
On the Importance of Understanding the
Strategies that Developers Use

Thomas D. LaToza
Institute for Software Research

Carnegie Mellon University

tlatoza@cs.cmu.edu

Brad A. Myers
Human Computer Interaction Institute

Carnegie Mellon University

bam@cs.cmu.edu

ABSTRACT
Understanding the strategies that developers use during coding
activities is an important way to identify challenges developers
face and the corresponding opportunities for tools, languages, or
processes to better address the challenges and more effectively
support the strategies. After creating a design, evaluation studies
often measure task success, time, and bugs to argue that the
design improves programmer productivity. Considering the
strategies that developers use while conducting these studies in-
creases the likelihood of a successful test and makes the results
easier to generalize. Therefore, we believe that identifying
strategies developers use is an important goal. Beyond identifying
strategies, there are also research opportunities in better under-
standing how developers choose strategies.

Categories and Subject Descriptors
D.2.6 [Programming Languages]: Programming Environments;
D2.7 [Software Engineering]: Distribution, Maintenance, and
Enhancement

General Terms
Experimentation, human factors

Keywords
Program comprehension, developer questions, strategies

1. INTRODUCTION
Researchers studying the activities of software developers make
use of two types of study: exploratory studies generate ideas for
what might make developers more productive, and evaluation
studies determine if a particular design succeeds in improving
productivity. Compared to the intuition or personal experience of
the designer, systematic and detailed exploratory studies can re-
veal challenges that were unexpected, find frequent but unmemo-
rable problems, and lead to alternative perspectives on develop-
ers’ work. Evaluation studies build confidence and evidence that a
design is usable, help to weed out those that are not, and help to
iteratively create designs that overcome discovered shortcomings.

Recently, exploratory studies of coding activities have begun to
identify goals, information needs, questions, and strategies used
by developers. By identifying strategies developers use and the
challenges developers face applying these strategies, key insights

for new designs can be generated [17][11]. For example, we found
that developers often debug or investigate the implications of
changes by searching for target statements across control flow
paths through a program [10]. This strategy was challenging when
developers had to guess which paths led to targets or when some
of the paths were infeasible and could never execute. To address
these challenges and better support this strategy, we are designing
a tool for searching across paths [11]. Identifying strategies also
helps in designing studies to evaluate a design’s effectiveness. We
plan to design an evaluation study that measures not only task
time and success but also how well the tool supports the kinds of
searches that developers attempt.
Of course developers do not always debug or investigate code by
searching for statements across paths. Sometimes developers may
implement a change and test if it works. Or developers may use
their knowledge and intuition to guess the effects of a change.
Developers may wonder why the original developer did not use a
particular design and explore code history for rationale about why
the current design was chosen. Or, if the original developer is still
on their team and available to be interrupted, they may walk into
his or her office and ask. In some situations, developers may
choose one of these strategies instead of searching across paths for
statements. If we conducted an evaluation study in which one of
these other strategies is possible and more effective, we might fail
to see any benefits from our tool, as it only supports the search
strategy. Thus, understanding not only the strategies that develop-
ers use but also the factors that influence when developers choose
to use them is an important part of an argument that a tool is use-
ful. Furthermore, understanding these factors makes it easier to
design evaluation studies that are most informative.
Recently, there has been growing recognition of the lack of theory
in software engineering and the benefits more theory might pro-
vide [7]. A theory of coding activity describing factors influencing
developers’ strategy choices could help fill this gap. Such a theory
would describe how developers start from high-level tasks (e.g.,
fixing a bug, implementing a feature), ask questions to try to de-
termine how to perform those tasks, and choose strategies to try to
answer these questions. Like theories in traditional scientific
fields, such a theory could have many benefits. First, it would
allow sharing knowledge about the space of strategies and factors
between similar designs. Second, studies designed specifically to
test the theory could be employed. Third, the theory could predict
and explain why developers are likely to use the strategy sup-
ported by a tool in a specific situation without ever having to con-
duct an empirical study. Fourth, the theory could help designers
identify assumptions made by tools (e.g., information developers
need before choosing to employ a strategy). Fifth, strategies and
factors could be taught to undergraduates to provide more effec-
tive strategies and help them make better strategy choices. Sixth,
when conducting studies, the theory focuses attention on the data
that is most important to collect: strategies and factors. Finally,

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
CHASE 2010, May 2, 2010, Cape Town, South Africa
Copyright © 2010 ACM 978-1-60558-966-4/10/05... $10.00

the theory makes possible cheaper lab studies with intentional
external invalidity. Rather than attempt to recreate every aspect of
a professional software development project in the lab, theories
help to predict which aspects are necessary to replicate and which
are not.

In this paper, we first illustrate the importance of strategies by
considering how identifying strategies might make evaluation
studies more successful. We then discuss several types of strate-
gies and speculate on some of the factors that might influence the
perceived and actual utility of a strategy.

2. DESIGNING EVALUATION STUDIES
One benefit of identifying strategies is to make designing valid
and informative evaluation studies easier. Designing these studies
is challenging. Participants, tasks, materials, data collection meth-
ods, conditions, and measures must all be chosen. Expected dif-
ferences in the measures may not occur, and the interpretation
may not be clear: is the design just not useful, did usability prob-
lems hinder its success, or were the tasks or participants poorly
chosen to demonstrate its usefulness? Even when differences do
occur, skeptics may argue that the findings do not generalize to
more realistic conditions. To help overcome all of these problems,
it can be beneficial to collect data not only on task time and suc-
cess, but also on the strategies developers use.
For example, one study tested if alternative concurrency para-
digms (transactional memory, actors) helped undergraduate stu-
dents complete two-hour programming tasks more quickly or in
fewer lines of code compared to a traditional lock-based
concurrency paradigm [15]. No significant differences in either
measure were found, although participants significantly preferred
transactional memory over locks. The paper provides a long list of
potential reasons for this result. Hoping to avoid large expected
differences between subjects, a within-subjects design had been
used. But this may have caused learning effects between tasks. Or,
maybe the participants did not yet know how to effectively use the
concurrency paradigm, or maybe the tasks were too short and
trivial for the benefits to be manifested. Maybe the tasks were
inappropriate, or the benefits only occur in maintenance rather
than writing new code as was tested, maybe the concurrency im-
plementations lacked relevant features of real implementations
that affected the outcome, or maybe the code from which devel-
opers started was poorly written.
When presenting his paper at the workshop, the author stated that
an important lesson he had learned was that collecting more quali-
tative data was important. While initially hoping to design a study
that objectively demonstrated the benefits of a design, he came to
believe that the complexity of developer activity necessitates col-
lecting more qualitative data to understand what is happening.

Collecting data on strategies might have helped provide interest-
ing results even without a main effect of the manipulation. What
strategies were developers using to reason about concurrency?
Did the concurrency paradigm influence which strategies were
chosen, or how difficult these strategies were to use? Did individ-
ual developers differ in the strategies they used? Why did they
choose the strategies they did? What made the strategies difficult
to use? How might these difficulties be greater (or smaller) in
more realistic situations?

Another study tested if typed or untyped languages make devel-
opers more productive [6]. There is a long-standing debate be-
tween proponents of untyped (“dynamic”) languages (e.g., Perl,

Ruby) and typed languages (e.g., Java). The study tested if under-
graduate students writing a parser over the course of 27 hours in a
new OO language were faster in the typed or untyped variant.
Participants took anywhere from 4% to 42% less time in the un-
typed variant than the typed variant, providing evidence that un-
typed languages are superior to typed languages. However, due to
the strongly held beliefs by proponents, the author reported at the
workshop that he had received intense skepticism of the result.

Understanding what developers did and how they used strategies
might help understand and generalize such a finding. What did
developers do differently when using the typed variant that caused
them to take more time? Did it affect the strategies they used or
introduce additional work? Did developers not benefit from type
checking because runtime errors were just as effective or only
because developers inserted few bugs? Were developers always
quickly able to run their programs, negating any benefits of using
a type checker before a program was complete enough to run?

3. CHOOSING STRATEGIES
We define a “strategy” as a sequence of actions developers use to
accomplish a goal. Actions include both physical actions (e.g.,
opening a method) and mental actions (e.g., remembering the
intent of a method). In coding activities, developers select among
various strategies to answer the questions necessary to complete
their tasks (e.g., fix a bug, implement a feature). These questions
and hypotheses about answers form a hierarchy, as developers
decompose questions into lower-level questions that are easier to
answer with the available methods and tools [18]. A number of
studies have investigated the questions developers ask and high-
level characterizations of the types of strategies they use to answer
them. Developers engage in activities such as reproducing bugs,
debugging, proposing changes, investigating the implications of
changes, reusing code, implementing changes, compiling, and
testing [12][10]. Developers answer questions through these ac-
tivities, and also by consulting artifacts such as bug reports, email,
code histories, specifications, design documents, asking their
teammates, or simply remembering the answer [9]. When explor-
ing code, developers seek information, make decisions about
which structural relationship (e.g., which method call) to traverse
to find information, and collect and organize the answers [8].

Unfortunately, identifying a strategy by which developers answer
a question may still fail to explain developers’ behavior in this
situation. Developers may be able to choose between strategies. In
one of our lab studies, developers tried to determine if they could
safely remove a call to a method [10]. Most tried to answer this
question by examining what the code did or the situations in
which it was called. However, one developer simply removed the
call and tested to try to identify a behavior change. But, because
the behavior change was subtle, he incorrectly believed there was
no behavior change. Another developer wished to rewrite the
whole section of code, but did not have time to do so. Developers
might alternatively have looked through the code history (which
was not provided in this case) to determine what bug or feature
the line was related to. During the study, developers also often
switched strategies when one did not appear to be working.

In the following sections, we explore several types of strategies
developers use and factors that may influence their perceived and
actual utility.

3.1 Implement & test
Before implementing a change, developers often wonder about its
implications or what it might cause to break [16][9][10]. To an-
swer these questions, developers may employ one of several
strategies (e.g., explore the code, check the code history, or guess
the answer). But once developers know enough to consider a
change, they could instead implement and test to see if it works
and does not break any of the existing functionality.

A number of factors might influence whether developers choose
to understand the implications first or implement and test. Clarke
[3][17] considers this choice to be influenced by characteristics of
an individual developer (his or her work style), which is described
using personas. In studying how developers use APIs, Clarke
found that developers can be categorized into one of three differ-
ent personas capturing the strategies they tend to use [3]. System-
atic developers program defensively, make few assumptions, and
wish to understand why something works rather than simply make
it work. Pragmatic developers try first to implement functionality
and resort to more systematic and thorough understanding only
when just implementing does not work. Opportunistic developers
eschew a thorough understanding and try to get their code work-
ing as quickly as possible. Systematic developers seem likely to
understand rather than implement and test, pragmatic developers
to implement and test rather than understand (or even not test at
all), and pragmatic developers seem likely to understand when it
seems necessary.

A second factor likely influencing strategy choice is developers’
development process. For example, developers using Test-Driven
Development (TDD)[1] write unit tests before implementing
changes and use these tests to ensure that their changes work. In
contrast, many development projects have few tests or tests that
are only sufficient to ensure that nothing important broke rather
than that everything necessarily works. Proponents of TDD be-
lieve that developers using TDD are more likely to use their unit
tests to implement and test rather than try to understand
implications: “Comparing [TDD] to the non-test-driven develop-
ment approach, you're replacing all the mental checking and de-
bugger stepping with code that verifies that your program does
exactly what you intended it to do” [18].

A third possible factor is how worried developers are about possi-
ble, but infrequent or difficult to discover bugs. In domains such
as safety critical systems, developers go to great lengths to ensure
there are no bugs. In contrast, developers prototyping or working
on short-lived code they expect to be thrown away may care little
about the potential for bugs. Given that testing only indicates the
presence, not the absence of bugs, developers deeply concerned
about potential bugs are likely to spend significant time investi-
gating the potential for bugs or even, in the case of safety critical
systems, specifically design their systems to make this easier. In
contrast, developers who are most interested in getting something
running quickly seem likely to prefer to implement and test.

A fourth factor that might influence this choice is the specific
situation of the current coding activity: is understanding or im-
plementing and testing easier right now? Is the change quick and
easy to implement, or will it require understanding how to reuse
some functionality or implementing large or complex functional-
ity? Is anything that might break easily identified and testable, or
is it potentially obscure and hidden? Will the tests execute
quickly, or will it take days for a regression test suite to finish?

Are there properties potentially affected by the change that cannot
be tested (e.g., whether the code follows design conventions)?

3.2 Guess the answer
In some cases, developers use their knowledge and intuition to
guess the answer to a question [9]. Developers have several
sources of knowledge they may use to make these guesses:
knowledge of the code itself, knowledge of code’s intended be-
havior, and knowledge of idioms, patterns, or architectural styles
used in the code. A variety of factors may influence when devel-
opers use this knowledge to guess the answer to a question.

In some cases, knowing code conforms to a standard idiom likely
helps developers answer questions. For example, for a system
using a model / view / controller architecture, developers can
reasonably guess that for a given model class there exists a corre-
sponding view class and a mechanism by which changes are
propagated. A number of books catalog collections of design pat-
terns and architectural styles. When these patterns are present,
developers know they are present, and developers know them,
developers could use this knowledge to answer questions.

Code quality likely influences how often developers can guess
answers. In situations where the code contains hacks, the code no
longer conforms to an underlying pattern or idiom – conformance
has been sacrificed to achieve some other goal. In these cases,
developers can no longer rely on knowledge of the pattern or id-
iom to answer their questions. And even if the code in question
does not itself contain a hack, developers working in a codebase
that often contains hacks might be more reluctant to assume that it
works as expected and be more cautious in using their intuition.

As developers gain expertise in programming, they also gain
knowledge about typical code idioms and patterns. Traditional
studies of expertise have found that chess experts are not inher-
ently smarter: their experience simply helps them recognize typi-
cal chess piece configurations [2]. This recognition permits rea-
soning about chess positions at the higher level of abstraction of
configurations rather than pieces. Similarly, software developers
comprehend code by recognizing idioms (e.g., iteration over a
collection) rather than individual lines of code [4] which helps to
answer questions. One study found that developers with more
experience were able to answer a rationale question using their
intuition that others could not answer by any means [9].

When developers know how an application is supposed to behave,
they can use this knowledge to answer some questions about the
code. Both how the code is built and how well the developer
knows the application’s behavior likely influences the use of this
strategy. For example, in one of our studies, developers were able
to use their knowledge to predict that scrolling should not influ-
ence the caret position displayed in a status bar [9]. But this led to
a false belief, as the code was misleadingly named. Domain
driven design argues that using knowledge of an application’s
behavior to understand code is so important that code should be
specifically designed to maximize the situations in which this
strategy is effective [5].

When code is unavailable or has not yet been written, developers
can guess answers to questions that cannot be answered by code
exploration. Developers implementing features may assume cer-
tain behavior is necessary for a feature that will soon be imple-
mented. Or, for functionality exposed in an API, intuition may

help developers predict API clients use cases and what changes
might be possible without breaking these use cases.

3.3 Other strategies
Developers have many other types of strategies they could use.
Developers can check the code history – records of line changes
and associated checkin messages – maintained by version control
systems. We have observed developers using these messages to
answer rationale questions by determining the feature or bug that
precipitated some seemingly bizarre functionality to be added.
Developers often answer questions by asking a teammate [13][9].
But this interrupts the teammate and does not work when they are
unavailable or busy. And developers often conduct due diligence
to attempt first to begin understand a complex issue themselves
[13]. Finally, developers use both static investigation (e.g., read
the code, use IDE code browser tools) and dynamic investigation
(e.g., debugger, logging, tracing) to explore the code.

4. AN EXAMPLE
While writing this paper, the first author observed an example that
illustrates strategy choice and using multiple strategies. A devel-
oper was wondering why four lines had been commented out. The
lines contained functionality she knew would help implement a
new feature. But why had they been commented out? She first
tried to guess the answer about why this code might have caused a
bug. As the code had been commented out and not removed, she
knew the change was likely a quick hack rather than a well-
considered change. But she did not see how the commented code
might break anything.

She next checked the code history and found that she had herself
commented out the lines over 2 years ago. But the change had
been committed with several others, so the change log did not
suggest why this change had been made. Uncommenting the lines,
she used implement and test to verify that the functionality did
indeed help implement the new feature and that all her tests now
passed. But she was still mystified as to why the code had been
commented out and worried that something might be broken.
Finally, she asked her teammates by sending an email to those
who had worked on this code. One recalled that the code might
not work correctly for some rare input values. Another suggested
alternative code that would fix this problem. Having finally an-
swered her question about why the code had been commented out,
she used a fixed version of this code.

5. CONCLUSIONS
Understanding the strategies by which developers answer ques-
tions holds the potential to both reveal new opportunities for tools
and to make it easier to understand how and why developers use
the tools they do. We believe that a theory of developer activity
describing how developers choose strategies could make under-
standing strategies in these studies easier.

6. ACKNOWLEDGMENTS
This research was funded in part by the National Science Founda-
tion, under grant CCF-0811610. Any opinions, findings and con-
clusions or recommendations expressed in this material are those
of the author(s) and do not necessarily reflect those of the Na-
tional Science Foundation.

7. REFERENCES
[1] Beck, K. (2002). Test-Driven Development. New York:

Addison-Wesley.

[2] Chase, W. G. & Simon, H. A. (1973). Perception in chess. In
Cognitive Psychology.

[3] Clarke, S. (2004). Measuring API Usability. In Dr. Dobbs
Journal, S6-S9.

[4] Détienne, F. (1990). Program understanding and knowledge
organization: the influence of acquired schemata. In Cogni-
tive Ergonomics: Understanding, Learning and Designing
Human- Computer Interaction, 245-256.

[5] Evans, E. (2003). Domain driven design. New York:
Addison-Wesley.

[6] Hanenberg, S. (2009). What is the impact of static type sys-
tems on programming time? In Proc. PLATEAU Workshop at
OOPSLA.

[7] Hannay, J. E., Sjberg, D.I.K., and Dybå, T. (2007). A sys-
tematic review of theory use in software engineering experi-
ments. In Transactions on Software Engineering (TSE),
33(2), 87-107.

[8] Ko. A. J., Myers, B.A., Coblenz, M. & Aung, H. H. (2006).
An exploratory study of how developers seek, relate, and col-
lect relevant information during software maintenance tasks.
In Transactions on Software Engineering (TSE), 32(12).

[9] Ko., A. J., DeLine, R. & Venolia, G.. (2007). Information
needs in collocated software development teams. In Proc.
Int’l Conf. Software Eng (ICSE).

[10] LaToza, T.D., & Myers, B.A. (2010). Developers ask reach-
ability questions. In Proc. Int’l Conf. Software Eng (ICSE).

[11] LaToza, T.D., & Myers, B.A. Searching across paths. In
Proc. of the Workshop on Search-Driven Development: Us-
ers, Infrastructure, Tools, and Evaluation, ICSE.

[12] LaToza, T.D., Garlan, D., Herbsleb, J.D., & Myers, B.A.
(2007). Program comprehension as fact finding. In Proc.
ESEC/FSE.

[13] LaToza, T.D., Venolia, G., and DeLine, R. (2006). Maintain-
ing mental models: a study of developer work habits. In
Proc. Int’l Conf. Software Eng (ICSE).

[14] Llopis, N. (20 February 2005). Stepping through the looking
glass: test-driven game development (part 1). In Games from
Within. Accessed 1/27/2010. Available at
http://gamesfromwithin.com/stepping-through-the-looking-
glass-test-driven-game-development-part-1.

[15] Luff, M. (2009). Empirically investigating parallel program-
ming paradigms: a null result. In Proc. PLATEAU Workshop
at OOPSLA.

[16] Sillito, J., Murphy, G.C., & De Volder, K. (2008). Asking
and answering questions during a programming change task.
In Transactions on Software Engineering (TSE), 34(4).

[17] Stylos, J., & Clarke, S. (2007). Usability implications of
requiring parameters in objects’ constructors. In Proc. Int’l
Conf. Software Eng (ICSE).

[18] Vans, A.M., von Mayrhauser, A., & Somlo, G. (1999). Pro-
gram understanding behavior during corrective maintenance
of large-scale software. In Int’l J. Human-Computer Studies,
51(1), 31-70.

