Borrowing from the Crowd: A Study of
Recombination in Software Design Competitions

Thomas D. LaToza'!, Micky Chen?, Luxi Jiang?, Mengyao Zhao', André van der Hoek!

! Department of Informatics
University of California, Irvine; Irvine, CA, USA
{tlatoza, mengyazl, andre}@ics.uci.edu

Abstract—One form of crowdsourcing is the competition, which
poses an open call for competing solutions. Commercial systems
such as TopCoder have begun to explore the application of com-
petitions to software development, but have important limitations
diminishing the potential benefits drawn from the crowd. In par-
ticular, they employ a model of independent work that ignores the
opportunity for designs to arise from the ideas of multiple design-
ers. In this paper, we examine the potential for software design
competitions to incorporate recombination, in which competing
designers are given the designs of others and encouraged to use
them to revise their own designs. To explore this, we conducted
two software design competitions in which participants were
asked to produce both an initial and a revised design, drawing on
lessons learned from the crowd. We found that, in both competi-
tions, all participants borrowed ideas and most improved the
quality of their designs. Our findings demonstrate the potential
benefits of recombination in software design and suggest several
ways in which software design competitions can be improved.

Index Terms—Crowdsourcing, software design, collective intel-
ligence, collaborative design

I. INTRODUCTION

There is growing interest in the application of crowdsourc-
ing to software engineering. In crowdsourcing, work tradition-
ally done by experts in a single firm is distributed to a large,
undefined, distributed group of people in the form of an open
call for work [16, 34]. Software engineering has begun to adopt
crowdsourcing in several contexts, including open source soft-
ware development, Q&A sites such as Stack Overflow!, crowd-
sourced formal verification games [20], and microtask-based
testing websites such as uTest?.

One form of crowdsourcing is the competition, in which
participants each independently create a solution and a winner
is chosen. Competitions have demonstrated great potential,
helping solve problems ranging from rapidly locating balloons
dispersed across a country® to devising improved social rec-
ommendation algorithms*. Commercial systems such as Top-
Coder® and 99Designs® have begun to explore the application
of this model to software development, creating competitions
in which workers are asked to author small pieces of code or
design user interface elements. However, a recent study of
TopCoder found that there are a number of important limita-
tions of current crowdsourcing models, which presume a water-

1 http://stackoverflow.com

2 http://www.utest.com/

3 http://archive.darpa.mil/networkchallenge/
4 http://www.netflixprize.com/

5 http://www.topcoder.com/

6 http://99designs.com/

2 Graduate School of Informatics
University of Amsterdam; Amsterdam, Netherlands
mickychen@yahoo.com, ximielu@gmail.com

fall process, require clients to be intimately involved, and eval-
uate quality only late in the process [33].

A central, fundamental limitation of current software com-
petitions is the linear nature of their process: only the best de-
sign is used. In crowdsourcing terms, the aggregation mecha-
nism is simply to select a winner. However, in so doing, the
diversity of the crowd is thrown away, as only the ideas of a
single individual may influence the final design [4]. In contrast,
crowdsourcing workflows in other domains have demonstrated
that there are important advantages to introducing ideas
through recombination. Enabling designers to see the alterna-
tive designs of others and iteratively improve their own has
been found to increase the creativity of designs [39] and enable
designs to grow organically [40]. Moreover, there may be other
ways in which increasing communication between individuals
within competitions can increase their efficacy. Evaluating de-
signs and selecting a winner imposes a significant burden on
clients [33]. Can crowds themselves play a role in evaluation?

Software design is multi-faceted, and ranges from design-
ing the internals of a system to designing user interactions with
software. It is well-known that both types of design are needed
and influence each other [35]. There are, however, some clear
differences including the notations and tools available and the
mechanics of explaining 'how it works'. Can a recombination
process help support a range of types of design, or are its bene-
fits limited to only certain types of design?

To answer these questions, we conducted two separate
software design competitions focusing on (1) user experience
design and (2) architecture design. Each participant first inde-
pendently created an initial design. To explore the potential for
recombination, participants were then given several of the
competing designs and asked to create a revised design draw-
ing on what they had learned. Finally, participants evaluated
the designs of their peers by ranking their revised designs.

We found that, in both competitions, designers were able to
evaluate the designs of their peers and borrow ideas from the
crowd. Figure 1 shows an example of an improvement made by
borrowing an idea. Demonstrating the value of diversity, all
designers borrowed, with even the designers of top designs

[Traffic Over Time

3am Day and Time

sAM Day |Monday |»

9AM

12PM Day |Monday ¥ | Time: 12 om

o ©

9pM Time: 12 am o) /\‘/X
12AM &) -
(a) UE1, Round 1 (b) UE3, Round 1 (c) UE3, Round 2

Fig. 1. Participants borrowed ideas from others such as a 24 hour traffic graph
(a), revising their initial designs (b) to adapt and incorporate the ideas (c).

finding ideas in much weaker designs with which they could
improve. Overall, the quality of designs in both competitions
improved significantly between rounds. Our results also sug-
gest several ways to make design competitions more effective.

II. RELATED WORK

A number of systems have investigated applying ideas from
crowdsourcing to software development, seeking to leverage
the potential of crowdsourcing to broaden participation, utilize
expertise, and reduce time-to-market [19, 33]. In Stack Over-
flow, developers ask questions, other developers answer them,
and yet other developers evaluate the quality of the answers,
concurrently curating a knowledge repository of frequent ques-
tions [21]. In Collabode, an original programmer requests short
programming microtasks which are completed by workers us-
ing a shared web IDE [10, 11]. CrowdCode enables crowds of
developers to write code, test, debug, and respond to changes
through microtasks [18]. Other work has explored the use of
crowdsourcing for recommending fixes for bugs [14, 25] and
compilation errors [37], and to checking and fixing unit test
assertions [26]. To leverage larger pools of workers, some sys-
tems enable non-specialists to contribute. For instance, systems
have explored gamification of software verification [20] or
checking for security vulnerabilities [6].

Due to its increasing prevalence, studies have begun to
characterize the impact and success of crowdsourcing ap-
proaches on software development. Open source software de-
velopment is often seen as a form of crowdsourcing, as con-
tributors can come from anywhere in the world, there is a set of
tasks that individuals complete to accrue status (e.g., filing bug
reports, fixing bugs, specifying new features), and work often
happens remotely. Crowston reviews studies of open source
software development [5]. A study of Stack Overflow found
that crowdsourcing enables questions to be answered fast - in a
median of 11 minutes - and that 92% of questions on expert
topics are answered [21]. A case study of TopCoder examined
the use of software competitions in creating production soft-
ware to be used by an industry client [33]. It identified several
important challenges with the TopCoder competition model,
such as its use of a waterfall process, difficulties dealing with
complexity and interdependencies, large overhead imposed on
the client in preparing specifications and answering questions,
and in pushing quality issues late into the lifecycle. Other work
has begun to investigate how social networks and trust form in
open, online communities for software creation [1].

Psychological theories of creativity emphasize the crucial
importance of recombination processes in drawing on many
ideas to generate creative ideas [3, 32, 36]. Outside the domain
of software, several studies have examined the use of recombi-
nation in crowdsourcing workflows. Yu & Nickerson [39] pro-
posed an iterative design process of idea generation, evaluation,
and recombination to design a chair for children, demonstrating
that creativity increases through recombination. Xu & Bailey
[38] found that iteratively authoring design critiques building
on the ideas of others enabled quality design critiques to be
created fast and accurately. Dow et al. [7, 8] found that sepa-
rately creating and sharing multiple design prototypes can in-
crease design quality. Other work has investigated remixing
communities that allow public repositories of artifacts to be

borrowed and adapted by others, finding that adapted artifacts
are, on average, not better than the originals [15].

Due to the centrality of sketching to the design process,
several tools have investigated ways of supporting and enabling
groups of designers to sketch designs together. An early exam-
ple is Commune, a shared intersurface prototyping tool, sup-
porting distributed design groups [24]. Team Storm enables
teams of designers to work efficiently with multiple ideas in
parallel [13]. Similarly, Calico enables collaborative, dis-
tributed sketching across devices with both synchronous and
asynchronous work [22]. IdeaVis [9], a digital pen for paper-
based writing, augments traditional sketching to support co-
located sketching sessions. Drawing on techniques for con-
trolled brainstorming such as 6-3-5 brainwriting [29] and C-
sketch [31], SkWiki enables lightweight branching and merg-
ing in collaborative sketch editing, allowing designers in col-
laborative brainstorming sessions to easily clone and explore
changes to existing ideas in parallel [40].

Our study builds on this work, specifically examining if,
and in what ways, design competitions with recombination can
be used in software design.

III. METHOD

A. Study Design

Two separate but parallel design competitions were con-
ducted: one for software architecture design (AD), and one for
user experience design (UX). To observe the process of recom-
bination, each competition consisted of two rounds. Each par-
ticipants was asked to submit both an initial design (round 1)
and revised design (round 2). In round one, participants were
provided the design prompt and given one week to produce a
design. In between the two rounds, participants were given the
opportunity to see the initial designs submitted by other partic-
ipants in their group and were strongly encouraged to use this
as inspiration for their own revised design (i.e., a recombina-
tion step). To investigate if performing peer evaluations itself
leads designers to more carefully understand designs and adopt
ideas more extensively, participants were evenly divided into
control and experimental conditions, and participants in the
experimental condition were additionally asked to rank the first
round designs in their condition. All participants were then
given a second week to prepare a revised design, drawing on
what they had learned from the other designs. At the conclusion
of round two, both control and experimental participants
ranked the second round designs of the participants in their
group. Figure 2 depicts the structure of the competitions.

B. Participants

40 participants (20 per competition) were recruited from
computer science, informatics, HCI, and software engineering
graduate students at UC Irvine, UC Berkeley, University of
Southern California, University of Washington, and Carnegie
Mellon University. Participants were only recruited from grad-
uate student populations; the competition was not in any way
associated with their course or degree activities, which were
many and varied. During the competitions, 10 participants from
the AD competition and 8 from the UX competition did not
submit the required designs or evaluations and were dropped
from the study. We report results only for the final 22 partici-
pants. All participants had professional experience in industry,

Round 1

~ ~
sens -
AN AOAND Control Initial o
"\‘ a "\‘ a2 UX /q group designs
‘e ''e® Instrucuons\,;) nital
12 UX Experimental § nital _{ o
participants group esigns
traffic Round 1
simulator
nNans
o vt / design \ Control Initial _\
® N6 prompt group designs
"\' m vt e
‘e InStrUCtlons\AExperimental Initial _|
10AD group designs
participants

1 week

Round 2
read oL Revised | _ read __ rank
designs designs designs designs

read rank __\ Revised | read __ rank
designs designs |\ designs designs designs \
o receive pay
Round 2 interviews & prize(s)
read Revised read rank
designs designs designs designs
regd _ fank _| Revlised regd > rank
designs designs |\ designs designs designs
3 days 1 week 3 days 30 - 45 mins

Fig. 2. The structure of the software design competitions.

ranging from 2 to 8 years, with an average of 4.8 years for AD
and 3.2 for UX (Table 1). 7 of the 12 UX participants and 3 of
the 10 AD participants were female. All participants were paid
$100, prorated for those that dropped out. To encourage partic-
ipants to put forth their best effort throughout the competitions,
participants with the winning designs in the first and second
rounds of each competition (4 prizes) were awarded $1000.

C. Tasks

Participants in both competitions were provided a two page
design prompt, used previously in a series of studies of profes-
sional software designers [27]. Participants were asked to de-
sign an educational traffic flow simulation program to be used
by a professor in a civil engineering course to teach students
traffic light patterns. The prompt described a set of open-ended
goals and requirements, including offering students the ability
to: (1) create visual maps of roads, (2) specify the behavior of
lights at intersections, (3) simulate traffic flow, and (4) change
parameters of the simulation (e.g., traffic density). Participants
were asked to produce a design at the level of detail necessary
to present “to a group of software developers who will be
tasked with implementing it”. While the prompt was otherwise
identical, participants in the AD competition were instructed to
focus solely on the architecture and design of the system, while
participants in the UX competition were instructed to focus
solely on an interaction design for the user interface. Partici-
pants in both competitions were instructed that their design
would be evaluated on its elegance, clarity, and completeness.
Our materials are publicly available’.

D. Procedure

The study was conducted entirely through electronic com-
munication. Throughout the study, participants communicated
only with the experimenters; all other participants were
anonymous. At the beginning of the first round, participants
were sent an email with the design prompt and given one week
to produce an initial design. Participants were allowed to use
whichever tools they wished, and simply needed to upload a
PDF of their design to Dropbox. Participants were not allowed
to exchange ideas and were instructed to work independently.
At the conclusion of the one-week period, a recombination step
took place. Participants in each of the four groups (e.g., UX
control) were given all of the anonymized initial designs in
their group and three days to read the designs. Participants in
the experimental groups were additionally asked to rank the

7 http://sdcl.ics.uci.edu/study-materials-and-data/

designs they received. Participants were then given a second
one-week period in which to prepare a revised design. At the
conclusion of the second one-week period, all participants
(both control and experimental) were given three days to read
and rank the revised designs within their group. Finally, partic-
ipants participated in a one-on-one 30-45 minute semi-struc-
tured interview with two or three of the authors using Skype.
Interview questions focused on processes for peer evaluations,
how participants prepared their revised designs, how partici-
pants made use of other designs, and their strategy and sugges-
tions for the competition as a whole. After the interviews were
concluded, participants were informed whether they had won a
prize, and winners were given the option to be publicly recog-
nized on a website. Neither the peer nor expert evaluations
were provided to participants during or after the study.

E. Data Analysis

All initial and revised designs were first evaluated by a
panel, consisting of three authors and one additional panelist.
All panelists had a background in design, and three of the pan-
elists had extensive familiarity with the design prompt through
past use in a course or research study. Each design was inde-
pendently scored by each of the four panelists on a 1-7 scale
(with 7 being the strongest) for each of the three criteria given
to participants: elegance, clarity, and completeness. To enable
scores to be compared between rounds and reduce potential
bias, the expert panel was double-blind and did not see any of
the designs beforehand. All designs were mixed together, and
neither the author nor the round of the design was identified. A
score for each design was computed by averaging the scores
across judges and summing over the three criteria.

Several analyses of the data were performed. To examine
predictors of high quality designs, we computed correlations
between design scores, designers’ years of expertise, and sever-
al characteristics of the design using Pearson’s correlation coef-
ficient. We performed t-tests to test if designs improved and for
an effect of performing ranking in the first round. To evaluate
the accuracy of peer and self evaluations, we used Pearson’s
correlation coefficient to compare rankings between partici-
pants and the panel.

To identify aspects of the final designs which were bor-
rowed from others, two authors independently compared par”
ticipants’ revised designs to their initial designs and identified
instances in which changes may have been borrowed from oth-
ers. The findings of each author were then combined into a

single matrix identifying potential instances of copying, which
were then confirmed and augmented as needed through the
interviews with participants.

To systematically identify common ideas and themes in the
interviews, we used a qualitative data analysis process. The 22
interviews were first transcribed. Four authors then indepen-
dently coded the transcripts (2 authors per transcript). Each
author identified sections expressing an insight, pasted the sec-
tion onto an index card, and labeled the index card with the
insight, participant, and researcher. The four authors then creat-
ed an affinity diagram, iteratively grouping similar cards into
hierarchic categories (e.g., “Reasons for not incorporating
[ideas]”, “Time constraints™). Figure 3 depicts a section of the
final affinity diagram.

IV. RESULTS

In the following sections, we examine the designs partici-
pants created, the relationship between peer and expert evalua-
tions, participants’ revisions to their designs and recombination
of ideas from others, and participants’ perceptions of the com-
petition. Throughout, we use a mixed-methods analysis, incor-
porating quantitative analysis of attributes of the designs and
qualitative analysis of the designs and interview data.

A. Designs

In the UX competition, most of the designs consisted of
mockup screenshots of the final, envisioned user interface (Fig.
4). These screenshots were often accompanied by brief ex-
planatory text, describing possible user interactions with user
interface elements and the resulting behavior of the interface.
All of the designs described mechanisms for enabling the user
to lay out roads, adjust traffic density, create light sequences,
and simulate traffic flows. Most designs depicted screenshots
in temporal order, for example, depicting how to build a road
map, how to add street lanes, and then how to adjust light be-
havior. Designs varied greatly in length of textual descriptions,
ranging from extensive explanations to a few words. Top de-
signs were often more visually polished and contained clear,
concise, and detailed explanations of interface elements (e.g.,
Fig. 4a). Weak designs were often less visually refined and less
detailed and precise in their consideration of user interactions
(e.g., Fig. 4b). Surprisingly, none of the designs explicitly dis-
cussed user needs that had led to their design, simply focusing
on the final product - the user interactions. Only one designer
(UC1) explicitly listed design decisions and assumptions about
the domain such as “cars drive the speed limit”.

In contrast to the UX designs, the AD designs were text-
centric, using diagrams as supporting materials (Fig. 5). Many
had a high-level structure that included requirements, assump-
tions, discussion of the domain, and implementation details,
although designs varied widely in the ways that each was pre-
sented and discussed. Unlike the UX designs, many designs
walked through the derivation of the design, discussing in de-
tail assumptions about the requirements and the domain model
before presenting a design itself. Top designs often focused
more on presenting a detailed and precise characterization at
the level of a domain model (e.g., Fig. 5a, 7c, 7d), while bot-
tom designs often focused more on a characterization empha-
sizing the implementation through class diagrams and detailed
listings of algorithms (e.g., Fig. 5b). As in the UX designs, top

Fig 3. A section of the affinity diagram constructed during data analysis.

AD designs were often also more visually polished, detailed,
and precise. But, unlike the UX designs, there a wide range of
sections presented, including requirements, scope, quality at-
tributes, technology choices, design rationale, constraints, use
cases, and algorithms. Designs used a variety of diagrams, in-
cluding both diagrams of the domain and of the design itself.
Some designs used diagrams with formal notations, such as
class diagrams (e.g., Fig. 5b), sequence diagrams, and use case
diagrams; but stronger designs often focused instead on dia-
grams of the domain model with ad-hoc notations (e.g., Fig.
5a). Most, but not all, followed the instructions of the prompt in
not considering the design of the user interactions.

Designs varied greatly in length (Table 1). UX designs var-
ied from 1 page to 18 pages, with a first round mean length of
6.5 (£4.4) pages. AD designs were, on average, longer, ranging
from 3 to 19 pages with a mean first round length of 10.3
(#4.9) pages. In UX designs, the first round page length was
significantly correlated with scores (r = .59, p = .04), while the
second round correlation was not significant (r = .46, p = .13).
In AD designs, scores in both rounds were strongly correlated
with page count (R1: r=.80, p=.005; R2: r=.76, p = .01).

Surprisingly, there was no significant relationship between
the amount of time spent creating initial designs and first round
scores (UX: r= .11, p =.74; AD: r = -.18, p = .62). This sug-
gests that there is a strong expertise effect that enables strong
designers to produce top designs in similar amounts of time. In
a few cases, top designs were produced in considerably less
time. For example, the winning initial design in the AD compe-
tition (AC1) was produced in 5.5 hours of time, while one of
the lowest scoring designs (ACS) was produced in 20 hours.
Expertise effects are partially visible in the relationship be-
tween industry experience and scores; in the AD, but not UX
designs, there was a significant relationship (UX round 1: r=.
32,p=.31; UX round 2: r=.35, p=.26; AD round 1: r = .66, p
=.04; AD round 2: r = .61, p = .03). The differences between
AD and UX may partially result from the small sample size and
the greater variability in industry experience amongst AD de-
signers. The effects of the time participants invested in their
designs was more visible in their revisions. The time spent on
design revisions and the improvement in score was moderately
and significantly correlated in the UX competition (r = .61, p
=.04) but not in the AD competition (r = .55, p = .10).

B. Peer Evaluations

Overall, peer evaluations by the UX competition were
moderately correlated with expert ranks (r =.37, p <.0007) and
strongly correlated with expert ranks in the AD competition (r
=.65, p <.00001). 66% of UX peer ranks were within one rank
of the expert rank, while 85% of AD peer ranks were within
one rank of the expert rankings (Fig. 6). Self evaluations were
less accurate, especially in the UX groups. Self evaluations in
the UX groups were not significantly correlated with expert
ranks (r = .18, p = .39) but moderately correlated with expert
rankings in the AD competition (r = .55, p =.012). 54% of UX

“Simple”variant:

- Protected Left Turn is switched off
- No Traffic Sensors

- Single-phase traffic lights sequence

highlighted.

together.

yellow and red signals.
By default the sequence is always “green, yellow, red”.

Cycle length: 60 sec
offser |35 sec

#Pnases: [1 [+~

and customize timings only.

(@)

To increase visibility of dependence between pairs mirror layout is used. This
allows users to better understand how these two pairs of traffic lights work

Cycle length is calculated automatically using the given timings for green,

To create custom sequences, user can add new phase and set any timings to
zero. This approach allows to find a balance between complexity introduced
by fully customizable sequences (add one signal at a time) and using too
many “default” settings. In other words, if the user needs very specific
sequence, he can create it. Otherwise, he can use default “green, yellow, red”

Sample CrossRoad

Display specs set by the
user like timing and
priority

User configures both pairs of traffic lights simultaneously. Selected pair is EED o

O Traffic Level
using colors

Density of vehiclef
waiting for the.
green signal

Select Traffic Priority 7| x|

Select CrossRoad] 5‘

I Modify Timings

21Xl
Select CrossRoad E
Equal Timings E

EastBound Red m
m T
=

EastBound Green
WestBound Red

[SouthBound

(b)

Fig. 4. Sections of the revised UX designs from the winning design (a) - UE2 - and lowest ranked design (b) - UC7.

Visual Map

Intersection

[foadt - Road
|10ad2 - Road
*hasSensor() - bool

[+dotoctNumVehicle) : int

void
BB
1
’ I
Vehicle Road Traffic Light
[spoed float Tongih foat Fighistate Lightbiste
= Wanes :int Lpoticy : Policy "GREEN
0 vold I YELLOW
sopt) - vois maxSpoed : fos] oY
o) : void [FchangeLengin) - foat lesetPolicy() - void
n void void [egetPolicy) : vois
[rchangeSpeedy) : void [esetState()
) [rgetstatol)

= S

[Emergency Vehicle' Lane [Lett Arrow Lignt] Policy Policy #1,2.3 D
N B B B N N . . -strobe light left amow time : Time _ are based on
Figure 3. Each intersection has eight traffic lights. Always green lights are not considered. Lights at the left (e.g. 1) lane controls weming sound I fsensor : Sensor — ::‘_:;';"‘“ oo
left turns; the ones at the right (e.g. 2) controls continuing straight. S —
At a given time, only a limited number of the eight traffic lights can be green, the rest must be red, in L oaction ['__E’
order to avoid crashes. Each configuration of green and red traffic lights is called traffic lights AT Time Sonsor
combination. Each intersection node has a model representing the configuration of traffic lights oo mo | ooy b
combinations and events (stimuli) that will change the active traffic lights combination. For example, there et

is one traffic lights combination where only lights 2 and 6 are green. If a sensor detects that a car is waiting
in the traffic light 1, at some point, that light must turn green but light 6 must be turned red to avoid a
crash. Therefore, the combination 2-6 will become inactive, and the combination 1-2 will become active,
because light 1 had a car waiting (stimulus). This configuration is called scheme. The end user is
responsible for entering the scheme associated to each intersection node because that is the model to be

simulated.

(@)

Figure 1. Class Diagram

Figure 2 shows different usecases of actor "student" to create and modify a visual map of traffic
signal simulator. As can be seen, the usecases are in various levels from very abstract ones (e.g.
learn traffic behavior) to subfunction usecases (e.g. change vehicle speed). Here is a list of UML
2.2 stereotypes used in this diagram to specify high to low levels:

e Cloud: Summary
e Kite: Summary (b)

Fig. 5. Sections of the revised AD designs from the winning design (a) - AC1 - and lowest ranked design (b) - AES.

self evaluations were within one rank of the expert rank, while
45% of AD self evaluations were within one rank of the expert
rank (Fig. 6). In making self evaluations, participants were
much more likely to rate themselves higher than the experts,
although some did rate themselves lower.

To evaluate designs, participants reported using several
strategies. Most examined each design individually, assessing
its fitness according to one of several criteria. The most popular
criteria designers reported using were those suggested in the
design prompt: completeness, elegance, and clarity. Beyond

these, designers also reported considering designs’ usability
and visual design (UX) and level of detail and flexibility (AD).

Several participants reported evaluating designs by making
explicit comparisons between designs. Two AD designers
(AC2, AE2) reporting using an insertion sort, where they com-
pared each design with the previous, inserting it in the appro-
priate place. Several UX designers (UE2, UES, UC7) reported
examining designs in pairs, while UC6 compared all designs to
their own. AC3 used a grouping strategy, first separating de-
signs into “good” and “bad” groups before reading each in

TABLE 1. SUMMARY OF EXPERIENCE, DESIGN SCORES, AND DESIGN EFFORT

User Experience (UX) Competition

Architecture Design (AD) Competition

Designer In- Round 1 Round 2 Designer In- Round 1 Round 2
dustry dustry
€xp. Score Pages Time Change Page Time €Xp- Score Pages Time Change Page Time
(yrs) (hrs) inScore incr- (hrs) (yrs) (hrs) inScore incr- (hrs)
ease ease

Control
UCl 5 1525 10 5.5 -1.25 1 2 | AC1 8 1825 14 5.5 0.25 1 2
uce 2 6 5 2 7.5 1 5| AC2 4 1575 11 5 0.5 1 2.5
ucs 4 8 4 10 5 1 15 | AC3 5 875 12 6 2 1 5
uc2 2 12.5 8 6 0.25 -1 3.5 | AC4 4 775 5 9 2.75 2 24
UC3 4 10.5 7 10 2 1 6 | ACS 3 8.0 3 20 2 5 375
uc4 2 8.75 1 4.5 1.5 4 225
uc? 3 4.5 2 6 1.5 1 2.5
Mean 3.1 9.4 5.3 6.3 2.4 1.1 5.2 | Mean 4.8 11.7 9 9.1 1.5 2 14.2
Experimental
UE2 5 14.5 6 13.5 4 2 13.5 | AE1 8 17.5 19 11 0 1 4
UEl 4 16 5 5 0 0 3 | AE2 35 1575 11 20 1.5 0
UE3 2 1425 18 5 0.75 2 5| AE3 4 1375 14 8 1.75 3 8
UE4 2 14 8 7.5 0.25 4 3 | AE4 4 9.5 9 12 4.75 3 15
UE5S 3 10 4 15 -0.25 1 4 | AE5 4 8.0 5 10 0 0 2
Mean 32 13.8 8.2 9.2 1.0 1.8 5.7 | Mean 4.7 12.9 11.6 122 1.6 1.4 7
Overall 32 11.2 6.5 7.5 1.8 1.4 5.4 | Overall 4.8 12.3 10.3 10.7 1.6 1.7 10.6
mean mean

Designers are identified by a code indicating their group and rank of their initial design (e.g., UC1 indicates the top ranked control UX participant). Designers are listed in order of the score for their revised design.

more detail. Several (UC3, UC7, AC2, AE1) reported that they
found ranking similar designs hard. One designer (UES5) also
found ranking difficult for designs that were too dissimilar, “/¢s
hard to put designs side by side because there are so many dif-
ferent variables in terms of design style and clarity. There was
no baseline.” Participants reported finding evaluating designs
neither particularly easy nor difficult, with a mean difficulty of
3.8 (UX) and 4.1 (AD) on a 7 point scale (1 easiest).

Participants reported spending an average of 1.1 (£.7)(UX)
and 2.2 (£1.8)(AD) hours evaluating designs in the first round
and 1.2 (£.6)(UX) and 1.8 (+1.4)(AD) hours in the second
round. AD designs may have been more time consuming to
rank due to their greater length and extensive use of text.

C. Design Revisions

1) Effects of design revisions
Overall, participants’ revised designs were significantly

better than their first round designs (UX: p = .03; AD: p =.
009). On average, UX designs improved by 1.8 points and AD
designs improved by 1.6 points (Table 1). 75% of UX designs
and 80% of AD designs improved. Only two UX designs
(17%) decreased in score, while no AD designs decreased in
score. There was no effect of first round design evaluations on
improvements; experimental participants who evaluated de-
signs in the first round did not improve more than the control
participants that did not (UX, p =.28; AD, p =.92).

2) Borrowing ideas

Overall, all participants, both control and experimental,
reported to have carefully reviewed each initial design and bor-
rowed at least one idea from another design. Table 2 lists the
borrowed ideas we identified in each design (as corroborated

UX peer evaluations AD peer evaluations

60 60
50 50
" wn
< 40 < 40
L3 2 30
k3 k3
X 20 x 20
100 +——— I - 10 :I:
0 0 -
5-4-3-2-10123 4 -5-4-3-2-1012 3 4
ranking error ranking error
UX self evaluations AD self evaluations
20 20
P 15 P 15
5 g
s10 — =10 nm
o o
BQ J
5 --I- s — L —
0 - 0 -

765-4-3-2-101234 765432101234

ranking error

Fig. 6. Accuracy of peer and self evaluations. Positive ranking errors occur
when rankings were lower than expert rankings, and negative errors occur
when rankings were higher. Participants were allowed to give non-integer
rankings for themselves (e.g., “1 or 2”) but not peers.

ranking error

When user opens this simulator, there e
is a default simulation provided.

User can just use the default map,

< + (>
or choose other maps (different layout,
intersections),

All R1 R2 R3 R4 R5

or create (“+”) his own map (create a
map based on his location or entered
location).

(Please click each road or traffic light to edit.))

Lights Scheme

VN J=n

(a) Pre-designed templates - UE4, Round 1

Sensors

LoopSensor
A LoopSensor detects Vehicles as they drove over top of it. They are primarily used for

intelligent traffic flow control in “actuated” Intersections, though they can also be used to capture
Statistics about Vehicle flow through particular stretches of Road. LoopSensors detect Vehicles

by receiving updates about nearby Vehicle Locations from the Roads these two objects are
attached to. As previously mentioned, the Multiindex structure used to store Vehicles and

LoopSensors in Roads allows querying for nearby neighbors. Every time a Vehicle updates its

Location within a Road, the Road will query for the nearest LoopSensor in that Vehicle's Lane
and alert the LoopSensor to the Vehicles presence. If the Vehicle is close enough to be
detected, the LoopSensor will notify its associated TrafficController (if any) and store this
information in the Statistics store. As the Vehicle moves away, the Road will again notify the
LoopSensor, which will then determine that the Vehicle is gone and as such will notify the

TrafficControler. (c) Sensors - AC2, Round 1

7 ASSUMPTIONS

a. Turning right is possible at any time.
b. Only eight valid traffic lights combinations.

8 BENEFITS

a. Testability. Making the design single-threaded enables easier testing.

b. Real time, zero time (simulation is executed immediately) and custom-rate play modes.

c. Supports intersections with and without sensors. It is not required that all lanes have sensors.

d. The scheme model handles events priorities.

e. Powerful simulation model that can also be used programmatically, without the need of having

(e) Assumptions and benefits - AC1, Round 1

Available templates for simulation
appear as thumbnail views of their
maps.

Choose a Template

User selects template.

Curved Wide Two

Simple Four

Cancel Choose

(b) Pre-designed templates - UE2, Round 2
4.3 SENSORS
Sensors can be attached to edges to detect cars presence. When they detect that a car is passing, they
notify to a specific traffic light. The stimulus will be considered by the scheme to determine which traffic
light combination will be activated next.

Sensors will be notified when the simulation starts by calling its start() method and they will schedule
themselves in the VirtualClock to check for cars. For example, if a sensor must check every 50ms
whether there are cars or not, they can schedule a Handler to be executed after 50ms and that handler
will be perform the checking and will also schedule the next check.

Since sensors have a position in the edge and cars can also be asked for their positions, the sensors can
determine whether a car is close enough to be sensed. An efficient indexing must be implemented to
relate cars and edges to avoid checking for all the cars in the map.

(d) Sensors - AC1, Round 2

5. Assumptions

The purpose of this document is to consider the tradeoffs and make design
decisions. The detailed description of all classes would be presented in technical
specification document.

6. Benefits
e Usage statistics will help to improve the usability and teach students better.
e Chosen technology will make program available on different devices, web-browser
and standalone PC with low expenses
e Chosen technology help on implementing graphical simulation

(f) Assumptions and benefits - AC3, Round 2

Fig. 7. Examples of borrowing by UX (a; b) and AD designers (c; d)(e; f).

through the interviews), listing designs in order of their first
round score. Both participants with top initial designs and par-
ticipants with low-ranked initial designs found ideas to borrow.
Participants varied greatly in the ideas they chose to borrow;
few ideas were consistently borrowed by multiple participants.
Participants found ideas in many different designs, borrowing
ideas from both top ranked designs and bottom ranked designs.
Of the 16 initial UX designs (including participants that subse-
quently dropped), 13 provided at least one idea that another
participant subsequently adopted. Of the 12 initial AD designs,
10 provided at least one idea. In some cases, designers reported
adapting a single idea from multiple source designs.

Both UX and AD designs often borrowed ideas in the form
of features. Participants borrowed ideas from both higher-
ranked designs and from lower-ranked designs. For example,
UES3 identified and borrowed from the higher-ranked UE1 the
idea of a 24 hour traffic graph enabling users to see, at a glance,
how traffic flow varied over a day (Fig. 1). UE2 borrowed from
the lower-ranked UE4 the idea of enabling users to start a new
map with a pre-defined template containing a specific layout of
roads (Fig. 7a, b). As a final example, AC1 borrowed from the
lower-ranked AC2 the idea of using sensors to detect the pres-
ence of cars (Fig. 7c, d). In borrowing ideas, participants often
took only the essence of the idea, adapting and reinterpreting
its meaning in the context of their design to make it their own.
For example, while AC1 borrowed the idea of sensors from

AC2 (Fig. 7c, d), the discussion of how sensors are implement-
ed is specific to their own design. Thus, while participants bor-
rowed ideas from higher and lower-ranked designs, the polish
and precision of designs often reflected their own design style
rather than their source design (e.g., in Fig. 7b, the higher-
ranked UE2 has a higher degree of polish in their version of
pre-designed templates).

In contrast to UX participants, AD participants also bor-
rowed presentation elements of the design, including sections
and types of diagrams. For example, AC3 borrowed sections
describing assumptions and benefits (Fig. 7e, f); AC4 borrowed
sections describing quality attributes and a static architectural
view (Table 2). This may reflect the greater diversity of presen-
tation styles available for AD participants to borrow.

Overall, however, participants’ revised designs were very
similar to their initial designs. While most participants bor-
rowed several ideas and, for AD designs, sections and dia-
grams, participants, with one exception, did not reenvision their
design wholesale or make large, global changes (UC6 revised
their initial low-fidelity mockups with high-fidelity mockups).

While participants reported extensively reviewing other
designs and identifying ideas, not all ideas could be incorporat-
ed into their own designs. When participants felt that their de-
sign was sufficiently general or that the source design was sim-
ilar, designers felt that there was a good fit between designs:

TABLE 2. IDEAS BORROWED BY PARTICIPANTS

User Experience (UX) Competition

Architecture Design (AD) Competition

Designer Ideas borrowed Source of idea Designer Ideas borrowed Source of idea
Control participants Uc 1 2 3 45 6 (A 7 | Control participants AC 12 (E)3 4 5
ucCl 1. Pause, finish buttons, 2. Accelerate button, 1, 34 2 AC1 1. Sensors, 2. Concept of events, 3. 1,
3. Car density measured as CPM, 4. CPM 2 Framework to design optimal path 2,
uc2 1. Added more roads, 2. Manually changing 1 2 AC2 1. Light scheme, 2. Bi-directional 1 2
traffic traffic
ucC3 1. Vector, 2. Compass guide 1 2 AC3 1. Assumptions, 2. Benefits, 3. 1,
Limitations 2,
3
uc4 1. Change words to icons, 2. Help and 1 1, 2 1, AC4 1. Quality attributes, 2. Static view 1,
instructions, 3. Colorblindness assistance 2,3 2 of architecture
ucCs 1. Notifications panel, 2. Error handling, 3. 1, 5 2, ACS5 1. Extended domain model, 2. 1 2
Traffic specified per road, 4. Toolbar to add 2, 6 Compass directions
signals and roads, 5. Play button behavior, 6. 3,
Road congestion highlighting 4
ucCe 1. Randomize traffic density, 2. Roads layout 1 2
uc? 1. Start and help buttons 1 1 1
Experimental participants UE 1 2 3 4 (B)() (D) 5 | Experimental participants AE 12 3 4 (F5
UE1 1. Popup window light sequence, 2. Light 1 2 |AEl 1. Off-the-shelf distribution gener- 1 2, 2,
timing visualization ator, 2. Ul mockup, 3. Functional 3 4
requirements, 4. Map controller
logic
UE2 1. Intersection creation, 2. Color labels, 3. 1, 2 2, 5 6 |AE2 1. System diagram, 2. Road graph 1, 1, 1,
Saving light sequences, 4. Pre-designed 2, 4, and subcomponents diagram 2 2 2
templates, 5. Simulation controls, 6. Check 3 5
boxes to toggle buttons
UE3 1. Saving light sequences, 2. Conflict 1, 5 AE3 1. Model elements, 2. Simulation 1,
warnings, 3. 24 hour traffic graph, 4. Use 2, sequence 2
existing light sequence, 5. Naming streets and 3,
intersections 4
UE4 1. Saving light sequences, 2. Popup window 1 2,3 AE4 1. Graphical dependency graph, 2. 1, 3
for light scheme, 3. Sequence and time Multiple turns at streets, 3. Classes 2
cheatsheet
UES 1. Path tracing AES 1. Compass directions, 2. System 12, 2 1
reqmts and components, 3. Traffic 3,
simulator, 4. Traffic flow controller 4

Designers are listed in order of their initial design scores (highest first). First round designs from participants that subsequently dropped out of the competition are listed with a letter in parenthesis (e.g., (A)).

I looked through all of them individually again and then went

through them one by one. I made a list of things that I liked from

each of them. But I kept my own design in mind. If the things I liked

would also fit in my design, I chose to incorporate it. (UC1)
But designers also felt that there were ideas that they could not
incorporate due to a lack of fit or lack of time. For example,
AE2 reported that “They had a state machine for the whole
thing, and that was just a really interesting approach... [But] I
would pretty much have had to redesign my whole design, so 1
decided to stick with what I had so far”.

3) Self-critique

Beyond borrowing feature or elements of the presentation

from other designs, both UX and AD participants reported that
reading other designs led them to reflect on and critique their
own designs. This lead some participants to better understand
the expectations of the contest and consider alternative ap-
proaches. Several (ACS5, UE2, AC1, AES, AE1, AE2, AC2)
reported that seeing other designs led them to improve the pre-
sentation of their designs to be more clear and explicit. For

example, AC2 reported that “there were like a few cases where
1 felt like I didn t explain particular features enough.” Several
participants also reported that seeing alternative approaches
inspired them to consider additional aspects of the problem and
to identify missing pieces of their design. For example, AE2
“felt like the other designs talked a lot more about roads than I
did. So I tried to improve [that] in the next round.” And AES
reported that “when I saw the designs and different thoughts
behind them, I was able to see the crowd better and what kind
of approaches there are”. One (UCS5) reported that other de-
signs led them to feel that theirs was too technical and detailed.
Many participants (AC3, AC4, AE1, AE3, AE4, UCI1, UC2,
UC4, UC7) were encouraged by seeing good designs by others,
as it gave them the opportunity to improve. For example, AE3
reported “When [see that something can be made better, I ac-
tually see how I can implement it in my design, and that moti-
vates me”. Similarly, others (UE2, UE3) were disappointed by
designs that they felt reflected a lack of effort. However, the
lowest ranked AD participant (AES) reported that seeing good

designs was discouraging as it made her think that her own
design was really bad. Three designers (UE4, AC2, AE1) also
reported that seeing worse designs was encouraging. For ex-
ample, AC2 reported, “I feel that that made me feel like I put
more effort than other people did into the design process, and
that I stood a pretty good chance”.

D. Perceptions of the Design Competitions

Overall, participants found the contest to be effective. First,
participants thought the setup of the competition encouraged
good design, as seeing the efforts of others motivated them to
do good work and to put forth more effort. Second, participants
felt that sharing ideas helped design both in providing ideas and
in providing a deeper understanding of the design space that
encouraged self-critique. For example, both UC5 and UC7
reported that seeing how other designs approached the problem
made them realize how different Uls can be. All participants
reported that they did not try to game the competition in any
way; none reported withholding ideas from the first round to
prevent them from being borrowed. “To be honest, I havent
even really thought of it.” (AC2)

A number of participants reported difficulties in the design
competitions. Some (UCS5, UE2, UE3, UE4) reported unfamil-
iarity with the domain, “it was very hard, especially for [a]
non-US citizen, to create the system because I had to search for
the rules.” Many (UC3, UC4, UC5, UC7, UES, AE2, AES,
ACI1, AC4, ACS) reported wishing that they had more time. A
few (UC4, UE3, AES) reported being blocked by limitations of
their design tools.

Participants reported three main ideas for improving the
effectiveness of design competitions:

1) Standardized requirements, expectations, and tools

Participants suggested clearer requirements and expecta-
tions would help them to borrow more. For instance,

What do you mean by design? The term design. Because for me it’s
more about architecture stuff, maybe for others it’s more about classes,
about detailed descriptions like specifications for programmers.(AC3)
Similarly, UE2 felt “it was too general. Everybody designed
differently. Maybe give more guidance.” AC2 suggested com-
mon tooling would reduce the effort required to borrow. “If'/
could have accessed their diagrams in order to ... pick some
components of theirs that I thought were better explained ...
and dropped them into mine.”

2) More iteration through smaller steps and early feedback

Participants reported that making large changes in their
design revisions was hard, as they had already created a com-
plete design and that that completeness served as a barrier to
incorporating large or incompatible design ideas.

It’s more helpful to have more stages in smaller chunks. Maybe one
stage would just be [to] explore wireframes or sketch ideas. Because
1 think a lot of the good ideas, they take time and several iterations
to perfect... In the second phase, I felt it was hard to change. (UES)
1 think it would’ve helped me a lot if even before writing out the
whole design document I could’ve seen the thought process. So kind
of like a pre-design step. It would’ve been really interesting to see
how other people framed the core of the system. So like state ma-
chine versus concurrent queues, which is what I used. Little things
like that, half page things. I thought that once my design was writ-
ten, it was a lot harder to incorporate because you kind of have to
find a way for it all to fit in. (AE2)

3) Provide two-way communication

While the contest enabled participants to see other designs
and create indirect feedback through comparisons to others,
several UE participants (UE1, UE4, UC3, UC5) felt that direct
critiques of their designs by others would be very helpful. AE3
(AD) further suggested that participants be “allowed to discuss
ideas with each other, and after the first round the best designs
should cooperate on a single design.”

V. LIMITATIONS AND THREATS TO VALIDITY

As all studies, our study has several limitations. While all
our participants reported having industry experience, none were
senior or highly experienced designers with decades of experi-
ence. Highly experienced designers might not similarly benefit
from recombination. However, in practice, software competi-
tions are usually open and often specifically target those with
less expertise, who benefit most from the experience visibility
to recruiters that participation affords. Moreover, our results
suggest that both stronger and weaker designers may similarly
benefit from a recombination process.

While the task was carefully designed to be representative
of real world design tasks and used in previous studies, it was,
by necessity, limited in scope, and is not inclusive of all activi-
ties and aspects that may be involved in larger design tasks.

Our results are based on a mix of quantitative and qualita-
tive analysis. While data analysis involving coding may intro-
duce bias, we used several mechanisms to reduce and mitigate
potential sources of bias. In scoring designs, four panelists in-
dependently assessed each design, and members of the panel
were blind to the identity and round of each design. In identify-
ing borrowed ideas, two authors independently coded in-
stances, which were then cross-checked with the designers
themselves during the interviews. In analyzing interview data,
two authors independently coded each interview to identify
insights and all of the coded insights were organized into
themes. Finally, while analysis of participants’ changes and
interviews together with the expert scores provides evidence
that designers borrowed and that designs improved, our study
provides no direct causal linkage between the two. As we were
unsure how much, if any, borrowing might occur, we chose to
use an experimental manipulation to explore the conditions in
which borrowing occurs. Future experiments comparing re-
combination to design improvements are necessary.

VI. DISCUSSION

Our study revealed the potential of recombination within
software design competitions to enable designers to share ideas
and improve their designs. Other designs furnished designers
with a rich source of ideas. The motive to borrow was so strong
that an experimental manipulation intended to increase borrow-
ing had no discernible effect. Borrowing was surprisingly egal-
itarian - while designs varied substantially in quality, borrowed
ideas came from nearly all designs. Even strong designers
found ideas with which to improve from weak designs. De-
signers often took only the essence of an idea, adapting, rein-
terpreting, and extending it to fit their own design.

Designers found that seeing the designs of others provided a
new perspective with which to examine their own. Designers
were inspired by viewing the designs of others, returning to
their own designs eager to address features they felt to be weak,
improve their presentation, and fill in missing pieces. Rather

than simply borrow, designers often used what they learned to
reflect and think more deeply about their own ideas. Valuing
the perspectives of others, designers wished to see more explic-
it feedback to provide more opportunities to improve.

Both architectural and user experience design can benefit
from outside ideas. While obtaining outside ideas using tech-
niques such as design critiques has long been a central empha-
sis in user interaction design, our results suggest that new ideas
can also benefit architectural design. All designers in both
competitions borrowed from the crowd. Throughout, UX and
AD designers’ activities were often more alike than different,
as both critiqued their own designs and improved their designs.
One difference between the types of design was in presentation.
While UX designers all chose to present designs very similarly,
AD designers benefited more from simply observing the pre-
sentation styles of others, leading them to add new sections and
types of diagrams to explain additional dimensions of their
design. This suggests that the nature and scope of architectural
design may be less well-defined than interaction design.
Incorporating new ideas into a complete design enables
design refinement rather than radical redesign. Participants
used the designs of others to add features and enhance their
designs, not to rethink their central approach. While partici-
pants wished to borrow more, several barriers held them back.
Participants spoke extensively of the “fit” between their de-
signs and others, explaining that they saw ideas that they liked
but whose poor fit made them difficult or prohibitively time
consuming to adapt. Moreover, by encouraging participants to
produce a polished initial design, participants may have already
felt committed to its precepts and been less willing to imagine
reenvisioning or restarting from scratch. This suggest that, to
encourage borrowing of bigger ideas, it is crucially important
for designers to first submit earlier stage ideas. Just as tradi-
tional design processes emphasize ideation, low-fidelity
sketches, and iterative improvement [2], software design com-
petitions may be able to encourage larger design improvements
by supporting iteration beginning with early stage ideas.
Designers engaged in competition still value collaboration.
Despite competing against each other for substantial $1000
prizes, designers wished to see more opportunities for collabo-
ration and direct, explicit feedback on their designs. This seems
somewhat counterintuitive: why would designers provide help-
ful feedback to others that might serve only to reduce their sub-
sequent chances of winning? Yet, despite the competitive na-
ture inherent, designers already felt they were receiving value
from their peers, finding useful ideas and inspiration from the
strong designs others produced. Indeed, more participants felt
motivated by seeing the strong designs of others than by weak
designs. This suggests there may be promise in competition
models that further combine competition and collaboration.
Peer-evaluations can be used to approximate evaluations of
designs by experts. Participants demonstrated modest success
in evaluating peer designs. Individual peer evaluations were
moderately to strongly correlated with expert evaluations and
often differed only slightly from experts. This suggests that,
in commercial crowdsourcing context where work is commis-
sioned by a client, it may be possible to let the crowd them-
selves perform some of the evaluation work, reducing the sig-
nificant burden evaluations can impose on clients [33]. One
important aspect to further investigate is in averaging individ-

ual evaluations into aggregate evaluations, as this may enable
even higher quality evaluations.

The effects of expertise may be as important in software
design as in programming. In an early study of human aspects
of software development, Sackman et al. found a ratio between
the best and worst developers of over 10 to 1 for tasks such as
initial coding and debugging [30]. Many studies have since
found similar expertise effects across a range of programming
tasks (e.g., [23, 12, 28, 17]). Our results provide evidence that
substantial expertise effects extend to architectural and user
experience design. Some designers were able to produce top
designs in substantially less time than that in which others pro-
duced low ranked designs. While recombination enabled most
to improve, it did not enable weak designers to produce strong
designs. Even in adapting the ideas of stronger designers, the
level of polish and precision in their version often reflected
more their own level of design expertise than that of the origi-
nal designer. For software competitions, this is an important
limitation, as they may contain a range of expertise levels and
substantial populations of students and less experienced devel-
opers looking to gain expertise and knowledge. Finding ways
to help weak designers improve more through interactions with
stronger designers is a an important area of future research.

Our results suggest that adopting a multi-round structure in
software design competitions that enables revision and recom-
bination can increase the quality of designs produced and better
utilize the diversity inherent to competitions. Yet, our results
also suggest there is much more to explore in making full use
of the crowd in software design through alternative competition
structures. A competition with many more rounds, standardized
tooling, and lower fidelity design ideas might enable true col-
lective design, in which the core ideas are exchanged and
adapted and alternatives are developed and explored over time
within the crowd. Designers might initially produce ideas for
sections of the design, which are then adopted and extended.
Shorter rounds might also reduce contribution barriers, en-
abling designers to come and go through the competition, con-
tributing in shorter periods when they are able.

Our results may also have implications for more traditional
design processes within companies. In illustrating the value of
outside ideas, they suggest that adopting even simple brain-
storming processes might help to increase design quality.
Rather than have a single designer bring a complete design to a
meeting for review by his colleagues, it might be possible to
instead have several designers independently sketch several
early ideas, increasing the diversity of ideas available and re-
ducing the commitment to a single, fully specified design. De-
signers might even continue a collaborative design process,
posting designs to a shared wiki to enable idea exchange and
having multiple designers iterate the designs over time. Where-
as pair programming enables developers to collaboratively
work together to solve hard programming tasks, our results
suggest a new team organization in which pairs or small groups
explore alternatives in parallel and exchange ideas.

ACKNOWLEDGMENTS

We thank the participants of our study and Ben Koehne for
assisting in judging. This work was supported in part by the
NSF under NSF grants 1I1S-1111446 and CCF-1414197.

REFERENCES

[1] A. Begel, J. Bosch, M. A. Storey, “Social networking meets soft-
ware development: perspectives from github, msdn, stack ex-
change, and topcoder.” IEEE Software, vol. 30 (1), 2013, pp. 52-
66.

[2] W. Buxton, Sketching User Experiences: Getting the Design Right
and the Right Design. Morgan Kaufmann, 2007.

[3] D. T. Campbell, “Blind variation and selective retention in cre-
ative thought as in other knowledge processes.” Psychological
Review, vol. 67, 1960, pp. 380-400.

[4] S. Chawla, J. D. Hartline, B. Sivan, “Optimal crowdsourcing con-
tests.” Symposium on Discrete Algorithms, pp. 856-868.

[5] K. Crowston, K. Wei, J. Howison, and A. Wiggins, “Free/libre
open source software development: what we know and what we
do not know.” ACM Computing Surveys, vol. 44 (2), 2012, 35
pages.

[6] W. Dietl, S. Dietzel, M. D. Ernst, et. al., “Verification games:
making verification fun.” FTfJP 2012, pp. 42-49.

[7] S. Dow, J. Fortuna, D. Schwartz, B. Altringer, D. Schwartz, and S.
Klemmer, “Prototyping dynamics: sharing multiple designs
improves exploration, group rapport, and results.” CHI, 2011,
pp. 2807-2816.

[8] S. Dow, A. Glassco, J. Kass, M. Schwarz, D. L. Schwartz, and S.
R. Klemmer, “Parallel prototyping leads to better design results,
more divergence, and increased self-efficacy.” ACM
Transactions on Computer-Human Interaction, vol. 17 (4), 2010,
24 pages.

[9] F. Geyer, J. Budzinski, H. Reiterer, “IdeaVis: a hybrid workspace
and interactive visualization for paper-based collaborative
sketching sessions.” In Nordic Conference on Human-Computer
Interaction, 2012, pp. 331-340.

[10] M. Goldman, “Software development with real-time collabora-
tive coding in a Web IDE.” Symposium on User Interface Sys-
tems and Technologies (UIST), 2011, pp. 155-164.

[11] M. Goldman, G. Little, and R. C. Miller, “Collabode: collabora-
tive coding in the browser.” Workshop on Cooperative and Hu-
man Aspects of Software Engineering (CHASE), 2011, pp. 155-
164.

[12] L. Gugerty and G. M. Olson. Comprehension differences in de-
bugging by skilled and novice programmers. In Empirical Stud-
ies of Programmers, 13-27, 1986.

[13] J. Hailpern, E. Hinterbichler, C. Leppert, D. Cook, and B. P.
Bailey, “TEAM STORM: demonstrating an interaction model
for working with multiple ideas during creative group work.”
Conference on Creativity and Cognition, 2007, pp. 193-202.

[14] B. Hartmann, D. MacDougall, J. Brandt, and S. R. Klemmer,
“What would other programmers do: suggesting solutions to
error messages.” CHI, 2010, pp. 1019-1028.

[15] B. M. Hill and A. Monroy-Hernandez, “The cost of collaboration
for code and art: evidence from a remixing community.” CSCW,
2013, pp. 1035-1046.

[16] J. Howe, Crowdsourcing: Why the Power of the Crowd Is Dri-
ving the Future of Business. Crown Business, 2008.

[17] T. D. LaToza, D. Garlan, J. D. Herbsleb, B. A. Myers, “Program
comprehension as fact finding.” European Software Engineering
Conference and Foundations of Software Engineering (ESEC/
FSE), 2007, pp. 361-370.

[18] T. D. LaToza, W. B. Towne, C. M. Adriano, and A. van der
Hoek, “Microtask programming: building software with a

crowd.” Symposium on User Interface Systems and Technology
(UIST), 2014, pp. 43-54.

[19] T. D. LaToza, W. B. Towne, A. van der Hoek, and J. D. Herb-
sleb, “Crowd development.” Workshop on Cooperative and Hu-
man Aspects of Software Engineering (CHASE), 2013.

[20] W. Li, S. A. Seshia, and S. Jha, “Towards crowdsourced human-
assisted verification.” Design Automation Conference (DAC),
2012, pp. 1254-1255.

[21] L. Mamykina, B. Manoim, M. Mittal, G. Hripcsak, and B. Hart-
mann, “Design lessons from the fastest Q&A site in the west.”
CHI, 2011, pp. 2857-2866.

[22] N. Mangano, T. D. LaToza, M. Petre, A. van der Hoek, “Sup-
porting informal design with interactive whiteboards.” CHI,
2014, pp. 331-340.

[23] S. McConnell, “What does 10x mean? Measuring variations in
programmer productivity” In A. Oram and G. Wilson, eds.,
Making Software, O’Reilly, 2011.

[24] S. L. Minneman and S. A. Bly, “Managing a trois: a study of a
multi-user drawing tool in distributed design work.” CHI, pp.
217-224.

[25] D. Mujumdar, M. Kallenbach, B. Liu, and B. Hartmann,
“Crowdsourcing suggestions to programming problems for dy-
namic web development languages”. CHI 2011 Extended Ab-
stracts, pp. 1525-1530.

[26] F. Pastore, L. Mariani, and G. Fraser, “CrowdOracles: can the
crowd solve the oracle problem?” ICST 2013, pp. 342-351.

[27] M. Petre and A. van der Hoek, Software Designers in Action: A
Human-Centric Look at Design Work. CRC Press, 2013.

[28] M. P. Robillard, W. Coelho, G. C. Murphy. How Effective De-
velopers Investigate Source Code: An Exploratory Study. In
IEEE Transactions on Software Engineering (TSE), vol. 30, no.
12, 889-903, Dec. 2004.

[29] B. Rohrbach, “Creative nach regeln: Methode 635, eine neue
technik zum losen von problemen. Absatzwirtschaft, vol. 12
(19), 1969, pp. 73-75.

[30] H. Sackman, W. J. Erikson, E. E. Grant, “Exploratory experi-
mental studies comparing online and offline programming per-
formance.” Communications of the ACM (CACM), vol. 11 (1),
1968, pp. 3-11.

[31] J. J. Shah, N. Vargas-Hernandez, J. D. Summers, and S. Kulka-
rni, “Collaborative sketching (c-sketch)—an idea generation
technique for engineering design.” Creative Behavior, vol. 35
(3), 2001, pp. 168-198.

[32] D. K. Simonton, “Scientific creativity as constrained stochastic
behavior: The integration of product, person, and process per-
spectives.” Psychological Bulletin, vol. 129, 2003, pp. 475-494.

[33] K. Stol and B. Fitzgerald. Two's company, three's a crowd: a case
study of crowdsourcing software development. International
Conference on Software Engineering (ICSE), 2014, pp. 187-198.

[34] J. Surowiecki, The Wisdom of Crowds. Random House, Inc.,
2005.

[35] R. N. Taylor and A. van der Hoek, “Software design and archi-
tecture: the once and future focus of software engineering.”
Future of Software Engineering, 2007, pp. 226-243.

[36] P. Thagard, Conceptual revolutions. Princeton University Press,
USA, 1992.

[37] C. Watson, F. W. B. Li, J. L. Godwin, “Bluefix: using crowd-
sourced feedback to support programming students in error di
agnosis and repair.” In E. Popescu, Q. Li, R. Klamma, H. Leung,
and M. Specht, eds., Advances in Web-Based Learning, ICWL
2012, Springer Berlin Heidelberg, pp. 228-239.

[38] A. Xu and B. P. Bailey, “A crowdsourcing model for receiving
design critique.” CHI Extended Abstracts, 2011, pp. 1183-1188.

[39] L. Yu and J. V. Nickerson, “Cooks or cobblers? Crowd creativity dia sketching system for collaborative creativity” CHI, 2014, pp.
through combination.” CHI, 2011, pp. 1393-1402. 1235-1244.

[40] Z. Zhao, S. K. Badam, S. Chandrasegaran, D. G. Park, N. L. E.
Elmgqvist, L. Kisselburgh, and K. Ramani, “skWiki: a multime-

