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ABSTRACT

Little is known about how developers think about design during
code modification tasks or how experienced developers’ design
knowledge helps them work more effectively. We performed a lab
study in which thirteen developers worked for 3 hours under-
standing the design of a 54 KLOC open source application. Par-
ticipants had from 0 to 10.5 years of industry experience and were
grouped into three “experts” and ten “novices.” We observed that
participants spent their time seeking, learning, critiquing, explain-
ing, proposing, and implementing facts about the code such as
“getFoldLevel has effects”. These facts served numerous roles,
such as suggesting changes, constraining changes, and predicting
the amount of additional investigation necessary to make a
change. Differences between experts and novices included that
the experts explained the root cause of the design problem and
made changes to address it, while novice changes addressed only
the symptoms. Experts did not read more methods but also did not
visit some methods novices wasted time understanding. Experts
talked about code in terms of abstractions such as “caching” while
novices more often described code statement by statement. Ex-
perts were able to implement a change faster than novices. Ex-
perts perceived problems novices did not and were able to explain
facts novices could not. These findings have interesting implica-
tions for future tools.

Categories and Subject Descriptors

D.2.6 [Software Engineering]: Programming Environments; D.2.7
[Software Engineering]: Distribution, Maintenance, and En-
hancement.

General Terms
Design, Human Factors.

Keywords
Science of design, program comprehension, code navigation,
empirical study, expertise, reverse engineering.

1. INTRODUCTION

Studies of programming have long built program comprehension
models to describe how developers locate features, test hypothe-
ses, navigate through code, or mentally represent small snippets
of code [6]. However, these studies have not looked at software
engineering activities abstracted from development environment
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features or implementation details of programs. Software engi-
neering teaches that developers work with design decisions de-
scribing possible alternatives and dependency relationships be-
tween them [15][17], and developers are told to apply information
hiding to prevent likely anticipated changes from rippling through
a system [15], to refactor code clones to allow a single decision to
be changed in one place, to write modular specifications allowing
reasoning in isolation of the rest of the system, and to respect
architectural styles [18] to prevent architectural drift and erosion
[16].

There is a growing interest in better understanding and testing
claims about how software engineering tools and principles help
developers [8]. One approach is to apply program comprehension
models to describe the influence of tools and principles on how
developers work. But despite a long history, program comprehen-
sion models have had little success in realizing this goal [6]. For
example, although claims that coupling makes code harder to
comprehend have been indirectly supported by version control
studies, little is known about the mechanisms by which coupling
causes developers to work differently. A better understanding
grounded in a program comprehension model might lead to better
metrics for measuring coupling and better tools for alleviating it.
But the mismatch between software engineering’s interest in de-
sign decisions and existing program comprehension models
makes this challenging.

Program comprehension models might also more accurately de-
scribe how developers work by modeling how developers think
about design. A long tradition of studies in cognitive science has
established that experts perform better not because they are
smarter but because they have knowledge which novices lack
(e.g., [3]). Studies of programmers have also found these differ-
ences, but have mostly studied knowledge in the form of highly
local code idioms such as for loops (e.g., [5]). Software engineer-
ing suggests that developers have a wide variety of knowledge
about good design in the form of abstractions such as design pat-
terns [6] and architectural styles [18]. But little is known about
this knowledge or how it helps developers work more effectively.
A better understanding might lead to better guidelines for training
software engineers and tools to help developers who have not yet
learned this knowledge.

We conducted a study to understand how developers perform
challenging code modification tasks and the effects of experience
on this process. In two lab tasks, we provided participants with
criticisms of the current design of the jEdit open source text edi-
tor, and instructed them to improve the design. Since the prior
research had not yet identified the key variables with any degree
of confidence, our study was conducted in an exploratory, open-
ended way. We observed in detail how different developers ap-
proached the tasks, which allowed us to observe patterns and
identify key variables for future experimental studies. We ad-
dressed three research questions:

e How does experience affect changes made to code?



e How does experience affect how developers work?
e How do developers reason about design during coding tasks?
We found that:

e Experts’ changes addressed the cause of the problems while
novices’ changes addressed the symptoms.

e Experts made better decisions about which methods were
relevant, they talked about the code using abstractions rather
than statement-by-statement descriptions, they explained
facts novices were unable to explain, and they implemented
a change more quickly than novices.

e Developers described the design using facts which took sev-
eral forms and served a number of roles.

2. RELATED WORK

Previous research shows that developers seek information in code
to generate and test what, why, and how hypotheses while rapidly
switching between control flow, data flow, and domain model
representations of the program [20]. Developers search for rele-
vant focus points to investigate, relate information to these points
by investigating neighboring statements or methods. They collect
this information to make a change to the code [11], forming good
or bad relevancy perceptions based on the quality of cues such as
identifier names, comments, and documentation. Developers ask
design questions about the purpose and intended behavior of code,
whether a wrong value was anticipated and ignored or over-
looked, and the consequences of design decisions [9].

Numerous studies have found that developers do not mentally
represent source code literally but recognize instances of schemas
(e.g., iterating over a collection). Schemas are templates with slots
filled in with situation-specific information. For example, devel-
opers apply for-loop schemas and sometimes forget specific
information, such as recalling i instead of j for a loop index
variable [5].Studies of expertise in other domains have found that
many of the advantages of experts arise from their large library of
schemas. For example, while chess experts remember realistic
boards better than novices, their advantages vanish for random
boards [3]. This and other results suggest that experts “chunk”
what they perceive to mentally represent it in memory as schema
instantiations. While there is much evidence for the existence and
importance of schemas, studies of schemas in programming have
been limited to highly localized code idioms (e.g., for loops) and
have not investigated schemas at the level of design, which we
wanted to investigate in our study.

Several studies have found differences between experienced and
inexperienced developers working with code. Experts debug
faster by generating better hypotheses while studying less code
[7]. Experts write down low level information while novices write
down higher level information [4]. Experts better understand code
before changing it and better choose when to instantiate schemas.
Experts select from multiple strategies for accomplishing tasks,
are capable of generating multiple alternatives before making a
choice, and design top-down more from high level ideas to low
level ideas for familiar and simple problems [6]. Our study aug-
ments these results by adding differences during design.

A comparison of successful and unsuccessful behavior on pro-
gramming tasks found successful participants had more program-
ming experience than unsuccessful participants [14]. Unsuccess-

ful participants made changes in one place that should have been
scattered. These results suggest developers do not notice informa-
tion unless they are searching for it. Successful participants cre-
ated more detailed plans of changes to make before implementing
them and reinvestigated methods less frequently. Successful par-
ticipants performed more keyword and cross-reference searches
for information rather than browsing or scrolling based on
guesses. However, the five participants in that study had only 1 to
5 years programming experience and limited (if any) industry
experience. This suggests that the results describe differences
only between very little and little experience unlike our study
where participants were more varied in their level of experience.

All of this existing work has revealed interesting results about
how developers navigate code and mentally represent small snip-
pets of code, but little is known about how developers uncover
design or propose design changes and how these processes are
affected by experience, which is the purpose of our study.

3. METHOD

We conducted an exploratory lab study where participants worked
on two tasks for 1.5 hours each. The tasks were challenging and
involved changes to a real open source application. We recorded
participants’ activity using think-aloud, video, and Eclipse in-
strumentation to get a full picture of what participants were doing.

3.1 Study Design

We recruited developers with diverse levels of experience, and
brought them into the lab to observe their work in detail. A lab
study had several advantages over a field study. We could com-
pare participants’ behavior on exactly the same tasks, use tasks
designed to require understanding design, and control for prior
experience with the application. We controlled for ordering ef-
fects between tasks by assigning half of the participants to receive
each task first and ensured that there were experienced and novice
participants in both conditions. An exploratory, observational
study, rather than a controlled experiment, let us build a model of
developer activity and differences suggested by it that we did not
know beforehand. Our quantitative comparisons between experts
and novices are not a controlled experiment because we picked
dependent variables post-hoc from qualitative analysis of partici-
pant activity. We chose 13 participants, rather than a larger num-
ber (which might have resulted in statistically significant differ-
ences), to make manually transcribing and analyzing the volumi-
nous transcripts feasible.

We initially planned to investigate the effect of providing archi-
tectural information on how developers work with code. We pro-
vided half of our participants with a component and connector [2]
diagram that we reverse engineered. While these participants read
the diagram at the beginning of the task, most used the diagram
only to generate and test hypotheses about how classes were con-
nected or as scratch paper to draw callgraphs or write down
method names. We were unable to observe any differences about
how the developers were working that could be attributed to hav-
ing the diagram. We thus do not consider these diagrams further.

3.2 Participants

Thirteen participants were recruited from undergraduate students,
masters students, doctoral students, and staff at Carnegie Mellon
University who reported that they (1) had at least two program-
ming internships or fulltime development experience and (2) were



Table 1. Participants’ self-reported experience with medians for novices and experts. We assume internships lasted 1/4 of a
year. For the experience columns on the right, 1 is the most experience and 7 the least.

Participant yrs industry KLOC largest yrs Java Design Architectural Refactoring Code navigation Enjoy designing
experience program edited  experience | patterns styles tools proficiency

a | 0 (research) 10 4 3 7 6 2 6

b | 0 (research) 7.5 3 3 1 1 2 1

c 0.5 1 few 3 4 3 4 1

d 15 75 5 2 3 1 3 1

z e 2 2 1 2 3 1 1 1

= f 2.5 1 2 3 6 7 1 1

% g 2.5 10 8 2 4 4 1 2

h 2.5 136 4 2 2 2 2 2

i 3 2 4 4 6 1 1 1

j 3 10 6 2 6 2 4 1

2.25 8.75 4 3 4 2 2 1

- K 3 100 7 1 1 1 1 1

o L 10 100 10 1 1 1 2 1

% M 10.5 500 3 1 2 6 2 2

v 10 100 7 1 1 1 2 1

comfortable programming in Java. Industry experience and self-
reported expertise data were collected with a short demographic
survey completed when potential participants responded to our
recruiting materials. Participants also rated their experience with
design patterns, architectural styles, and refactoring tools, their
perceived proficiency navigating code, and the degree to which
they enjoyed designing (Table 1). Participants were asked to give
the size of the largest program they had worked on. The low re-
sponses of several participants to this question suggest that they
may have had inaccurate knowledge or misunderstood the ques-
tion. Two participants who responded to our recruiting materials
had no industry experience. Both were graduate students who
reported significant research programming experience, so we
accepted them for our study. Ten participants reported they had
used Eclipse before, one reported she had not, and two were not
asked about their experience using Eclipse. This suggests our
results do not reflect challenges learning Eclipse.

Participants included one undergraduate student, four masters
students, seven doctoral students, and one staff member. Partici-
pants had industry experience on a wide spectrum of applications
including databases, banking software, and operating systems.
Twelve males and one female participated. Participants were paid
for their time. Table 1 shows the self-reported experience sorted
by years of industry experience. We refer to participants as “ex-
perts” and “novices” for brevity. However, although the “nov-
ices” had limited industry experience, they still had substantial
programming experience and should not be confused with novice
programmers. Two participants (L, M) were labeled experts be-
cause they had far more experience than the novices. We labeled
a third participant (K) an expert because he had slightly more
experience than the novices and made the same changes as the
other experts on one of the tasks. We refer to novices by lower-
case letters and experts by uppercase letters.

One expert (L) had participated in an earlier study using the same
application we used. Any advantages this participant had are po-
tentially attributable to greater knowledge about the application
rather than experience. However, we believe the effect of this
contamination is minimal since our task required an understand-
ing of an entirely different part of the application than the previ-
ous study, and we did not observe that the participant’s knowl-
edge from the previous study helped in any substantial way.

3.3 Tasks

Participants worked with jEdit, an open source text editor, which
has also been used in previous lab [14] and version control [19]
studies. Participants were provided an Eclipse workspace with the
entire jEdit 4.3pre5 source, which is 54,720 non-comment, non-
blank lines of Java.

To ensure that the tasks were the right length and difficulty and
that they challenged developers in their ability to understand de-
sign, we iterated our tasks by piloting them with three pre-test
subjects. After poor experiences with functional change tasks, we
picked nonfunctional tasks focused on improving the design
rather than implementing features or fixing bugs. We hoped this
would challenge participants’ ability to understand design more
than fully specified changes to the application’s behavior. Both
tasks were designed to be architectural in nature by involving
interactions between classes that we had identified as top level
components on our component and connector diagrams. Many of
the methods that participants studied were architecturally signifi-
cant in participating in the connectors joining these components.

In both tasks, we provided design criticisms and corresponding
code locations. Participants were instructed to “investigate why
this is the case and implement a better design” and “make the
design as ideal as possible by the criteria of performance, under-
standability, and reusuability”. To ensure they knew that they



were expected to implement changes, they were instructed to
“carefully budget your time to make your improved design as
ideal as possible while carefully scoping your changes to what
you can implement within your allotted time” while changing “as
much or as little code as you’d like”.

On the FOLDS task, participants investigated how fold level state
was updated following edits to a file. jEdit allows hierarchical
regions of text of the viewed file (e.g., a method body) to toggle
between being “folded” up and hidden or viewed, by clicking on
an arrow (¥ or ’). Following an edit to a line, the line’s fold level
becomes invalid. When it is next requested by a call to getFold-
Level, it is recomputed and stored in a cache in LineManager,
part of the buffer’s implementation. If the fold level changes, a
fireFoldLevelChanged event is sent. Subsequent calls to get-
FoldLevel retrieve the line’s cached fold level from LineMan-
ager rather than recomputing it.

Participants were provided the following code excerpt:

/* force the fold levels to be updated. when painting
the last line of a buffer, Buffer.isFoldStart() doesn’t
call getFoldLevel (), hence the foldLevelChanged() event
might not be sent for the previous line. */

buffer.getFoldLevel (delayedUpdateEnd) ;

This is a call in the doDelayedUpdate method from a class
owned by JEditTextArea (responsible for editing) to the buffer
(jEdit’s term for a file). Participants were told that this call was
“architecturally questionable” in changing “the buffer’s state from
a different component” and “clearly bad design” “using a getter
method solely to change the state of the buffer and ignoring the
information the getter method is supposed to be used to obtain”.

Underlying the symptom of the problem (updating fold levels by
calling a getter), the cause was the need for fold update to be trig-
gered from this method. Participants were left to discover this and
why it was bad. Folds are a responsibility of the buffer but the
implementation has leaked into another component (JEditTex-
tArea) because of this call’s presence. Fold levels are lazily com-
puted only when queried by getFoldLevel. The call is required
due to this decision (it could be removed if fold levels were not
lazily computed) and thus breaks information hiding [15]. is-
FoldStart does not call getFoldLevel when painting the last
line of the buffer because it computes the fold level by comparing
the current line’s fold level with the next (undefined for the last
line in a buffer) and instead always returns false. The call depends
on this very private decision (it would not be necessary if is-
FoldStart were implemented differently) and this also breaks
information hiding.

The CARETS task related to the status bar at the bottom of the
jEdit window which displays the line and column of the caret
(insertion point) and the scroll position of the window within the
buffer. This is implemented, in part, using the updateCaret-
Status method. Participants were asked to set a breakpoint on
updateCaretStatus, make the buffer visible in jEdit, and ob-
serve that updateCaretStatus is called many times. Partici-
pants were instructed that this was bad from a performance per-
spective and “likely reflects deeper problems in the semantics of
what the events that trigger these updates mean.” The perform-
ance critique was contrived in that no extremely resource inten-
sive operations were performed even though methods were need-
lessly executed. But an expert reported:

But I’ve seen this situation before with something that was more di-
rectly expensive. — M interview

The CARETS task required understanding the design of the
buffer switch process. Any action changing either the caret posi-
tion or the scroll position must call updateCaretStatus to up-
date the status bar. Buffer switches change both of these. They
begin with a setBuffer call. Control then passes through nine-
teen methods on paths ultimately resulting in 6 or 7 updateCar-
etStatus calls. Many of these methods are also called for rea-
sons other than buffer switches (including changes in text selec-
tion, window scrolling, or caret moves). Removing any calls to
updateCaretStatus risks breaking these features.

We illustrate our results with think-aloud episodes which we label
by participant, time within the task, and task (C for CARETS, F
for FOLDS)(e.g., M 1:20(C) is expert participant “M” at time 1
hour, 20 minutes, doing the C = CARETS task).

3.4 Tools and Instrumentation

Participants were provided with the Eclipse 3.2.0 IDE and were
allowed to use any Eclipse feature, take notes with Windows
Notepad or on a piece of paper, and open files created by jEdit in
Notepad or jEdit. To prevent searching for jEdit documentation,
bugs, or other information that only some might think was rele-
vant, participants were forbidden from using other applications,
including web browsers. One participant asked and was allowed
to see the JavaDoc for a collection class in a web browser. The
experimenter answered questions about invoking specific Eclipse
commands (e.g., how to stop the debugger or to use
System.err.println() rather than System.out.println()) or
what the task asked them to do, but not any other questions such
as questions about the code (e.g., “is my understanding correct?”’)
or strategies about how to use Eclipse to locate information (e.g.,
“how do I locate a method that triggered an event?”).

Participants were recorded using a diverse set of recording de-
vices so none of their actions would be lost. We used Camtasia to
record the screen, a video camera of the participant’s desk area to
track referencing paper handouts and see which area of the screen
was being viewed, and a second video camera to track informa-
tion written on paper. Participants were asked to think aloud and
prompted approximately every five minutes if they forgot to do
so. Unfortunately, we prompted participants with “what are you
trying to do?”, leading some to talk more about their goals than
the facts they had discovered. In retrospect, a better prompt might
have been “what are you thinking about?”

3.5 Procedure

Participants first worked through a brief tutorial on Eclipse code
navigation features (such as using the call hierarchy, navigating to
method declarations, and reference searches) to ensure they effec-
tively used Eclipse. To simulate some of the architectural knowl-
edge that an experienced developer might possess, participants
read a one page description of the responsibilities of eight impor-
tant task relevant classes. Finally, they worked on a jEdit tutorial
where they used the functionality they would be editing so that
later testing would be easier. This portion of the study lasted ap-
proximately 30 minutes.

Next, participants received a sheet of paper describing the first
task. Participants had as much time to read the task description as
they liked. Participants then navigated to the code described in
cach of the tasks. On the CARETS task, they also tried out the



Table 2. Code changes implemented by participants, grouped by change and then sorted by years of industry experience, with total

time on task. Changes in bold address the underlying design problem.

Participant(yrs industry exp)(time)

FOLDS task final code changes

a(0)(1:30)
b(0)(1:11)
¢(0.5)(1:18)

e(2)(0:46)
(2.5)(1:06)

d(1.5)(0:44) g(2.5)(1:35) h(2.5)(1:34)
i(3)(1:31) j(3)(0:53) K(3)(1:34)

L(10)(1:35)
M(10.5)(1:14)

Do not force fold update

All getFoldLevel callers check if fold update necessary and conditionally update
Update folds indirectly by firing the foldLevelChanged event

Renamed getFoldLevel to updateGetFoldLevel

Added debug statement, gave up
Force fold update by calling method extracted from getFoldLevel

Folds updated immediately after buffer changes by call from within JEditBuffer

Moved fold update to isFoldStart within JEditBuffer

Participant(yrs industry exp)(time)

CARETS task final code changes

b(0)(1:34) ¢(0.5)(1:13) e(2)(1:18)
a(0)(1:30) d(1.5)(1:15)
2(2.5)(1:33) h(2.5)(1:23)
£(2.5)(1:34)
i(3)(0:59) j(3)(1:03)
K(3)(1:35) L(10)(1:32) M(10.5)(1:35)

No changes

No changes, gave up

Removed calls believed to be unnecessary.

Added class to log events that happened and detect if caret update should fire

Added field to stop caret updates during buffer switches

behavior they were to change by setting a breakpoint and verify-
ing that it was hit many times as the task description claimed.
Participants were instructed that they had 1.5 hours to work but
were given up to five extra minutes. Afterwards, participants were
asked a series of exploratory interview questions about how they
worked, what they found challenging, and ratings of how well
they believed they did. Participants then received a clean Eclipse
workspace and the description of the second task and began work-
ing on the second task. Materials are available online.'

We were successful at making our tasks challenging. While we
expected some participants would be unable to make meaningful
changes, we expected all participants to at least try to understand
the code. However, one novice gave up on the FOLDS task, and
two novices gave up on the CARETS task. They felt the code
was too complicated for them to comprehend:

It’s too tough for me. I can’t figure it out. There’s bits and pieces that I

understand but I don’t understand precisely what the design issue is.
—f1:05(F)

An expert thought the CARETS task was realistic:
That is just tough. Yikes, glad I’m not getting paid for this.— M 1:20(C)

Yeah, this is realistic. I mean this is realistic on a bad day, at least in my
assessment. — M interview(C)
Many participants were still working when time expired. Two
CARETS participants (e, c) elected to describe in notes the list of
changes they felt they did not have time to implement.

3.6 Analysis

Our analysis started with the low level data we recorded and built
successively more abstract representations. We transcribed think-

U http://www.cs.cmu.edu/~tlatoza/fse07materials.html.

aloud recordings and screen capture video into 26 action logs
consisting of a total of 11,821 lines. Every time a participant
changed the method or field (referred to as a “member”) visible in
Eclipse, we added an entry naming the member and Eclipse com-
mand used to bring it into view. These included hitting break-
points, stepping in the debugger, navigating using the call hierar-
chy or search results, going to declarations, navigating gutter
references, and scrolling. We also coded edits, refactor com-
mands, and running the program. We also noted goals participants
appeared to be working towards.

Next, we used qualitative protocol analysis. We built a list of
activities we saw developers engage in and coded what develop-
ers did using this model. Our analysis remained qualitative as we
did not produce definitions sufficiently reliable to count and quan-
titatively compare activities. We discovered that many activities
revolved around facts about the code. Participants chose methods
to read, seeking facts they deemed relevant to the task. While
reading methods, they sometimes learned facts which they be-
lieved with varying degrees of confidence. Participants felt some
facts violated their design norms and wished to change them.
Participants explained facts to understand how facts were related
and the consequences of changing a fact. This sometimes gener-
ated hypotheses which led participants to seek evidence to con-
firm or reject facts. As participants learned more facts, they began
to propose design changes that addressed their criticisms and task
goals. Finally, participants implemented their proposals by editing
code. When participants discovered facts leading them to believe
their changes would not succeed, they removed the changes and
proposed different changes.

Experts nearly constantly talked while most novices said nothing
for minutes on end. This suggests that novices were more over-
whelmed or spent more time immersed in details. When compar-
ing experts and novices, we chose situations where some experts



and some novices said something or situations where we could
rely on what they did.

4. RESULTS

We first discuss the changes participants implemented. We then
present the model we built to describe how our participants
worked. We model developers as seeking facts, learning facts,
critiquing facts, explaining facts, proposing facts, and implement-
ing facts. We consider the structure of each of these activities in
turn and differences between experts and novices.

4.1 Code Changes

Changes made by the experts addressed the cause of the underly-
ing design problems. Changes made by the novices (if any) were
inferior in that they only addressed the symptoms. We described
the underlying design changes ignoring defects they may have
introduced or whether they finished. We then clustered similar
changes. Table 2 lists the final changes (if there were more than
one) that the participants implemented or began implementing.

On the FOLDS task, one novice made no changes and gave up
(f). Another (e) could not determine why the getFoldLevel call
was necessary and removed it. The remaining novices changed
the way in which doDelayedUpdate updated folds to address the
symptom that a getter was being used purely to set. One (c) re-
named the method to updateGetFoldLevel to indicate that it
was not merely a getter. Another (b) literally interpreted the pro-
vided comment to mean that doDelayedUpdate needs to send
the fireFoldLevelChanged event and created a method to do
this. Six novices and one expert extracted an update method from
getFoldLevel and had doDelayedUpdate update folds by
calling this method. Changes made by two of the experts ad-
dressed the cause of the design problem by removing the need for
doDelayedUpdate to force fold update. One (L) moved the fold
update to two methods in JEditBuffer which are called after the
buffer changes. Another (M) moved the fold update to isFold-
Start within JEditBuffer. Both experts addressed the hidden
design problems by removing the getFoldLevel call in
BufferHandler that added questionable dependencies.

On the CARETS task, two novices (i, j) made no changes and
gave up, and three made no changes but worked for the entire
time (b, c, e). One (f) added a class to log updateCaretStatus
calls with the (mistaken) intention to have it decide if update-
CaretStatus should proceed from other recent calls. Four nov-
ices removed calls they believed were redundant. Expert changes
differed from novice changes in starting and stopping caret up-
dates using a field. This approach alone addressed the cause of the
design problem in that it could reduce the number of calls to one.

4.2 Seeking Facts

Participants began their tasks navigating from the methods we
provided to methods and fields they believed likely to reveal rele-
vant facts about the code. Participants visited between 5 and 59
members on the FOLDS task and 25 and 41 members on the
CARETS task (Figure 1). There was no effect of experience on
how many members participants visited, and participants visited
similar numbers on both tasks. Thus, experts’ superior changes
were not due to reading more members but from selecting better
members to read and learning more from reading them.

Participants made path choice decisions when choosing between
locations in which to seek, deciding if seeking was likely to dis-
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Figure 1. Total distinct fields and methods viewed by each

participant sorted by years of industry experience.

cover a useful fact, or choosing between seeking and implement-
ing the current change. A novice abandoned seeking in a location:

So after it runs runnable thread, I get three extra calls to the update caret
method. I don’t know what thread it is --. I can go in and find out more,
but I don’t think it is the unnecessary type that I'm looking for.
—d 1:09(C)

An expert considered whether a change should be implemented or
whether better alternatives should first be sought:

I can reduce the event firing from here, huh, is that even the right path
to go down? Let’s see, we’ve got setCaretPosition, no, oh wait what
about, ohh setCaretPosition is the one that is called by many people.
Ok, I’m going to give it a long hard look at the finishCaretEvent, no
finishCaretUpdate. — K 0:41(C)

We investigated members visited only by novices to understand
why novices wasted time visiting members that experts did not
need to visit. On the CARETS task, there were 12 members vis-
ited by no experts which were visited by at least three of the ten
novices. One was a class definition, which novices visited more
because they used the open class Eclipse command more. 9 were
transitive callers of updateCaretStatus which novices navi-
gated to more because of inferior navigation strategies. The re-
maining two members were the most interesting. One was a field
— showCaretStatus — which guarded the body of updatecar-
etStatus. The other was propertiesChanged where show-
CaretStatus was initialized at startup. One novice (f) stumbled
into propertiesChanged and quickly left it. Four other partici-
pants read one or both of these methods because they were inter-
ested in the meaning of showCaretStatus. One (g) spent a min-
ute looking for showCaretStatus references. Another (c) spent
two minutes looking at how propertiesChanged worked. Two
(a, h) spent 7 minutes understanding in detail how properti-
esChanged worked:

So I guess the whole debug that is remaining is that when I switch buff-
ers this showCaretStatus variable needs to be reset as soon as I update
the caret position. —h 0:58(C)

Novices seemed to perceive showCaretStatus as indicating the
presence of a changeable fact that might help them reduce up-
dateCaretStatus calls. Reading propertiesChanged, they
eventually discovered showCaretStatus merely controls
whether caret and scroll position is displayed on the status bar and
would not be helpful for their task. That experts never wasted
time reading these members suggests that knowledge helped them
guess from the field’s identifier and use that showCaretStatus did
not turn on and off updates during an event but rather in general.
This suggests that knowledge helps experts predict what code



does before reading it, thereby preventing wasted time reading
irrelevant methods.

4.3 Learning Facts
When reading methods, participants found interesting facts that
confirmed or disconfirmed expectations:

These all look like mutators on the buffer. So that makes sense. So at
the end of the mutating operation on buffer, it’s going to end in doDe-
layedUpdate. — L 0:06(F)

Facts played a variety of roles. Facts were changeable when de-
velopers believed alternatives to them might help accomplish
their task goals. Others acted as constraints which suggested that
some changes would break them and should not be chosen. Others
made changes expensive by suggesting lots of investigation would
be required:

Wow, many, many, many methods call getFoldLevel and that is not
good because it’s going to be hard to figure out what all of those are.
- K 0:02(F)

Facts also differed in the degree of certainty with which partici-
pants believed them. Some were hypotheses thought likely to be
true. Some hypotheses were generated from knowledge about
how the application would probably have been built to satisfy its
requirements:

So mouse released represents the bottom of the tree for certain. setSe-
lectedIndex is part of JComboBox.fireAction event. It’s possible that
we’re getting multiple action handlers involved here, but let’s assume
that that is not the case. — M 0:16(C )

Other facts were directly observed in code. But many relied on
both observation and knowledge-driven speculation. Figure 2 lists
some facts found by an expert.

Experts more frequently and rapidly used facts at higher levels of
abstraction which focused on the important and relevant parts of
code rather than irrelevant implementation details. For example,
experts and novices described getFoldLevel very differently.
One minute into the task, an expert described getFoldLevel:

Well this is just updating a cache. So, what we’re upset about is that
you want to issue an event and you are doing it by forcing an update of
the cache for the fold level of a particular line. —M 0:01(F)

After 38 minutes in the task and 10 minutes reading getFold-
Level, a novice still had not figured out how it changed state:

What it did was it compute I mean computes the new line number and
fires an event. But I didn’t see it change any state. —b 0:38 (F)

51 minutes into the task, after over 12 minutes staring at get-
FoldLevel, and having read numerous callers and callees, a dif-
ferent novice was still stuck at the statement level, never describ-
ing it as caching:
So what it does, it starts off from this line, it has this firstinvalidFold-
Level, it goes through all these lines, it checks whether this fold infor-
mation is correct or not, which is this newFoldLevel, this is supposed to
be the correct fold level. If that is not the case in the data structure, it
needs to change the state of the buffer. It creates this, it does this
change, it sets the fold level of that line to the new fold level.
—h0:51(F)
These differences suggest that schemas, such as caching, allow
experts to see design abstractions and chunk individual statements
using these schemas. Applying the caching schema helped the
expert infer the intent of the code. Lacking the expert’s schema,

1. HACK: getFoldLevel has effects

2. Buffer mutating operations result in a doDelayedUpdate call
3. HYP: dobelayedUpdate does changes that happen later

4. Many methods call getFoldLevel
5

. Folds invalidated by buffer changes are updated on screen. EXPLAINS 2,
1,8

7. getFoldLevel updates a fold data structure EXPLAINS 1

8. getFoldLevel fires events

10. CRIT: getFoldLevel determines if folds must be set

11. CRIT: doDelayedUpdate triggers fold update

12. isFoldStart calls getFoldLevel on startup

13. getFoldLevel mutually recursive with FoldHandler.getFoldLevel
14. Folds are initialized at startup EXPLAINS 12

15. BufferHandler is only buffer listener

16. Either fireContentInserted or fireContentRemoved is called
after every buffer mutating operation

Figure 2. Some facts found by expert participant L in the first
41 minutes of the FOLDS task in the order they were
discovered. Facts are labeled with hack, hypothesis, and cri-
tique roles and the explanation of the relationships.

novices were not able to uncover this intent and painfully worked
through the code statement by statement.

4.4 Critiquing Facts

Consistent with instructions to improve the design, participants
used their good design norms to criticize facts. Growing skeptical
of design choices they perceived the original authors had made,
they designated those as hacks:

And this guy who is probably hacking away... This started out with this
thing as just a getter and said, oh look when you’re getting the fold
level there can be a case where your data is now invalid so I might as
well go fix it up right here. And he might have wandered himself into
the bad design situation that we’ve got right now. — L 0:16(F)

In their criticisms, participants exhibited design knowledge by
perceiving a design choice, alternatives, and justifying the inferi-
ority of the current choice. A single expert perceived this design
choice:
And the second thing that I don’t like is that it is firing these updates. It
seems like when you’re making the edit, that in order to keep the re-
sponsibilities of these guys very simple, when you’re making the edit,
the people that care about that would be notified. — L 0:26(F)

Several novice criticisms resulted from missing design knowl-
edge:
It just seems really confusing for me to have this exact same method
with the exact same parameters, they both have the handleMessage. I
should investigate that. Hold on. — ¢ 0:40(C)
Only after investigation did the novice realize these methods im-
plemented the same interface.

4.5 Explaining Facts
Participants explained the rationale of facts they learned:
So because this is lazily evaluated, which you probably want to do for

performance reasons anyway, you’re always going to have the risk that
a get is going to fire an event in any case. — M 0:09(F)




Explanations established traceability from low level facts about
the implementation towards motivating requirements. These de-
pendencies became important when a participant wished to
change a fact. Because of these dependencies, changing a fact
risks changing other facts. Explanations generate these facts.

Participants also applied explanations top down to hypothesize
how the code was likely built to satisfy higher level constraints:

He must be either firing events to tell people to update. Or somehow
there must be some other code to then update the display. But it looks
like the event firing is happening inside there. — L 0:17(F)

When participants believed false facts, explanations produced
more false facts which were then critiqued or used as constraints.
These formed breakdown chains [10] where the participants’
model of the code had gone badly awry. A developer explained a
false callgraph fact as due to something triggering a buffer edit:

‘Cause I’m thinking that when I perform the action of switching from
one buffer to another buffer, somewhere it calls a method that indicates
that the buffer has been edited. But I didn’t edit the buffer. I’'m just
switching between buffers. So that has to be removed. — d 0:30(C)

This hypothesized call from a buffer edit did not exist because the
call he used it to explain did not exist.

Participants reasoned using code facts which described the im-
plementation and requirements facts which described application
behavior in terms of the domain. False requirements led to missed
constraints. A novice forgot that the instructions stated that the
status bar displays caret and scroll position:

This is, I think this is completely unnecessary because why would a
scrolling event cause a caret update. Like if I’'m just scrolling, by ---, it
doesn’t change the caret offset. So I think I should just get rid of this
one actually. —d 0:33(C)

Participants with a changeable fact that they could not explain
faced a choice — optimistically assume it was overlooked by the
original developer or pessimistically assume it was intended to
satisfy a hidden constraint. Overlooked facts are true because they
happen to be true — changing them does not affect other facts.
Intended facts can be safely changed only when the developer is
able to generate an alternative fact that still satisfies all the con-
straints. Optimistic assumptions caused bugs. Pessimistic assump-
tions led developers to abandon considered changes, fieezing the
fact and preventing consideration of changes:
So here they’re basically deselecting everything and then they’re going
to reselect everything. So initially I’'m going to ignore that because
maybe that’s intentional by the designer because maybe they would
want to if there’s an error switching or --- reading from file. —a 1:25(C)

Participants investigated hypothesized constraints before conclud-
ing none existed and the fact was overlooked.

Some participants used beliefs about the abilities of the original
developers to help distinguish intended and overlooked facts. An
expert attempted to understand why an original developer had
chosen a less desirable decision over an obvious decision:
Why wouldn’t they call it? Now, can I test this? So why if you know
the answer to the problem, do you put the code in the wrong place and
then leave a comment? That’s not like these people. — M 0:35(F)

The expert believed the decision could not possibly be overlooked
but must be intended, suggesting the search for a hidden con-
straint must continue. Subsequent discovery of a second example
where the original developer overlooked an obviously better deci-
sion revised his beliefs:

What a horrible little thing to do. Ok, that changes my view on
the coding style. — M 0:37(F)

Participants gambled when deciding if a proposed change would
work based on information they did not yet have. Explanations
helped predict the probability a change would succeed. One ex-
pert implementing a change found it unexpectedly difficult. He
became concerned that a fact that he believed to be overlooked
was intended and that his work implementing the change would
be wasted when they discovered a frozen constraint which had
prevented the original developer from making the same change.
He presciently predicted, for the wrong reasons, that his 23 min-
utes implementing the change would be wasted:

[laughing] This is never going to work, the thing is there’s just all this
mess going on with this caret listening... If it was just as easy as getting
EditBus messages and updating the caret it would be straightforward.
And the other question I’ve got, is that there’s already CaretListener.
And why doesn’t it just... do caret listening itself? — L 0:41(C)

When developers had a hypothesized explanation of the underly-
ing cause, they rejected changes that did not address this cause,
even lacking evidence supporting their hypothesis:

Somehow if I can track it down from the origin of when the event oc-
curs and from there I can pass in a Boolean false to every function call
except for one. So it’s trickle down... But that seems like a hack be-
cause this is called 4 times and it shouldn’t be. —j 0:54(C)

After proposing several similar changes, he gave up lacking a
strategy to check his hypothesis.

In understanding why two experts made different changes than
the other participants on the FOLDS task, we observed that both
better understood why the call was necessary and sought a better
way for this constraint to be satisfied subject to their critiques.
One expert explained the call using a model of how the applica-
tion behaved:

What’s going on is that when you’re inserting text you could actually
be doing something that makes the folds status wrong. So, if in our ex-
ample here, in the quick brown fox. If fox is under brown and I’m right
at fox and I hit backspace. Then I would need to update my fold display
to reflect the new reality, which is that it’s in a different place.
—L 0:15(F)
No other participant produced this explanation. The expert subse-
quently mapped specific code locations to serving specific goals
and constantly talked about how each of the locations served a
purpose in satisfying this requirement. This unique explanation of
why the call was necessary allowed him to propose a unique solu-
tion — moving fold update from its current, poorly chosen location
to a point earlier in the process.

In response to the task description’s vague instructions that the
getFoldLevel call was “architecturally questionable”, another
expert asked a unique question about BufferHandler:

So what I need to do is figure out how it’s using its buffer. Is this the
only mutation that they’re doing? — M 0:18(F)

This generated a unique critique — the getFoldLevel call caused
BufferHandler to retain an “architecturally weird” buffer refer-
ence. He then moved fold updating to isFoldStart to address
this critique.

Three novices who were tantalizingly close to these changes
abandoned them following pessimistic assumptions. One novice
(g) implemented moving fold update but gave up when he be-
lieved a bug indicated he was breaking a frozen hidden constraint.



Another (j) tried to explain why the call was in BufferHandler
by understanding how its parameter was computed until he aban-
doned this path. Another (h) failed to explain the purpose of
BufferHandler and felt this hidden constraint made a change
too risky. An expert (K) abandoned considering this change when
he stated the false hypothesis, without checking it, that Buffer-
Handler was intended to change the fold level, rejecting the
task’s architectural criticism.

4.6 Proposing Facts

Participants proposed design changes, composed of individual
fact changes, to accomplish their task goals and address problems
they had perceived. Participants usually first talked about a sum-
mary of what they had learned and then proposed a change.
Changes often began as vague goals, generating hypotheses, and
were then refined by learned facts. One expert (L) proposed six
changes in 20 minutes before discovering one they believed they
had time to implement. Many changes reflected the application of
design patterns [6] they had seen before:

When I do this, I have two different styles; I have two different meth-
ods. So there might be something that directly manipulates a variable
and then there’s like a publicly visible, sorry if somebody calls like
setX, I update, send notifications that x has changed or whatever, but if
I’'m doing something internally I munge, munge, munge and then
manually tell people at the end. — L 1:19(C)

Novice proposals often did not solve the problem and worked out
implementation details rather than considering general patterns:

How about maintaining for every View, for every buffer, maintaining
the caret position in a hashtable. ... The key would be the buffer object
and the value would be, say I have the X,y positions of the caret. That’s
all. I’ll have one hashtable, a static hashtable for the application.
—e 1:14(C).
Of the 29 proposed changes on the carets task, experts (K, L, M)
were the only participants to propose using a field to start and
stop caret updates. Other proposals included removing redundant
calls, passing a Boolean of whether to call updateCaretStatus
to all of its callers, and recording caret information.

4.7 Implementing Facts

We observed one situation where many participants made the
same change — 8 participants extracted a fold update method from
getFoldLevel. Table 3 shows that more experienced partici-
pants did this more quickly. An expert extracted it merely to bet-
ter understand it. Other participants intended it as their final
change. Participants taking longer appeared aimless or confused,
spent tens of seconds staring at code, revisited perceived deci-
sions, visited callees, and moved statements between methods.
Participants taking less time recognized the block of code they
wanted to extract and used the Eclipse command “Extract
Method”. This is consistent with a chunking interpretation — ex-
perts encoded what the code did using more abstract facts. Nov-
ices saw the code statement by statement and the interrelation-
ships between statements and got bogged down considering
changes at this level.

Table 3. Minutes to extract update method from getFoldLevel
for participants(yrs industry experience) who tried to do this,
sorted by experience with experts in bold

a(0) | d(1.5) | g2.5) | h(2.5) | i3) i3) | K@) | L(10)

10 13 4 11 9 4 3 4

5. EXTERNAL VALIDITY

By studying developers in a lab, rather than in the field, partici-
pants worked differently in ways which likely made the tasks
more challenging. Participants were new to the application and
code and could not rely on anything more than the rudimentary
information we provided about the design, architecture, and fea-
tures of jEdit to reason about the application. Participants were
asked to make changes designed to require substantial understand-
ing of the design. Developers might typically have much more
experience before taking on such changes. Otherwise, such tasks
are often used to learn the code with much more relaxed time
requirements than our hour and a half tasks. Developers may also
answer tough questions by seeking out other developers who may
know the code better and provide important insights [12]. Devel-
opers working on code with unit tests might learn why functional-
ity is necessary by commenting it out and finding failing unit
tests. By asking participants to make the design as ideal as possi-
ble, we may have caused the participants to spend more time or be
more careful with the design implications of their changes than
they would have otherwise been. But, as our aim was to model the
program comprehension process and expertise effects, rather than
measure the magnitude of these effects, we do not believe these
concerns call into question any of our findings.

6. DISCUSSION

We discovered that program comprehension is driven by beliefs
about facts. Dependencies between decisions took the form of
explanations that developers used to form chains of facts and
elicit constraints they would need to respect in their proposals and
changes. A key driver of the program comprehension process was
uncertainty. Developers chose how much confidence to express in
their hypotheses and made path choice decisions about whether to
seek evidence to support them. Developers were uncertain
whether a hidden constraint would force them to abandon their
changes or unknowingly break a requirement. Developers used
sophisticated strategies to judge the likelihood of a hidden con-
straint’s presence such as judging the skill level of the original
developer.

An interesting finding is that many of the facts developers thought
about took the form of simple predicates about the code. The
simplicity of these facts suggests simple analyses could help dis-
cover and visualize them. When understanding a method, an ex-
pert thought about facts about it (e.g., getFoldLevel has ef-
fects), explanation relationships with other facts (e.g. doDe-
layedUpdate calls getFoldLevel to update folds), critiques
(e.g., getFoldLevel should not have effects), and design
changes resolving these critiques subject to constraints. A tool
that helps query for some of these facts might reduce the amount
of time developers spent reading code or increase the number of
hypotheses that they check. A tool externalizing these facts might
help make it easier for developers to remember them and return to
the code associated with them. A previous study [11] viewed
developers’ “working set” of task-relevant facts as regions of
code and proposed an editor to externalize these. We found de-
velopers abstractly discussing sets of statements with facts, per-
haps because our design tasks focused on constraints while the
previous study [11] focused on changeable facts. When develop-
ers focus on facts, not statements, externalized views could be
more compact by showing only relevant facts. Design rationale
systems have long sought to capture explanations of facts but



were designed for up-front design and design meetings and work
only with requirements and high level design and requirements
facts [13]. A tool that captured explanation linkages might make it
easier to find these later.

When developers considered alternatives, facts played the role of
design decisions. This suggests a measurable definition of infor-
mation hiding — a fact is hidden during a task when a developer
does not think about it. This differs from defining information
hiding in terms of methods read by a developer. A developer may
hypothesize constraints without ever reading or even locating the
code embodying these constraints, but these facts may still pro-
foundly influence design choices. Conversely, a developer may
read a method at a high level of abstraction and not notice or con-
sider detailed facts that are explained by the facts of interest.

While our observations have allowed us to theorize, our results do
not carry the certainty of controlled experiments. All of the dif-
ferences we observed were interrelated in complex ways and
could have causes that we were not able to discern. While we
have identified interesting, novel differences and built a theory to
explain them, controlled experiments would be desirable to test
these differences.

7. CONCLUSIONS

Drawing on design decisions and dependency from normative
models of how developers ought to design, we found these helped
better describe how developers actually worked. Our results sug-
gest that tools that allow developers to directly work with relevant
facts could help them work more effectively.
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