Harnessing the Crowd: Decontextualizing Software Work
Thomas D. LaToza', W. Ben Towne?, André van der Hoek'

1University of California, Irvine
Irvine, CA, USA

{tlatoza, andre}@ics.uci.edu

ABSTRACT

Organizing software work into self-contained, low-context
microtasks opens new opportunities for software development,
reducing the barriers to contribute to software work and enabling
software projects to be more fluid. Achieving this vision requires
understanding the role of context in software development and
designing new approaches for managing context.

Categories and Subject Descriptors
D.2.3 [Software engineering]: Coding tools and techniques

Keywords
crowdsourcing, context in software development, open source
software development

1. INTRODUCTION

Software development has traditionally required developers to
first learn the context of their work before they can effectively
contribute. Developers must know context such as where features
are implemented, how to implement changes consistent with an
architecture and design, and which developers to ask questions.
As a result, developers engage in a process of onboarding,
learning the codebase and building a mental model of its
architecture, design, and implementation.

Recently, a number of trends under the broad banner of
crowdsourcing have begun to demonstrate that not all software
development work requires such context. For example, developers
on Q&A sites such as StackOverflow' answer questions with only
the context in the question itself, helping developers who might
once have created a code snippet by programming to instead
simply ask a question. In effect, a requesting developer may
crowdsource subtasks to developers on a Q&A site, who then
perform software development work with only the context
explicitly provided by the requestor. Beyond Q&A sites, this
crowdsourcing paradigm has also been explored in competition
sites such as TopCoder” and testing sites such as uTest’. We refer
to crowdsourcing approaches that are short and that require little
or no context as microtasking, differentiating them from
approaches for open contribution requiring context such as open
source software development. A microtask is a short, self-
contained task providing a worker a specific completion criteria
(e.g., answer a programming question).

Decontextualizing software work enables microtasking to
transform the nature of work, greatly expanding the pool of
potential workers from the small number of developers who are
members of a project to the millions of developers participating in
crowdsourcing platforms. Experts, specialists in the immediate

' www stackoverflow.com

2
www.topcoder.com

> www.utest.com

®Carnegie Mellon University
Pittsburgh, PA, USA

wbt@cs.cmu.edu

problem at hand, can then be more easily brought to bear,
enabling, for example, a developer who already debugged a
similar exception to share their solution on a Q&A site.
Decontextualizing work also reduces contribution barriers to
projects, enabling transient workers who might otherwise be
unable to contribute to help out and potentially enabling work to
be accomplished more quickly through teams that are, when
necessary, far larger. For example, questions about expert topics
posed to StackOverflow are answered, on average, in just 11
minutes [6].

Harnessing experts and speeding work have clear benefits
across software development work. But how broadly is
microtasking applicable to building software? The key barrier to
achieving this vision is understanding the context required to
perform tasks. Enabling casual, transient, work requires
microtasks that are self-contained and that decontextualize the
work by embedding the necessary context into the task itself.

To explore approaches for embedding context into microtasks,
we have designed an online IDE for microtask programming,
CrowdCode [5], building on earlier efforts to microtask
programming such as micro-outsourcing [2]. In CrowdCode,
workers simply login to the platform, are given a self-contained
microtask containing relevant information, and can start
contributing. In this paper, we explore approaches for
decontextualizing programming, debugging, and design.

2. DECONTEXTUALIZING WORK

2.1 Programming

Programming tasks require many types of context. When given a
feature to implement, developers must know where to implement
it. When writing a function, developers must understand the
context in which it is used. When calling a function, developers
must understand what assumptions it makes the system’s state and
the effects that it may cause.

Our hypothesis is that much of the context required in
common programming tasks can be captured in the interfaces of
functions, enabling tasks to be performed modularly on functions
in isolation. In some sense, this is the central assertion of design
by contract [7]. However, in our work we aim to explicitly test the
limits of this idea, providing developers only a single function, in
isolation, and requiring workers to communicate context only
through interfaces between functions.

It quickly became apparent that an additional restriction was
necessary: requiring code to be functional. One of the primary
challenges developers face in investigation and debugging tasks is
to traverse control flow paths through the code [4]. Many of these
situations are caused by the necessity to understand effects,
actions taken in functions that change mutable state or that impact
the environment in which a program executes (e.g., redrawing the
screen). For example, one developer spent 83 minutes
understanding where and how, within a complex set of functions,
a data structure was being mutated [4]. While there is yet vigorous
debate as to the ultimate benefits of functional programming,
requiring programs to be functional seems to reduce the context



necessary to program by eliminating effects and enabling
functions to be fully described by their inputs and outputs.

Within this scope, we have explored the possibility of self-
contained microtasks for programming. For example, developers
may receive an Edit function microtask containing a description of
a function and be asked to implement it. While writing code,
developers may simply request a function by describing its
desired behavior through a psuedocall (Figure 1), which is then
passed to the crowd to either locate a matching function or write a
description for a new function. Changing a function description —
e.g., adding a parameter — creates microtasks on the function’s
callers, each informing the worker of the change and asking them
to adapt the caller appropriately. In this way, contextual
information about what is happening in the rest of the project can
be passed along dependencies between functions, potentially
enabling a worker to perform tasks in isolation.

2.2 Debugging

When an important bug in a live site is discovered, a common
response is, “All hands on deck,” mobilizing developers in the
project to expeditiously address the problem as quickly as
possible. On the one hand, fault localization seems inherently
parallel with low context tasks: simply ask workers to, separately,
inspect each function for a defect. However, a study found that
simply inspecting a code location is often not enough, as
developers require richer contextual information [8].

In CrowdCode, we have explored a modular approach for
debugging using stubs, using the interface between functions to
communicate context (more details of the approach are available
elsewhere [5]). When a function fails a test, a Debug microtask is
generated, providing a worker a code editor with the function’s
code and a list of failing unit tests. Workers can edit the function
and rerun the tests to check if a change has fixed the defect. Of
course, the defect may not be in the function itself. In traditional
debugging, developers might next be forced to use their
contextual knowledge of the codebase to hypothesize locations
where the defect might be, making choices about which methods
to step in to or investigate. In our approach, developers can
instead inspect each function call, viewing the runtime values of
each parameter and return value. If a function is not producing a
value matching its contract, the return value can be edited. This
then creates a stub, enabling the worker to continue debugging by
rerunning the function’s tests, checking if the change has fixed the
defect. After the worker submits the microtask, a new test
corresponding to the stub is generated and run, which may then
generate a new Debug microtask on the corresponding function.
In this way, workers can debug modularly, relying on the function
descriptions and tests to communicate context.

2.3 Design

Design seems inherently a task that that requires a global
understanding of a module or software project. How can decisions
be made without the availability of context to inform a choice?
However, studies of software projects suggest that software
designs have structure. One model of design is as a network of
decisions, where decisions may have dependencies on other
decisions that may affect it [1]. Observations of developers
suggest that, when working with complex decisions, developers
do not need a global understanding of the entire design. They
simply need to understand the rationale underlying the decisions
they may be changing [3].

€param Board board - the initial board prior to the move
€param Move[] moves - the move(s) to execute

€return Board - new board

*/

ion CRdoMoves(board, moves)

| coor cxisting boacd)

Figure 1. Workers may request functions through pseudocalls
(white background).

We hypothesize that, much as a developer working with a
function might use the contracts of other functions to understand
its context, a developer working with a decision might use its
dependencies to understand its context. Rather than understand an
entire project, this greatly reduces the necessary context. Of
course, this requires an approach for explicitly managing
decisions and identifying their dependencies.

3. CONCLUSIONS

Context is central to software development, being core both to
investigation and debugging tasks and to approaches for working
more modularly with software. By decontextualizing software
tasks into microtasks and requiring developers to work only with
the information provided, we seek to enable developers to more
easily contribute, making it possible to recruit experts for
specialized tasks or to more rapidly and fluidly form ad-hoc teams
of developers. In exploring this vision, our work may help to
reveal situations in which context is crucial and the specific
information needs in such situations.

4. ACKNOWLEDGMENTS
This work was supported in part by the NSF under grants NSF
1IS-1111446, 11S-1302522, and CCF-1414197.

5. REFERENCES
[1] Baldwin, C. Y., and Clark, K. B. 1999. Design Rules: The
Power of Modularity Volume 1. MIT Press, Cambridge, MA.

[2] Goldman, M., Little, G., and Miller, R.C. Collabode:
Collaborative coding in the browser. In Proc. of CHASE
2011, 155-164.

[3] LaToza, T. D., Garlan, D., Herbsleb, J. D., and Myers, B. A.
2007. Program comprehension as fact finding. In Proc. of
ESEC/FSE 2007, 361-370.

[4] LaTozaT. D., and Myers, B. A. 2010. Developers ask
reachability questions. In Proc. ICSE 2010, 185-194.

[5] LaToza, T. D., Towne, W. B., Adriano, C. M., and van der
Hoek, A. 2014. Microtask programming: building software
with a crowd. In Proc. of UIST 2014.

[6] Mamykina, L., Mannoim, B., Mittal, M., Hripcsak, G., and
Hartmann, B. 2011. Design lessons from the fastest q&a site
in the west. In Proc. of CHI 2011, 2857-2866.

[71 Meyer, B. 1992. Applying “design by contract”. [EEE
Computer, 25 (10), 40-51.

[8] Parnin, C., and Orso, A. 2011. Are automated debugging
techinques actually helping programmers? In Proc. ISSTA
2011, 199-2009.



