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ABSTRACT 

Little is known about how developers think about design during 
code modification tasks or how experienced developers’ design 
knowledge helps them work more effectively. We performed a lab 
study in which thirteen developers worked for 3 hours under-
standing the design of a 54 KLOC open source application. Par-
ticipants had from 0 to 10.5 years of industry experience and were 
grouped into three “experts” and ten “novices.” We observed that 
participants spent their time seeking, learning, critiquing, explain-
ing, proposing, and implementing facts about the code such as 
“getFoldLevel has effects”. These facts served numerous roles, 
such as suggesting changes, constraining changes, and predicting 
the amount of additional investigation necessary to make a 
change. Differences between experts and novices included that 
the experts explained the root cause of the design problem and 
made changes to address it, while novice changes addressed only 
the symptoms. Experts did not read more methods but also did not 
visit some methods novices wasted time understanding. Experts 
talked about code in terms of abstractions such as “caching” while 
novices more often described code statement by statement. Ex-
perts were able to implement a change faster than novices. Ex-
perts perceived problems novices did not and were able to explain 
facts novices could not. These findings have interesting implica-
tions for future tools. 

Categories and Subject Descriptors 
D.2.6 [Software Engineering]: Programming Environments; D.2.7 
[Software Engineering]: Distribution, Maintenance, and En-
hancement. 

General Terms 
Design, Human Factors. 

Keywords 
Science of design, program comprehension, code navigation, 
empirical study, expertise, reverse engineering. 

1. INTRODUCTION 
Studies of programming have long built program comprehension 
models to describe how developers locate features, test hypothe-
ses, navigate through code, or mentally represent small snippets 
of code [6]. However, these studies have not looked at software 
engineering activities abstracted from development environment 

features or implementation details of programs. Software engi-
neering teaches that developers work with design decisions de-
scribing possible alternatives and dependency relationships be-
tween them [15][17], and developers are told to apply information 
hiding to prevent likely anticipated changes from rippling through 
a system [15], to refactor code clones to allow a single decision to 
be changed in one place, to write modular specifications allowing 
reasoning in isolation of the rest of the system, and to respect 
architectural styles [18] to prevent architectural drift and erosion 
[16]. 
There is a growing interest in better understanding and testing 
claims about how software engineering tools and principles help 
developers [8]. One approach is to apply program comprehension 
models to describe the influence of tools and principles on how 
developers work. But despite a long history, program comprehen-
sion models have had little success in realizing this goal [6]. For 
example, although claims that coupling makes code harder to 
comprehend have been indirectly supported by version control 
studies, little is known about the mechanisms by which coupling 
causes developers to work differently. A better understanding 
grounded in a program comprehension model might lead to better 
metrics for measuring coupling and better tools for alleviating it. 
But the mismatch between software engineering’s interest in de-
sign decisions and existing program comprehension models 
makes this challenging. 
Program comprehension models might also more accurately de-
scribe how developers work by modeling how developers think 
about design. A long tradition of studies in cognitive science has 
established that experts perform better not because they are 
smarter but because they have knowledge which novices lack 
(e.g., [3]). Studies of programmers have also found these differ-
ences, but have mostly studied knowledge in the form of highly 
local code idioms such as for loops (e.g., [5]). Software engineer-
ing suggests that developers have a wide variety of knowledge 
about good design in the form of abstractions such as design pat-
terns [6] and architectural styles [18]. But little is known about 
this knowledge or how it helps developers work more effectively. 
A better understanding might lead to better guidelines for training 
software engineers and tools to help developers who have not yet 
learned this knowledge. 
We conducted a study to understand how developers perform 
challenging code modification tasks and the effects of experience 
on this process. In two lab tasks, we provided participants with 
criticisms of the current design of the jEdit open source text edi-
tor, and instructed them to improve the design. Since the prior 
research had not yet identified the key variables with any degree 
of confidence, our study was conducted in an exploratory, open-
ended way. We observed in detail how different developers ap-
proached the tasks, which allowed us to observe patterns and 
identify key variables for future experimental studies. We ad-
dressed three research questions: 

x How does experience affect changes made to code?  
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x How does experience affect how developers work? 

x How do developers reason about design during coding tasks?  
We found that: 

x Experts’ changes addressed the cause of the problems while 
novices’ changes addressed the symptoms. 

x Experts made better decisions about which methods were 
relevant, they talked about the code using abstractions rather 
than statement-by-statement descriptions, they explained 
facts novices were unable to explain, and they implemented 
a change more quickly than novices. 

x Developers described the design using facts which took sev-
eral forms and served a number of roles. 

2. RELATED WORK 
Previous research shows that developers seek information in code 
to generate and test what, why, and how hypotheses while rapidly 
switching between control flow, data flow, and domain model 
representations of the program [20]. Developers search for rele-
vant focus points to investigate, relate information to these points 
by investigating neighboring statements or methods. They collect 
this information to make a change to the code [11], forming good 
or bad relevancy perceptions based on the quality of cues such as 
identifier names, comments, and documentation. Developers ask 
design questions about the purpose and intended behavior of code, 
whether a wrong value was anticipated and ignored or over-
looked, and the consequences of design decisions [9]. 
Numerous studies have found that developers do not mentally 
represent source code literally but recognize instances of schemas 
(e.g., iterating over a collection). Schemas are templates with slots 
filled in with situation-specific information. For example, devel-
opers apply for-loop schemas and sometimes forget specific 
information, such as recalling i instead of j for a loop index 
variable [5].Studies of expertise in other domains have found that 
many of the advantages of experts arise from their large library of 
schemas. For example, while chess experts remember realistic 
boards better than novices, their advantages vanish for random 
boards [3]. This and other results suggest that experts “chunk” 
what they perceive to mentally represent it in memory as schema 
instantiations. While there is much evidence for the existence and 
importance of schemas, studies of schemas in programming have 
been limited to highly localized code idioms (e.g., for loops) and 
have not investigated schemas at the level of design, which we 
wanted to investigate in our study. 
Several studies have found differences between experienced and 
inexperienced developers working with code. Experts debug 
faster by generating better hypotheses while studying less code 
[7]. Experts write down low level information while novices write 
down higher level information [4]. Experts better understand code 
before changing it and better choose when to instantiate schemas. 
Experts select from multiple strategies for accomplishing tasks, 
are capable of generating multiple alternatives before making a 
choice, and design top-down more from high level ideas to low 
level ideas for familiar and simple problems [6]. Our study aug-
ments these results by adding differences during design. 
A comparison of successful and unsuccessful behavior on pro-
gramming tasks found successful participants had more program-
ming experience than unsuccessful participants [14]. Unsuccess-

ful participants made changes in one place that should have been 
scattered. These results suggest developers do not notice informa-
tion unless they are searching for it. Successful participants cre-
ated more detailed plans of changes to make before implementing 
them and reinvestigated methods less frequently. Successful par-
ticipants performed more keyword and cross-reference searches 
for information rather than browsing or scrolling based on 
guesses. However, the five participants in that study had only 1 to 
5 years programming experience and limited (if any) industry 
experience. This suggests that the results describe differences 
only between very little and little experience unlike our study 
where participants were more varied in their level of experience. 
All of this existing work has revealed interesting results about 
how developers navigate code and mentally represent small snip-
pets of code, but little is known about how developers uncover 
design or propose design changes and how these processes are 
affected by experience, which is the purpose of our study. 

3. METHOD 
We conducted an exploratory lab study where participants worked 
on two tasks for 1.5 hours each. The tasks were challenging and 
involved changes to a real open source application.  We recorded 
participants’ activity using think-aloud, video, and Eclipse in-
strumentation to get a full picture of what participants were doing. 

3.1 Study Design 
We recruited developers with diverse levels of experience, and 
brought them into the lab to observe their work in detail. A lab 
study had several advantages over a field study. We could com-
pare participants’ behavior on exactly the same tasks, use tasks 
designed to require understanding design, and control for prior 
experience with the application. We controlled for ordering ef-
fects between tasks by assigning half of the participants to receive 
each task first and ensured that there were experienced and novice 
participants in both conditions. An exploratory, observational 
study, rather than a controlled experiment, let us build a model of 
developer activity and differences suggested by it that we did not 
know beforehand. Our quantitative comparisons between experts 
and novices are not a controlled experiment because we picked 
dependent variables post-hoc from qualitative analysis of partici-
pant activity. We chose 13 participants, rather than a larger num-
ber (which might have resulted in statistically significant differ-
ences), to make manually transcribing and analyzing the volumi-
nous transcripts feasible. 
We initially planned to investigate the effect of providing archi-
tectural information on how developers work with code. We pro-
vided half of our participants with a component and connector [2] 
diagram that we reverse engineered. While these participants read 
the diagram at the beginning of the task, most used the diagram 
only to generate and test hypotheses about how classes were con-
nected or as scratch paper to draw callgraphs or write down 
method names. We were unable to observe any differences about 
how the developers were working that could be attributed to hav-
ing the diagram. We thus do not consider these diagrams further. 

3.2 Participants 
Thirteen participants were recruited from undergraduate students, 
masters students, doctoral students, and staff at Carnegie Mellon 
University who reported that they (1) had at least two program-
ming internships or fulltime development experience and (2) were 



 

Table 1. Participants’ self-reported experience with medians for novices and experts. We assume internships lasted 1/4 of a 
year. For the experience columns on the right, 1 is the most experience and 7 the least. 

Participant yrs industry 
experience 

KLOC largest 
program edited 

yrs Java 
experience 

Design 
patterns 

Architectural 
styles 

Refactoring 
tools 

Code navigation 
proficiency 

Enjoy designing 

a 0 (research) 10 4 3 7 6 2 6 
b 0 (research) 7.5 3 3 1 1 2 1 
c 0.5 1 few 3 4 3 4 1 
d 1.5 75 5 2 3 1 3 1 
e 2 2 1 2 3 1 1 1 
f 2.5 1 2 3 6 7 1 1 
g 2.5 10 8 2 4 4 1 2 
h 2.5 136 4 2 2 2 2 2 
i 3 2 4 4 6 1 1 1 
j 3 10 6 2 6 2 4 1 

N
O

V
IC

E
S 

 2.25 8.75 4 3 4 2 2 1 

K 3 100 7 1 1 1 1 1 
L 10 100 10 1 1 1 2 1 

M 10.5 500 3 1 2 6 2 2 

E
X

PE
R

T
S        10 100 7 1 1 1 2 1 

comfortable programming in Java. Industry experience and self-
reported expertise data were collected with a short demographic 
survey completed when potential participants responded to our 
recruiting materials. Participants also rated their experience with 
design patterns, architectural styles, and refactoring tools, their 
perceived proficiency navigating code, and the degree to which 
they enjoyed designing (Table 1). Participants were asked to give 
the size of the largest program they had worked on. The low re-
sponses of several participants to this question suggest that they 
may have had inaccurate knowledge or misunderstood the ques-
tion. Two participants who responded to our recruiting materials 
had no industry experience. Both were graduate students who 
reported significant research programming experience, so we 
accepted them for our study. Ten participants reported they had 
used Eclipse before, one reported she had not, and two were not 
asked about their experience using Eclipse. This suggests our 
results do not reflect challenges learning Eclipse. 
Participants included one undergraduate student, four masters 
students, seven doctoral students, and one staff member. Partici-
pants had industry experience on a wide spectrum of applications 
including databases, banking software, and operating systems. 
Twelve males and one female participated. Participants were paid 
for their time. Table 1 shows the self-reported experience sorted 
by years of industry experience. We refer to participants as “ex-
perts” and “novices” for brevity. However, although the “nov-
ices” had limited industry experience, they still had substantial 
programming experience and should not be confused with novice 
programmers. Two participants (L, M) were labeled experts be-
cause they had far more experience than the novices. We labeled 
a third participant (K) an expert because he had slightly more 
experience than the novices and made the same changes as the 
other experts on one of the tasks. We refer to novices by lower-
case letters and experts by uppercase letters. 

One expert (L) had participated in an earlier study using the same 
application we used. Any advantages this participant had are po-
tentially attributable to greater knowledge about the application 
rather than experience. However, we believe the effect of this 
contamination is minimal since our task required an understand-
ing of an entirely different part of the application than the previ-
ous study, and we did not observe that the participant’s knowl-
edge from the previous study helped in any substantial way. 

3.3 Tasks 
Participants worked with jEdit, an open source text editor, which 
has also been used in previous lab [14] and version control [19] 
studies. Participants were provided an Eclipse workspace with the 
entire jEdit 4.3pre5 source, which is 54,720 non-comment, non-
blank lines of Java. 
To ensure that the tasks were the right length and difficulty and 
that they challenged developers in their ability to understand de-
sign, we iterated our tasks by piloting them with three pre-test 
subjects. After poor experiences with functional change tasks, we 
picked nonfunctional tasks focused on improving the design 
rather than implementing features or fixing bugs. We hoped this 
would challenge participants’ ability to understand design more 
than fully specified changes to the application’s behavior. Both 
tasks were designed to be architectural in nature by involving 
interactions between classes that we had identified as top level 
components on our component and connector diagrams. Many of 
the methods that participants studied were architecturally signifi-
cant in participating in the connectors joining these components.  
In both tasks, we provided design criticisms and corresponding 
code locations. Participants were instructed to “investigate why 
this is the case and implement a better design” and “make the 
design as ideal as possible by the criteria of performance, under-
standability, and reusuability”. To ensure they knew that they 



 

were expected to implement changes, they were instructed to 
“carefully budget your time to make your improved design as 
ideal as possible while carefully scoping your changes to what 
you can implement within your allotted time” while changing “as 
much or as little code as you’d like”. 
On the FOLDS task, participants investigated how fold level state 
was updated following edits to a file. jEdit allows hierarchical 
regions of text of the viewed file (e.g., a method body) to toggle 
between being “folded” up and hidden or viewed, by clicking on 
an arrow (  or ). Following an edit to a line, the line’s fold level 
becomes invalid. When it is next requested by a call to getFold-
Level, it is recomputed and stored in a cache in LineManager, 
part of the buffer’s implementation. If the fold level changes, a 
fireFoldLevelChanged event is sent. Subsequent calls to get-
FoldLevel retrieve the line’s cached fold level from LineMan-
ager rather than recomputing it. 
Participants were provided the following code excerpt: 

/* force the fold levels to be updated. when painting 
the last line of a buffer, Buffer.isFoldStart() doesn’t 
call getFoldLevel(), hence the foldLevelChanged() event 
might not be sent for the previous line. */ 

buffer.getFoldLevel(delayedUpdateEnd); 

This is a call in the doDelayedUpdate method from a class 
owned by JEditTextArea (responsible for editing) to the buffer 
(jEdit’s term for a file). Participants were told that this call was 
“architecturally questionable” in changing “the buffer’s state from 
a different component” and “clearly bad design” “using a getter 
method solely to change the state of the buffer and ignoring the 
information the getter method is supposed to be used to obtain”. 
Underlying the symptom of the problem (updating fold levels by 
calling a getter), the cause was the need for fold update to be trig-
gered from this method. Participants were left to discover this and 
why it was bad. Folds are a responsibility of the buffer but the 
implementation has leaked into another component (JEditTex-
tArea) because of this call’s presence. Fold levels are lazily com-
puted only when queried by getFoldLevel. The call is required 
due to this decision (it could be removed if fold levels were not 
lazily computed) and thus breaks information hiding [15]. is-
FoldStart does not call getFoldLevel when painting the last 
line of the buffer because it computes the fold level by comparing 
the current line’s fold level with the next (undefined for the last 
line in a buffer) and instead always returns false. The call depends 
on this very private decision (it would not be necessary if is-
FoldStart were implemented differently) and this also breaks 
information hiding. 
The CARETS task related to the status bar at the bottom of the 
jEdit window which displays the line and column of the caret 
(insertion point) and the scroll position of the window within the 
buffer. This is implemented, in part, using the updateCaret-
Status method. Participants were asked to set a breakpoint on 
updateCaretStatus, make the buffer visible in jEdit, and ob-
serve that updateCaretStatus is called many times. Partici-
pants were instructed that this was bad from a performance per-
spective and “likely reflects deeper problems in the semantics of 
what the events that trigger these updates mean.” The perform-
ance critique was contrived in that no extremely resource inten-
sive operations were performed even though methods were need-
lessly executed. But an expert reported: 

But I’ve seen this situation before with something that was more di-
rectly expensive. – M interview 

The CARETS task required understanding the design of the 
buffer switch process. Any action changing either the caret posi-
tion or the scroll position must call updateCaretStatus to up-
date the status bar. Buffer switches change both of these. They 
begin with a setBuffer call. Control then passes through nine-
teen methods on paths ultimately resulting in 6 or 7 updateCar-
etStatus calls. Many of these methods are also called for rea-
sons other than buffer switches (including changes in text selec-
tion, window scrolling, or caret moves). Removing any calls to 
updateCaretStatus risks breaking these features. 
We illustrate our results with think-aloud episodes which we label 
by participant, time within the task, and task (C for CARETS, F 
for FOLDS)(e.g., M 1:20(C) is expert participant “M” at time 1 
hour, 20 minutes, doing the C = CARETS task). 

3.4 Tools and Instrumentation 
Participants were provided with the Eclipse 3.2.0 IDE and were 
allowed to use any Eclipse feature, take notes with Windows 
Notepad or on a piece of paper, and open files created by jEdit in 
Notepad or jEdit. To prevent searching for jEdit documentation, 
bugs, or other information that only some might think was rele-
vant, participants were forbidden from using other applications, 
including web browsers. One participant asked and was allowed 
to see the JavaDoc for a collection class in a web browser. The 
experimenter answered questions about invoking specific Eclipse 
commands (e.g., how to stop the debugger or to use                 
System.err.println() rather than System.out.println()) or 
what the task asked them to do, but not any other questions such 
as questions about the code (e.g., “is my understanding correct?”) 
or strategies about how to use Eclipse to locate information (e.g., 
“how do I locate a method that triggered an event?”). 
Participants were recorded using a diverse set of recording de-
vices so none of their actions would be lost. We used Camtasia to 
record the screen, a video camera of the participant’s desk area to 
track referencing paper handouts and see which area of the screen 
was being viewed, and a second video camera to track informa-
tion written on paper. Participants were asked to think aloud and 
prompted approximately every five minutes if they forgot to do 
so. Unfortunately, we prompted participants with “what are you 
trying to do?”, leading some to talk more about their goals than 
the facts they had discovered. In retrospect, a better prompt might 
have been “what are you thinking about?” 

3.5 Procedure 
Participants first worked through a brief tutorial on Eclipse code 
navigation features (such as using the call hierarchy, navigating to 
method declarations, and reference searches) to ensure they effec-
tively used Eclipse. To simulate some of the architectural knowl-
edge that an experienced developer might possess, participants 
read a one page description of the responsibilities of eight impor-
tant task relevant classes. Finally, they worked on a jEdit tutorial 
where they used the functionality they would be editing so that 
later testing would be easier. This portion of the study lasted ap-
proximately 30 minutes. 
Next, participants received a sheet of paper describing the first 
task. Participants had as much time to read the task description as 
they liked. Participants then navigated to the code described in 
each of the tasks. On the CARETS task, they also tried out the 



 

Table 2. Code changes implemented by participants, grouped by change and then sorted by years of industry experience, with total 
time on task. Changes in bold address the underlying design problem. 

Participant(yrs industry exp)(time) FOLDS task final code changes 
a(0)(1:30) All getFoldLevel callers check if fold update necessary and conditionally update 
b(0)(1:11) Update folds indirectly by firing the foldLevelChanged event 

c(0.5)(1:18) Renamed getFoldLevel to updateGetFoldLevel 
e(2)(0:46) Do not force fold update 

f(2.5)(1:06) Added debug statement, gave up 
d(1.5)(0:44)  g(2.5)(1:35)  h(2.5)(1:34)  

i(3)(1:31)  j(3)(0:53) K(3)(1:34) 
Force fold update by calling method extracted from getFoldLevel 

L(10)(1:35) Folds updated immediately after buffer changes by call from within JEditBuffer 

M(10.5)(1:14) Moved fold update to isFoldStart within JEditBuffer 
 

Participant(yrs industry exp)(time) CARETS task final code changes 
b(0)(1:34)  c(0.5)(1:13) e(2)(1:18)  No changes 

a(0)(1:30)  d(1.5)(1:15)  
g(2.5)(1:33)  h(2.5)(1:23) 

Removed calls believed to be unnecessary. 

f(2.5)(1:34) Added class to log events that happened and detect if caret update should fire  
i(3)(0:59)  j(3)(1:03) No changes, gave up 

K(3)(1:35) L(10)(1:32) M(10.5)(1:35)  Added field to stop caret updates during buffer switches 

behavior they were to change by setting a breakpoint and verify-
ing that it was hit many times as the task description claimed. 
Participants were instructed that they had 1.5 hours to work but 
were given up to five extra minutes. Afterwards, participants were 
asked a series of exploratory interview questions about how they 
worked, what they found challenging, and ratings of how well 
they believed they did. Participants then received a clean Eclipse 
workspace and the description of the second task and began work-
ing on the second task. Materials are available online.1 
We were successful at making our tasks challenging. While we 
expected some participants would be unable to make meaningful 
changes, we expected all participants to at least try to understand 
the code. However, one novice gave up on the FOLDS task, and 
two novices gave up on the CARETS task. They felt the code 
was too complicated for them to comprehend: 

It’s too tough for me. I can’t figure it out. There’s bits and pieces that I 
understand but I don’t understand precisely what the design issue is.  
– f 1:05(F) 

An expert thought the CARETS task was realistic: 
That is just tough. Yikes, glad I’m not getting paid for this.– M 1:20(C) 

Yeah, this is realistic. I mean this is realistic on a bad day, at least in my 
assessment. – M interview(C) 

Many participants were still working when time expired. Two 
CARETS participants (e, c) elected to describe in notes the list of 
changes they felt they did not have time to implement. 

3.6 Analysis 
Our analysis started with the low level data we recorded and built 
successively more abstract representations. We transcribed think-

                                                                 
1 http://www.cs.cmu.edu/~tlatoza/fse07materials.html. 

aloud recordings and screen capture video into 26 action logs 
consisting of a total of 11,821 lines. Every time a participant 
changed the method or field (referred to as a “member”) visible in 
Eclipse, we added an entry naming the member and Eclipse com-
mand used to bring it into view. These included hitting break-
points, stepping in the debugger, navigating using the call hierar-
chy or search results, going to declarations, navigating gutter 
references, and scrolling. We also coded edits, refactor com-
mands, and running the program. We also noted goals participants 
appeared to be working towards. 
Next, we used qualitative protocol analysis. We built a list of 
activities we saw developers engage in and coded what develop-
ers did using this model. Our analysis remained qualitative as we 
did not produce definitions sufficiently reliable to count and quan-
titatively compare activities. We discovered that many activities 
revolved around facts about the code. Participants chose methods 
to read, seeking facts they deemed relevant to the task. While 
reading methods, they sometimes learned facts which they be-
lieved with varying degrees of confidence. Participants felt some 
facts violated their design norms and wished to change them. 
Participants explained facts to understand how facts were related 
and the consequences of changing a fact. This sometimes gener-
ated hypotheses which led participants to seek evidence to con-
firm or reject facts. As participants learned more facts, they began 
to propose design changes that addressed their criticisms and task 
goals. Finally, participants implemented their proposals by editing 
code. When participants discovered facts leading them to believe 
their changes would not succeed, they removed the changes and 
proposed different changes. 
Experts nearly constantly talked while most novices said nothing 
for minutes on end. This suggests that novices were more over-
whelmed or spent more time immersed in details. When compar-
ing experts and novices, we chose situations where some experts 



 

and some novices said something or situations where we could 
rely on what they did.  

4. RESULTS 
We first discuss the changes participants implemented. We then 
present the model we built to describe how our participants 
worked. We model developers as seeking facts, learning facts, 
critiquing facts, explaining facts, proposing facts, and implement-
ing facts. We consider the structure of each of these activities in 
turn and differences between experts and novices.  

4.1 Code Changes 
Changes made by the experts addressed the cause of the underly-
ing design problems. Changes made by the novices (if any) were 
inferior in that they only addressed the symptoms. We described 
the underlying design changes ignoring defects they may have 
introduced or whether they finished. We then clustered similar 
changes. Table 2 lists the final changes (if there were more than 
one) that the participants implemented or began implementing.  
On the FOLDS task, one novice made no changes and gave up 
(f). Another (e) could not determine why the getFoldLevel call 
was necessary and removed it. The remaining novices changed 
the way in which doDelayedUpdate updated folds to address the 
symptom that a getter was being used purely to set. One (c) re-
named the method to updateGetFoldLevel to indicate that it 
was not merely a getter. Another (b) literally interpreted the pro-
vided comment to mean that doDelayedUpdate needs to send 
the fireFoldLevelChanged event and created a method to do 
this. Six novices and one expert extracted an update method from 
getFoldLevel and had doDelayedUpdate update folds by 
calling this method. Changes made by two of the experts ad-
dressed the cause of the design problem by removing the need for 
doDelayedUpdate to force fold update. One (L) moved the fold 
update to two methods in JEditBuffer which are called after the 
buffer changes. Another (M) moved the fold update to isFold-
Start within JEditBuffer. Both experts addressed the hidden 
design problems by removing the getFoldLevel call in 
BufferHandler that added questionable dependencies. 
On the CARETS task, two novices (i, j) made no changes and 
gave up, and three made no changes but worked for the entire 
time (b, c, e). One (f) added a class to log updateCaretStatus 
calls with the (mistaken) intention to have it decide if update-
CaretStatus should proceed from other recent calls. Four nov-
ices removed calls they believed were redundant. Expert changes 
differed from novice changes in starting and stopping caret up-
dates using a field. This approach alone addressed the cause of the 
design problem in that it could reduce the number of calls to one. 

4.2 Seeking Facts 
Participants began their tasks navigating from the methods we 
provided to methods and fields they believed likely to reveal rele-
vant facts about the code. Participants visited between 5 and 59 
members on the FOLDS task and 25 and 41 members on the 
CARETS task (Figure 1). There was no effect of experience on 
how many members participants visited, and participants visited 
similar numbers on both tasks. Thus, experts’ superior changes 
were not due to reading more members but from selecting better 
members to read and learning more from reading them.  
Participants made path choice decisions when choosing between 
locations in which to seek, deciding if seeking was likely to dis- 
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Figure 1. Total distinct fields and methods viewed by each 
participant sorted by years of industry experience.  
cover a useful fact, or choosing between seeking and implement-
ing the current change. A novice abandoned seeking in a location: 

So after it runs runnable thread, I get three extra calls to the update caret 
method. I don’t know what thread it is --. I can go in and find out more, 
but I don’t think it is the unnecessary type that I’m looking for.  
– d 1:09(C) 

An expert considered whether a change should be implemented or 
whether better alternatives should first be sought: 

I can reduce the event firing from here, huh, is that even the right path 
to go down? Let’s see, we’ve got setCaretPosition, no, oh wait what 
about, ohh setCaretPosition is the one that is called by many people. 
Ok, I’m going to give it a long hard look at the finishCaretEvent, no 
finishCaretUpdate. – K 0:41(C) 

We investigated members visited only by novices to understand 
why novices wasted time visiting members that experts did not 
need to visit. On the CARETS task, there were 12 members vis-
ited by no experts which were visited by at least three of the ten 
novices. One was a class definition, which novices visited more 
because they used the open class Eclipse command more. 9 were 
transitive callers of updateCaretStatus which novices navi-
gated to more because of inferior navigation strategies. The re-
maining two members were the most interesting. One was a field 
– showCaretStatus – which guarded the body of updateCar-
etStatus. The other was propertiesChanged where show-
CaretStatus was initialized at startup. One novice (f) stumbled 
into propertiesChanged and quickly left it. Four other partici-
pants read one or both of these methods because they were inter-
ested in the meaning of showCaretStatus. One (g) spent a min-
ute looking for showCaretStatus references. Another (c) spent 
two minutes looking at how propertiesChanged worked. Two 
(a, h) spent 7 minutes understanding in detail how properti-
esChanged worked: 

So I guess the whole debug that is remaining is that when I switch buff-
ers this showCaretStatus variable needs to be reset as soon as I update 
the caret position. – h 0:58(C) 

Novices seemed to perceive showCaretStatus as indicating the 
presence of a changeable fact that might help them reduce up-
dateCaretStatus calls. Reading propertiesChanged, they 
eventually discovered showCaretStatus merely controls 
whether caret and scroll position is displayed on the status bar and 
would not be helpful for their task. That experts never wasted 
time reading these members suggests that knowledge helped them 
guess from the field’s identifier and use that showCaretStatus did 
not turn on and off updates during an event but rather in general. 
This suggests that knowledge helps experts predict what code 



 

does before reading it, thereby preventing wasted time reading 
irrelevant methods.  

4.3 Learning Facts 
When reading methods, participants found interesting facts that 
confirmed or disconfirmed expectations: 

These all look like mutators on the buffer. So that makes sense. So at 
the end of the mutating operation on buffer, it’s going to end in doDe-
layedUpdate. – L 0:06(F) 

Facts played a variety of roles. Facts were changeable when de-
velopers believed alternatives to them might help accomplish 
their task goals. Others acted as constraints which suggested that 
some changes would break them and should not be chosen. Others 
made changes expensive by suggesting lots of investigation would 
be required: 

Wow, many, many, many methods call getFoldLevel and that is not 
good because it’s going to be hard to figure out what all of those are.  
– K 0:02(F) 

Facts also differed in the degree of certainty with which partici-
pants believed them. Some were hypotheses thought likely to be 
true. Some hypotheses were generated from knowledge about 
how the application would probably have been built to satisfy its 
requirements: 

So mouse released represents the bottom of the tree for certain. setSe-
lectedIndex is part of JComboBox.fireAction event. It’s possible that 
we’re getting multiple action handlers involved here, but let’s assume 
that that is not the case. – M 0:16(C ) 

Other facts were directly observed in code. But many relied on 
both observation and knowledge-driven speculation. Figure 2 lists 
some facts found by an expert. 
Experts more frequently and rapidly used facts at higher levels of 
abstraction which focused on the important and relevant parts of 
code rather than irrelevant implementation details. For example, 
experts and novices described getFoldLevel very differently. 
One minute into the task, an expert described getFoldLevel: 

Well this is just updating a cache. So, what we’re upset about is that 
you want to issue an event and you are doing it by forcing an update of 
the cache for the fold level of a particular line.   – M 0:01(F) 

After 38 minutes in the task and 10 minutes reading getFold-
Level, a novice still had not figured out how it changed state: 

What it did was it compute I mean computes the new line number and 
fires an event. But I didn’t see it change any state.  – b 0:38 (F) 

51 minutes into the task, after over 12 minutes staring at get-
FoldLevel, and having read numerous callers and callees, a dif-
ferent novice was still stuck at the statement level, never describ-
ing it as caching: 

So what it does, it starts off from this line, it has this firstInvalidFold-
Level, it goes through all these lines, it checks whether this fold infor-
mation is correct or not, which is this newFoldLevel, this is supposed to 
be the correct fold level. If that is not the case in the data structure, it 
needs to change the state of the buffer. It creates this, it does this 
change, it sets the fold level of that line to the new fold level.  
– h 0:51(F) 

These differences suggest that schemas, such as caching, allow 
experts to see design abstractions and chunk individual statements 
using these schemas. Applying the caching schema helped the 
expert infer the intent of the code. Lacking the expert’s schema,  

1. HACK: getFoldLevel has effects 

2. Buffer mutating operations result in a doDelayedUpdate call 

3. HYP: doDelayedUpdate does changes that happen later 

4. Many methods call getFoldLevel 

5. Folds invalidated by buffer changes are updated on screen. EXPLAINS 2, 
1, 8 

7. getFoldLevel updates a fold data structure EXPLAINS 1 

8. getFoldLevel fires events 

10. CRIT: getFoldLevel determines if folds must be set  

11. CRIT: doDelayedUpdate triggers fold update  

12. isFoldStart calls getFoldLevel on startup 

13. getFoldLevel mutually recursive with FoldHandler.getFoldLevel 

14. Folds are initialized at startup EXPLAINS 12 

15. BufferHandler is only buffer listener 

16. Either fireContentInserted or fireContentRemoved is called 
after every buffer mutating operation 

Figure 2. Some facts found by expert participant L in the first 
41 minutes of the FOLDS task in the order they were 
discovered. Facts are labeled with hack, hypothesis, and cri-
tique roles and the explanation of the relationships.  
novices were not able to uncover this intent and painfully worked 
through the code statement by statement. 

4.4 Critiquing Facts 
Consistent with instructions to improve the design, participants 
used their good design norms to criticize facts. Growing skeptical 
of design choices they perceived the original authors had made, 
they designated those as hacks: 

And this guy who is probably hacking away… This started out with this 
thing as just a getter and said, oh look when you’re getting the fold 
level there can be a case where your data is now invalid so I might as 
well go fix it up right here. And he might have wandered himself into 
the bad design situation that we’ve got right now.  – L 0:16(F) 

In their criticisms, participants exhibited design knowledge by 
perceiving a design choice, alternatives, and justifying the inferi-
ority of the current choice. A single expert perceived this design 
choice: 

And the second thing that I don’t like is that it is firing these updates. It 
seems like when you’re making the edit, that in order to keep the re-
sponsibilities of these guys very simple, when you’re making the edit, 
the people that care about that would be notified. – L 0:26(F) 

Several novice criticisms resulted from missing design knowl-
edge: 

It just seems really confusing for me to have this exact same method 
with the exact same parameters, they both have the handleMessage. I 
should investigate that. Hold on. – c 0:40(C) 

Only after investigation did the novice realize these methods im-
plemented the same interface.  

4.5 Explaining Facts 
Participants explained the rationale of facts they learned: 

So because this is lazily evaluated, which you probably want to do for 
performance reasons anyway, you’re always going to have the risk that 
a get is going to fire an event in any case.  – M 0:09(F) 



 

Explanations established traceability from low level facts about 
the implementation towards motivating requirements. These de-
pendencies became important when a participant wished to 
change a fact. Because of these dependencies, changing a fact 
risks changing other facts. Explanations generate these facts. 
Participants also applied explanations top down to hypothesize 
how the code was likely built to satisfy higher level constraints: 

He must be either firing events to tell people to update. Or somehow 
there must be some other code to then update the display. But it looks 
like the event firing is happening inside there. – L 0:17(F) 

When participants believed false facts, explanations produced 
more false facts which were then critiqued or used as constraints. 
These formed breakdown chains [10] where the participants’ 
model of the code had gone badly awry. A developer explained a 
false callgraph fact as due to something triggering a buffer edit: 

‘Cause I’m thinking that when I perform the action of switching from 
one buffer to another buffer, somewhere it calls a method that indicates 
that the buffer has been edited. But I didn’t edit the buffer. I’m just 
switching between buffers. So that has to be removed. – d 0:30(C) 

This hypothesized call from a buffer edit did not exist because the 
call he used it to explain did not exist. 
Participants reasoned using code facts which described the im-
plementation and requirements facts which described application 
behavior in terms of the domain. False requirements led to missed 
constraints. A novice forgot that the instructions stated that the 
status bar displays caret and scroll position:  

This is, I think this is completely unnecessary because why would a 
scrolling event cause a caret update. Like if I’m just scrolling, by ---, it 
doesn’t change the caret offset. So I think I should just get rid of this 
one actually.  – d 0:33(C) 

Participants with a changeable fact that they could not explain 
faced a choice – optimistically assume it was overlooked by the 
original developer or pessimistically assume it was intended to 
satisfy a hidden constraint. Overlooked facts are true because they 
happen to be true – changing them does not affect other facts. 
Intended facts can be safely changed only when the developer is 
able to generate an alternative fact that still satisfies all the con-
straints. Optimistic assumptions caused bugs. Pessimistic assump-
tions led developers to abandon considered changes, freezing the 
fact and preventing consideration of changes: 

So here they’re basically deselecting everything and then they’re going 
to reselect everything. So initially I’m going to ignore that because 
maybe that’s intentional by the designer because maybe they would 
want to if there’s an error switching or --- reading from file. – a 1:25(C) 

Participants investigated hypothesized constraints before conclud-
ing none existed and the fact was overlooked. 
Some participants used beliefs about the abilities of the original 
developers to help distinguish intended and overlooked facts. An 
expert attempted to understand why an original developer had 
chosen a less desirable decision over an obvious decision:  

Why wouldn’t they call it? Now, can I test this? So why if you know 
the answer to the problem, do you put the code in the wrong place and 
then leave a comment? That’s not like these people. – M 0:35(F) 

The expert believed the decision could not possibly be overlooked 
but must be intended, suggesting the search for a hidden con-
straint must continue. Subsequent discovery of a second example 
where the original developer overlooked an obviously better deci-
sion revised his beliefs: 

What a horrible little thing to do. Ok, that changes my view on 
the coding style. – M 0:37(F) 

Participants gambled when deciding if a proposed change would 
work based on information they did not yet have. Explanations 
helped predict the probability a change would succeed. One ex-
pert implementing a change found it unexpectedly difficult. He 
became concerned that a fact that he believed to be overlooked 
was intended and that his work implementing the change would 
be wasted when they discovered a frozen constraint which had 
prevented the original developer from making the same change. 
He presciently predicted, for the wrong reasons, that his 23 min-
utes implementing the change would be wasted: 

[laughing] This is never going to work, the thing is there’s just all this 
mess going on with this caret listening… If it was just as easy as getting 
EditBus messages and updating the caret it would be straightforward. 
And the other question I’ve got, is that there’s already CaretListener. 
And why doesn’t it just… do caret listening itself? – L 0:41(C) 

When developers had a hypothesized explanation of the underly-
ing cause, they rejected changes that did not address this cause, 
even lacking evidence supporting their hypothesis: 

Somehow if I can track it down from the origin of when the event oc-
curs and from there I can pass in a Boolean false to every function call 
except for one. So it’s trickle down... But that seems like a hack be-
cause this is called 4 times and it shouldn’t be. – j 0:54(C) 

After proposing several similar changes, he gave up lacking a 
strategy to check his hypothesis. 
In understanding why two experts made different changes than 
the other participants on the FOLDS task, we observed that both 
better understood why the call was necessary and sought a better 
way for this constraint to be satisfied subject to their critiques. 
One expert explained the call using a model of how the applica-
tion behaved: 

What’s going on is that when you’re inserting text you could actually 
be doing something that makes the folds status wrong. So, if in our ex-
ample here, in the quick brown fox. If fox is under brown and I’m right 
at fox and I hit backspace. Then I would need to update my fold display 
to reflect the new reality, which is that it’s in a different place.  
– L 0:15(F) 

No other participant produced this explanation. The expert subse-
quently mapped specific code locations to serving specific goals 
and constantly talked about how each of the locations served a 
purpose in satisfying this requirement. This unique explanation of 
why the call was necessary allowed him to propose a unique solu-
tion – moving fold update from its current, poorly chosen location 
to a point earlier in the process. 
In response to the task description’s vague instructions that the 
getFoldLevel call was “architecturally questionable”, another 
expert asked a unique question about BufferHandler: 

So what I need to do is figure out how it’s using its buffer. Is this the 
only mutation that they’re doing? – M 0:18(F) 

This generated a unique critique – the getFoldLevel call caused 
BufferHandler to retain an “architecturally weird” buffer refer-
ence. He then moved fold updating to isFoldStart to address 
this critique. 
Three novices who were tantalizingly close to these changes 
abandoned them following pessimistic assumptions. One novice 
(g) implemented moving fold update but gave up when he be-
lieved a bug indicated he was breaking a frozen hidden constraint. 



 

Another (j) tried to explain why the call was in BufferHandler 
by understanding how its parameter was computed until he aban-
doned this path. Another (h) failed to explain the purpose of 
BufferHandler and felt this hidden constraint made a change 
too risky. An expert (K) abandoned considering this change when 
he stated the false hypothesis, without checking it, that Buffer-
Handler was intended to change the fold level, rejecting the 
task’s architectural criticism. 

4.6 Proposing Facts 
Participants proposed design changes, composed of individual 
fact changes, to accomplish their task goals and address problems 
they had perceived. Participants usually first talked about a sum-
mary of what they had learned and then proposed a change. 
Changes often began as vague goals, generating hypotheses, and 
were then refined by learned facts. One expert (L) proposed six 
changes in 20 minutes before discovering one they believed they 
had time to implement. Many changes reflected the application of 
design patterns [6] they had seen before: 

When I do this, I have two different styles; I have two different meth-
ods. So there might be something that directly manipulates a variable 
and then there’s like a publicly visible, sorry if somebody calls like 
setX, I update, send notifications that x has changed or whatever, but if 
I’m doing something internally I munge, munge, munge and then 
manually tell people at the end. – L 1:19(C) 

Novice proposals often did not solve the problem and worked out 
implementation details rather than considering general patterns: 

How about maintaining for every View, for every buffer, maintaining 
the caret position in a hashtable. ... The key would be the buffer object 
and the value would be, say I have the x,y positions of the caret. That’s 
all. I’ll have one hashtable, a static hashtable for the application.  
– e 1:14(C). 

Of the 29 proposed changes on the carets task, experts (K, L, M) 
were the only participants to propose using a field to start and 
stop caret updates. Other proposals included removing redundant 
calls, passing a Boolean of whether to call updateCaretStatus 
to all of its callers, and recording caret information. 

4.7 Implementing Facts 
We observed one situation where many participants made the 
same change – 8 participants extracted a fold update method from 
getFoldLevel. Table 3 shows that more experienced partici-
pants did this more quickly. An expert extracted it merely to bet-
ter understand it. Other participants intended it as their final 
change. Participants taking longer appeared aimless or confused, 
spent tens of seconds staring at code, revisited perceived deci-
sions, visited callees, and moved statements between methods. 
Participants taking less time recognized the block of code they 
wanted to extract and used the Eclipse command “Extract 
Method”. This is consistent with a chunking interpretation – ex-
perts encoded what the code did using more abstract facts. Nov-
ices saw the code statement by statement and the interrelation-
ships between statements and got bogged down considering 
changes at this level. 
Table 3. Minutes to extract update method from getFoldLevel 
for participants(yrs industry experience) who tried to do this, 
sorted by experience with experts in bold 

a(0) d(1.5) g(2.5) h(2.5) j(3) i(3) K(3) L(10) 

10 13 4 11 9 4 3 4 

5. EXTERNAL VALIDITY 
By studying developers in a lab, rather than in the field, partici-
pants worked differently in ways which likely made the tasks 
more challenging. Participants were new to the application and 
code and could not rely on anything more than the rudimentary 
information we provided about the design, architecture, and fea-
tures of jEdit to reason about the application. Participants were 
asked to make changes designed to require substantial understand-
ing of the design. Developers might typically have much more 
experience before taking on such changes. Otherwise, such tasks 
are often used to learn the code with much more relaxed time 
requirements than our hour and a half tasks. Developers may also 
answer tough questions by seeking out other developers who may 
know the code better and provide important insights [12]. Devel-
opers working on code with unit tests might learn why functional-
ity is necessary by commenting it out and finding failing unit 
tests. By asking participants to make the design as ideal as possi-
ble, we may have caused the participants to spend more time or be 
more careful with the design implications of their changes than 
they would have otherwise been. But, as our aim was to model the 
program comprehension process and expertise effects, rather than 
measure the magnitude of these effects, we do not believe these 
concerns call into question any of our findings.  

6. DISCUSSION 
We discovered that program comprehension is driven by beliefs 
about facts. Dependencies between decisions took the form of 
explanations that developers used to form chains of facts and 
elicit constraints they would need to respect in their proposals and 
changes. A key driver of the program comprehension process was 
uncertainty. Developers chose how much confidence to express in 
their hypotheses and made path choice decisions about whether to 
seek evidence to support them. Developers were uncertain 
whether a hidden constraint would force them to abandon their 
changes or unknowingly break a requirement. Developers used 
sophisticated strategies to judge the likelihood of a hidden con-
straint’s presence such as judging the skill level of the original 
developer.  
An interesting finding is that many of the facts developers thought 
about took the form of simple predicates about the code. The 
simplicity of these facts suggests simple analyses could help dis-
cover and visualize them. When understanding a method, an ex-
pert thought about facts about it (e.g., getFoldLevel has ef-
fects), explanation relationships with other facts (e.g. doDe-
layedUpdate calls getFoldLevel to update folds), critiques 
(e.g., getFoldLevel should not have effects), and design 
changes resolving these critiques subject to constraints. A tool 
that helps query for some of these facts might reduce the amount 
of time developers spent reading code or increase the number of 
hypotheses that they check. A tool externalizing these facts might 
help make it easier for developers to remember them and return to 
the code associated with them. A previous study [11] viewed 
developers’ “working set” of task-relevant facts as regions of 
code and proposed an editor to externalize these. We found de-
velopers abstractly discussing sets of statements with facts, per-
haps because our design tasks focused on constraints while the 
previous study [11] focused on changeable facts. When develop-
ers focus on facts, not statements, externalized views could be 
more compact by showing only relevant facts. Design rationale 
systems have long sought to capture explanations of facts but 



 

were designed for up-front design and design meetings and work 
only with requirements and high level design and requirements 
facts [13]. A tool that captured explanation linkages might make it 
easier to find these later. 
When developers considered alternatives, facts played the role of 
design decisions. This suggests a measurable definition of infor-
mation hiding – a fact is hidden during a task when a developer 
does not think about it. This differs from defining information 
hiding in terms of methods read by a developer. A developer may 
hypothesize constraints without ever reading or even locating the 
code embodying these constraints, but these facts may still pro-
foundly influence design choices. Conversely, a developer may 
read a method at a high level of abstraction and not notice or con-
sider detailed facts that are explained by the facts of interest.  
While our observations have allowed us to theorize, our results do 
not carry the certainty of controlled experiments. All of the dif-
ferences we observed were interrelated in complex ways and 
could have causes that we were not able to discern. While we 
have identified interesting, novel differences and built a theory to 
explain them, controlled experiments would be desirable to test 
these differences.  

7. CONCLUSIONS 
Drawing on design decisions and dependency from normative 
models of how developers ought to design, we found these helped 
better describe how developers actually worked. Our results sug-
gest that tools that allow developers to directly work with relevant 
facts could help them work more effectively. 
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