
Understanding and Modifying Procedural Versus Object-Oriented Programs:
Where Does Domain Knowledge Help More?

Thomas LaToza (Student Member CSS) and Alex Kirlik (Member CSS)
Department of Psychology and the Beckman Institute

University of Illinois at Urbana-Champaign
<latoza, kirlik>@uiuc.edu

Software bugs are an ever-increasing societal problem as computers become more prevalent in
our homes and workplaces, and programs grow in size and complexity. In response, many in the
software engineering community have advocated a shift in the way programs are written: away
from procedural (plan-like) code (e.g., Pascal, Fortran) and toward more declarative (map-like)
Object-Oriented (OO) code (e.g., C++, Java). A central claim is that more declarative, map-like
code allows developers to better deploy their knowledge of a problem domain (what the code is
‘about’) than does procedural code. The latter typically consists of a compact plan for solving a
problem (such as a recipe or driving directions), rather than a more declarative description of
domain entities and their relationships (OO). To test this claim, we conducted an experiment
requiring experienced programmers presented with procedural and OO code isomorphs of the
same algorithm to perform code modification tasks, and crossed this manipulation with whether
or not participants were primed on the domain knowledge of the actual problem solved by the
algorithm (scoring ten-pin bowling). In contrast to the claims of the OO community, our findings
revealed that priming domain knowledge helped those modifying procedural, rather than OO,
code: The procedural group whose knowledge of how bowling is scored was primed created
significantly fewer bugs than the non-primed procedural group, while priming the OO group led
to perhaps even slightly more bugs. This finding suggests that, when trying to modify or “tweak”
problem solutions, knowledge of the problem domain is more important when trying to amend
existing procedural solutions (e.g. a route given as a list of directions) than when trying to amend
more descriptive, declarative solutions (e.g. a map to a destination). Implications for both
software engineering and cognitive science will be presented.

