, T3.1)

“But how can I get the listeners over there, I need
the listeners in the orphan() method. If I have the
listener I can do everything else.” (P3, T3.1)

At the end of each experiment, we asked the participants
if they could understand listeners by looking at the class
diagram. In particular, we asked one developer if the class
diagram helped him understand that a Drawing has a list of
DrawingChangeListeners, he said:

“Not directly. It is hard to find but I referred to
[the class diagram] because I am used to it, but if I

use this [object] diagram more and more, I will get
used to it.” (P3, T3.1)

Related to the above question of distinguishing between

instances of the same type, is the question of identifying
references to similar or identical objects.

May alias. Developers ask questions or state facts about
whether two references may or may not alias, i.e., refer to
the same object at runtime.

“So I have different selections in the different
views.” (P2, T2.2)

Question Object Merging
Fact May-Not-Alias
Fact May-Alias

Fact IA[readnyIaveX
Question HowToGetX
Fact Navigability
Question Navigability
Fact Cardinality
Question Cardinality
Fact Has-Label
Question Has-Label
Fact Points-To
Question Points-To
Fact Is-In-Tier
Question Is-In-Tier
Fact Is-Owned
Question Is-Owned
Fact Part-Of
Question Part-Of
Fact Has-A

Question Has-A

Fact Is-A

Question Code

Question Is-A
Confusion 00G
Fact 0OG
Question OOG
Fact CD
Question CD

0 10 20 30 40
Frequency

Figure 5: Types and frequency of questions asked
by developers during code modification tasks.

“Both of them are two views on the same Drawing,
but if there are two windows...” (P3, T3.1)

425 Summary

We summarize the types and the frequency of the various
facts stated or questions asked by the developers in Fig. 5.
Additional codes shown in Fig. 5 are discussed in the com-
panion technical report [3].

5. DISCUSSION

5.1 Limitations

Our study observed only 3 participants and did so on tasks
specifically designed to provoke developers to think about
object structure. Even the codebase itself had been specif-
ically chosen to have many interesting examples of design
patterns, and relationships between objects. Thus, while
our results demonstrate that developers do ask questions
about class and object structure in such situations, they say
little about how frequently these questions occur in practice.
While the experimenter asked questions to direct the partic-
ipants during the study to make sure they are not distracted,
we believe this prompting mostly helped participants get to
questions about object structure faster, rather than lead-
ing them to ask questions they would otherwise have been
able to avoid. Finally, both the class and object structure
diagrams were produced by the experimenter by hand to il-
lustrate architecturally important information. Diagrams in
practice might not focus as much on such relationships.

5.2 Usability Issues

The study identified a number of usability issues that may
have reduced the usefulness of the object diagrams to devel-
opers. Part of the challenge is that developers are not famil-
iar with notations that are different from the standard code
structure notations such as UML. As a result, diagrams of
the runtime structure are often harder to understand and
interpret than UML diagrams, as confirmed by others [9].

One developer said that “the problem with the tool in its
current state is that the navigation is subtle enough that I
did not have a lot of time and confidence from watching you
navigating that I could navigate. On the other hand it is a
new type of tool” (P2, T2.2)

Another developer said that he could not make the best
use of the tool because of the cluttered edges in the object
diagram. Finally, one of the developers wanted the object
diagram to show the cardinality on the object relations.

6. RELATED WORK

The research literature has abundant theoretical evidence
that runtime structure is important. But the lack of tools
that extract statically meaningful object graphs made it dif-
ficult to empirically evaluate the usefulness of object struc-
ture in the context of coding activities.

Studies of developer questions. Recently, a few stud-
ies have observed developers during coding activities to find
questions about code that developers ask. Ko found ques-
tions developers ask when writing code, submitting changes,
triaging bugs, reproducing failures, understanding execution
behavior, reasoning about design, and maintaining aware-
ness [20]. Sillito focused more specifically on questions about
code and found that developers ask questions about relation-
ships between types or objects including composition and
inheritance relationships [27]. But they did not attempt to
distinguish questions about class relationships from ques-
tions about runtime object structure.

Empirical evaluation of design diagrams. Several re-
searchers have evaluated empirically the usefulness of vari-
ous object-oriented design diagrams, e.g., [10, 5, 4]. Unfor-
tunately, these evaluations focus mostly on class diagrams,
or partial runtime views such as sequence diagrams. This is
partly because object structure has been difficult to obtain
statically using previous technology.

More recent empirical evidence is paying greater attention
to the importance of understanding the runtime structure
of an application. Lee et al. [22] report on an empirical
study where a participant expressed the need to understand
“how objects connect to each other at runtime when I want
to understand code that is unknown: an object diagram is
more interesting than a class diagram, as it expresses more
how [the system] functions”.

Our previous evaluation of OOGs. In previous work [1],
we conducted a field study to evaluate if an outside devel-
oper understood OOGs. However, we did not use the object
diagram to perform any code modification tasks.

Program understanding. Gamma et al. were among
the first to emphasize the challenges of understanding the
runtime structure “An object-oriented program’s runtime
structure often bears little resemblance to its code structure.
The code structure is frozen at compile-time; it consists of
classes in fixed inheritance relationships. A program’s run-
time structure consists of rapidly changing networks of com-
municating objects. In fact, the two structures are largely
independent. Trying to understand one from the other is
like trying to understand the dynamism of living ecosys-
tems from the static taxonomy of plants and animals, and
vice versa” [8, p. 22].

Many researchers have confirmed empirically these chal-
lenges. For example, Kirk et al. state that object-oriented
frameworks pose particular program understanding chal-
lenges, and emphasize that “understanding the dynamic be-
havior of a framework is more challenging, particularly given
the separation of the static and dynamic perspectives in the
object-oriented paradigm” [19]. Shull et al. concur that both
“the static and dynamic structures must be understood and

then adapted to the specific requirements of the application
[...] For a developer unfamiliar with the system to obtain
this understanding is a non-trivial task. Little work has been
done on minimizing this learning curve” [26].

Design patterns. In their landmark book, Gamma et
al. generated manually both class diagrams and object di-
agrams to explain several of the structural design patterns,
such as Proxy, Mediator and Composite [8].

Riehle proposed explaining the design patterns based on
the class structure and evaluated his approach on JHot-
Draw [25].

Dynamic analysis. Several approaches used dynamic
analysis [21, 28] to generate high-level views for program
understanding. But an object diagram extracted using a
dynamic analysis reflects only the use cases that are exer-
cised, and the input. Moreover, it may not reflect important
objects or relations that show up in other executions. As a
result, such a diagram may be not be a trusted source of
information for all code modification tasks.

Class structure questions. Mandelin et al. [23] proposed
an approach and a tool, Prospector, to help developers an-
swer questions about the type structure. Prospector, how-
ever, cannot distinguish between two different instances of
the same type in different contexts.

7. CONCLUSIONS

We conducted an exploratory study to identify some of the
questions about objects and their relations that developers
ask during code modification tasks.

The study gave us insights into the questions that de-
velopers ask, and how tasks could be redesigned to focus
specifically on the questions that are hard to answer using
only the code structure. In addition to the developer ques-
tions, we identified some usability challenges in the current
tools, which may lower their usefulness to developers. Once
we address some of these issues, we will conduct additional,
evaluative studies.

Acknowledgements

The authors thank Brad Myers and Jonathan Aldrich for
their useful advice on designing the exploratory study.
Thanks to Talia Selitsky and the rest of the SEVERE group
for their comments on improving this paper.

8. REFERENCES

[1] M. Abi-Antoun and J. Aldrich. A Field Study in Static
Extraction of Runtime Architectures. In PASTE, 2008.

[2] M. Abi-Antoun and J. Aldrich. Static Extraction and
Conformance Analysis of Hierarchical Runtime
Architectural Structure using Annotations. In
OOPSLA, 2009.

[3] M. Abi-Antoun, N. Ammar, and T. LaToza. Questions
about Object Structure during Coding Activities.
Technical report, WSU/CMU-ISR-10-102, 2010.

[4] C. J. Bennett, D. Myers, M.-A. Storey, D. M.
German, D. Ouellet, M. Salois, and P. Charland. A
Survey and Evaluation of Tool Features for
Understanding Reverse-Engineered Sequence
Diagrams. J. Softw. Maint. Evol., 20(4), 2008.

[5] W. Dzidek, E. Arisholm, and L. Briand. A Realistic
Empirical Evaluation of the Costs and Benefits of
UML in Software Maintenance. T'SE, 34(3), 2008.

[6] Eclipse UML. http://www.omondo.com/, 2006.

[7] E. Gamma. Advanced Design with Patterns and Java
(Tutorial). In European Conference on Java and
Object Orientation (JAOO), 1998. JHotDraw v. 5.1.

[8] E. Gamma, R. Helm, R. Johnson, and J. Vlissides.
Design Patterns: Elements of Reusable
Object-Oriented Software. Addison-Wesley, 1994.

[9] J. C. Grundy and J. G. Hosking. Softarch: Tool
Support for Integrated Software Architecture
Development. J. Softw. Eng. Kindg. Eng., 13(2), 2003.

[10] I. Hadar and O. Hazzan. On the Contribution of UML
Diagrams to Software System Comprehension. Journal
of Object Technology, 3(1), 2004.

[11] D. Jackson and A. Waingold. Lightweight Extraction
of Object Models from Bytecode. T'SE, 27(2), 2001.

[12] JHotDraw. www.jhotdraw.org, 1996. Version 5.3.

[13] Bug #726304: Deleting a figure does not notify
FigureChangeListeners. sourceforge.net, 2006.

[14] Bug #675587: Undo ChangeAttributeCommand
broken /wrt Group Figure. sourceforge.net, 2006.

[15] Bug #669421: Undo restores Dependent figures,
regardless if deleted. sourceforge.net, 2006.

[16] Bug #649258: Undo delete doesn’t restore z-order.
sourceforge.net, 2006.

[17] Bug #594961: keyboard delete not undoable.
sourceforge.net, 2006.

[18] JHotDraw Pattern Language. softarch.cis.strath.
ac.uk/PLJHD/Patterns/JHDPatternIndex.html, 2006.

[19] D. Kirk, M. Roper, and M. Wood. Identifying and
Addressing Problems in Object-Oriented Framework
Reuse. Empirical Software Engineering, 12(3), 2006.

[20] A. J. Ko, R. DeLine, and G. Venolia. Information
Needs in Collocated Software Development Teams. In
ICSE, 2007.

[21] D. Lange and Y. Nakamura. Interactive Visualization
of Design Patterns Can Help in Framework
Understanding. In OOPSLA, 1995.

[22] S. Lee, G. Murphy, T. Fritz, and M. Allen. How Can
Diagramming Tools Help Support Programming
Activities? In VL/HCC, 2008.

[23] D. Mandelin, L. Xu, R. Bodik, and D. Kimelman.
Jungloid mining: helping to navigate the API jungle.
In PLDI, 2005.

[24] Exploratory Study: Online Appendix.
www.cs.wayne.edu/ “mabianto/oog_study1/, 2010.

[25] D. Riehle. Framework Design: a Role Modeling
Approach. PhD thesis, Federal Institute of Technology
Zurich, 2000.

[26] F. Shull, F. Lanubile, and V. R. Basili. Investigating
Reading Techniques for Object-Oriented Framework
Learning. TSE, 26(11), 2000.

[27] J. Sillito, G. Murphy, and K. D. Volder. Asking and
Answering Questions during a Programming Change
Task. TSE, 34(4), 2008.

[28] R. J. Walker, G. Murphy, B. Freeman-Benson,

D. Wright, D. Swanson, and J. Isaak. Visualizing
Dynamic Software System Information through
High-Level Models. In OOPSLA, 1998.

