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Abstract

Designing useful tools for developers requires identifying
and understanding an important problem developers face
and designing a solution that addresses this problem. This
paper describes a design process that uses data to under-
stand problems, design solutions, and evaluate solutions’
usefulness.

Categories and Subject Descriptors D.2.6 [Software
Engineering]: Programming Environments; D.3.0 [Pro-

gramming Languages]: General
General Terms  Experimentation, Human Factors

Keywords empirical software
comprehension, design process

engineering, program

1. Introduction

Is a development tool useful? This question ultimately asks
how the tool affects developers’ work. This is not, as others
argue, a question of philosophy, mathematics, or esthetics
[8], but of science: if a developer adopts a tool, is his or her
work faster or better? Claims about a tool’s usefulness are
falsifiable statements about the real world and thus scien-
tific. For the purposes of this paper, the word “tools” in-
cludes anything used by a developer to develop software,
ranging from development environment plugins to online
documentation to type systems to programming languages.
Unfortunately, usefulness is challenging to measure. Af-
ter designing and implementing a tool’s core features, more
work may be required before developers can or will adopt
the tool such as adding features, fixing usability problems,
or even building a user interface. This work is traditionally
viewed as an engineering effort with little research value,
but generally must be completed before the tool’s use-
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fulness can be measured. The most direct measurement of
usefulness is through a field deployment. But measuring
usefulness in the field requires controlling a myriad of con-
founding factors. If the developers who adopted a tool fix
bugs 10% faster than they did last week, was this effect
caused by the tool or by easier bugs, new debugging strate-
gies, or more code knowledge? Even when confounds have
been controlled, skeptics may still ask if the result general-
izes to developers with different skills, in different do-
mains, with different processes, or with different existing
tools. While not impossible (c.f., [2][16]), field evaluations
are no small undertaking.

Thus usefulness is most often evaluated in the lab. De-
velopers, or (more typically) students with development
experience, are brought in and asked to complete tasks
while using a new tool versus a comparable existing tool.
Developer’s performance is measured by recording time
and success, and compared between those using the new
tool and the control. If differences are statistically signifi-
cant, the tool’s benefits have been demonstrated.

But such a study does not, by itself, demonstrate useful-
ness. First, does it generalize? Is the result specific to the
situation studied; how might it change with different tasks,
codebases, or expertise? Second, what does it mean for
developers in the field? How frequently do developers do
tasks equivalent to those in the study? Do limitations of the
tool prevent it from being used in less controlled settings?
Third, how did learning a new tool influence the result? If
the results showed the tool did not help, was this because
the tool is not useful or because developers had not yet
learned new strategies or processes [7]?

Due to these challenges, tool designers often evaluate
usefulness less empirically with a motivating example. Mo-
tivating examples demonstrate the tool on an example task
and can be used to claim that while existing tools make the
task time-consuming, tedious, or error-prone, the tool
solves these problems (e.g., statically prevents null pointer
exceptions, reduces boilerplate code). But while motivating
examples can be highly effective for explaining a tool’s
features and usage, they do not show that developers do



these tasks, that developers do them as described, that de-
velopers have the assumed problems, that developers would
use the tool in the way described, and that developers
would be more productive if they did so. Motivating exam-
ples hypothesize a mechanism by which a tool helps, but do
not provide evidence of its existence.

This paper describes a process for using data to design
useful tools for developers. Data is used before, during, and
after design to understand developer’s work and how it is
affected by a tool. Exploratory studies generate data to
identify and describe a problem. Tools are designed to ad-
dress specific problems, with lightweight evaluation studies
testing early design ideas before a large commitment has
been made. Evaluation studies help both quantify perfor-
mance effects and to understand how these effects oc-
curred, allowing greater generalizability. While this design
process is heavily influenced by contextual design [6], this
paper explains how it can be adapting to designing tools for
developers.

This paper begins by examining the structure of soft-
ware development work and how tools may support work.
The design process is then traced from beginning to end,
describing techniques for understanding problems, design-
ing a solution, and evaluating its effects.

2. Supporting development work

Useful tools support software development work. But what
is work, and how do tools support it? Software develop-
ment work can be hierarchically decomposed into tasks
through task analysis [10] (see Figure 1). In each task at
each level in the decomposition, developers have a goal,
either a question to answer or something to accomplish. At
the highest level, tasks reflect activities — e.g., fixing bugs,
implementing features, refactoring. These can be decom-
posed into sub-activities — e.g., debugging, editing code,
reusing code, understanding code. At a lower level, devel-
opers formulate a specific plan for accomplishing a goal as
a strategy — a sequence of steps. And, steps in a strategy
may themselves involve using other strategies.

Tasks are driven by a goal. For many of developers’ ac-
tivities, the goal is to answer a question. Developers expe-
rience problems answering a question when strategies to
answer it are time consuming, error-prone, or tedious with
the available tools [1][3][S][11][12][17][18][19][20][21]
[23][24][25][26][27][28][31][34][35]. Debugging, deter-
mining how to reuse an API, or predicting the implications
of a change are all examples of problems with answering
questions. Tools support answering questions by helping
developers answer them more quickly or accurately, often
by automatically producing information. Debuggers, type
systems, reverse engineering and understanding tools, de-
fect detectors, and protocol miners all provide information
intended to help answer questions. For the designer, the key
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Figure 1. Developers’ work is hierarchically composed of
tasks that may be activities, strategies, or steps. All tasks
have a goal and may also have associated problems.

challenge is to determine exactly what question developers
ask and what information is sufficient to answer it.

Other activities involve accomplishing something. Here,
developers seek to change an artifact in some fashion. Like
answering questions, strategies can again be problematic
when they are time-consuming, error-prone, or tedious.

Tools support work by making a strategy faster or more
successful. For example, the WhyLine [18] helps develop-
ers debug (an activity), which involves answering why and
why not questions about the causes of erroneous output
(questions). Rather than formulate and test hypotheses
about a bug’s cause (a frequently unsuccessful strategy),
the WhyLine lets developers directly select output and fol-
low dynamic slices explaining why it did or did not occur
(a new strategy made possible by the WhyLine). Studies of
the WhyLine provided evidence of its usefulness by
demonstrating that developers frequently ask why and why
not questions during debugging, that many of the hypothe-
ses developers formulate are wrong [23], that developers
can use the WhyLine to answer their why and why not
questions, and that the WhyLine helps developers work
quantitatively more effectively [19]. Together, these studies
provide a theory describing how the WhyLine supports
work.

3. Understanding a problem

Useful tools solve an important problem. Problems may be
important for many reasons, but often not the ones re-
searchers expect. Exploratory studies can help to identify
and understand a problem’s true cause and importance.

3.1. Important problems

Problems can be characterized along three dimensions:
frequency, duration, and quality impact. Problems vary
along all these dimensions and come in many shapes and
sizes. Problems need not be frequent and long to be im-
portant: an hour every week may have the same direct im-
pact on productivity as 30 seconds 120 times a week. An
autocomplete tool which frequently saves a second of time



might have the same impact as a specification checker pre-
venting a very hard to debug but infrequently occurring
defect. Tools may also indirectly impact productivity; per-
haps the autocomplete tool helps keep the developer more
focused on the task, reducing time to switch among tasks.
Problems that are neither frequent nor long in duration can
be important if they substantially impact quality.

Useful tools must solve an important problem in order
to justify their adoption cost. Adopting a tool imposes costs
to install it and to learn how to use it effectively, and there
is always the risk that it will not actually help. One reason
practicing developers are skeptical of academic tools is that
their perceived benefits are too small [14]. Therefore, de-
termining which problems are sufficiently important to
matter, so the tools addressing those problems will be per-
ceived to be beneficial, is an important function of explora-
tory studies.

Solving a problem requires understanding its true cause,
which often requires digging into symptoms. Consider the
problem of code duplication. Developers have long been
accused of copy and paste reuse — reusing short snippets of
code by copying and editing rather than refactoring code
into new abstractions. Copy and paste reuse creates clones,
which are frequent in open source codebases (c.f., [3]). To
solve this problem, researchers designed tools to detect
short copy and paste clones, expecting developers to use
these tools to find and refactor clones [17]. But other re-
searchers believe that code duplication is not caused by a
lack of awareness of clone’s presence at all, but by expres-
siveness — existing languages make refactoring clones to
abstractions mentally challenging, introduce unnecessary
overhead, make code more complex, and may not support
all types of clones [36]. Other studies suggest that copy and
paste reuse is but one of many causes of code duplication,
with others such as forking codebases for organizational
reasons and maintaining old versions [27]. As a result,
commercial clone detectors have found more success fo-
cusing on a different problem. For example, developers
sometimes work with code where entire codebases have
been duplicated and modified, in order to maintain different
versions, configurations, or releases. Fixing a bug then re-
quires an extra step: find the equivalent code in all of the
codebases. Missing a copy of the bug can be a serious prob-
lem: nearly half of software releases contain a security vul-
nerability already fixed elsewhere in the codebase [32].
Pattern Insight’s clone detector is primarily used to solve
this problem. Common wisdom can suggest interesting
aspects of software development, but there is often much
more to understand.

One of the most successful approaches to identifying
and understanding a problem is to identify problems with
using a strategy or answering a question (c.f., [20][24]
[34][21][35][12][1]). Problems at this level can be directly
addressed by tools. For example, one study examined how

developers choose a class in an API to accomplish a goal
[35]. Developers pick a candidate, try it out by instantiating
it, and often get compiler errors prompting them to supply a
required parameter. Developers then investigate how to
correctly construct the class, only to later discover that the
class is missing the methods they need. The compiler errors
encourage a premature commitment, causing investigation
into something that may be irrelevant. Understanding this
strategy (how developers pick classes in an unfamiliar API)
helps to identify the problems that make it hard and time
consuming (compiler errors encourage premature commit-
ment). Tools can then be designed to address these prob-
lems (preventing premature commitment) and evaluated in
terms of their success in doing so.

3.2 Choosing an exploratory study

Exploratory studies help to identify important problems and
understand their cause. Exploratory studies may gather data
both through developers’ perceptions of problems and
through directly examining the problems themselves. De-
veloper perception can be an important source of ideas,
particularly for poorly understood tasks. Developer may
identify challenging tasks or hard-to-answer questions. But
other problems are less salient, and may be important with-
out developers realizing it. For example, developers may
not notice how much time they spend scrolling to revisit
code [20].

One of the easiest exploratory studies to conduct is an
interview. Interviewing developers can reveal a developers’
typical tasks and problems (c.f., [27][15]). But recollection
of the past is imperfect: people give vague descriptions and
generalize [6]. While generalizations may suggest ideas,
they may not be based on facts and can be biased by opin-
ion and perception. But, for tasks or situations for which
little is known, interviews give a sense of the basics and
help to focus further study on interesting aspects.

Contextual inquiries augment interviews with direct ob-
servations, using a real, in-the-moment tasks to provide
context [6]. Contextual inquiries replace generalization
with examples; an experimenter watches the developers as
they work and asks questions about the task at hand. De-
velopers work on a representative task and think-aloud as
they work. When the developer’s goals, questions, or strat-
egy is unclear, the experimenter asks for clarification.
When the developer generalizes, the experimenter asks for
a concrete example. When frequently interrupting is incon-
venient or obtaining accurate timing of steps and activities
is important, direct observations can be used alone, without
an embedded interview. The experimenter may still briefly
interrupt, but interruptions are focused on brief clarifica-
tions rather than extended discussions. Direct observations
can be conducted both as field studies (c.f., [21][24][34]),
watching developers in the field do their everyday work, or
in lab studies which permit choice of the task and compari-



sons of developers doing the same work (c.f., [24][20][12]
[35][1]).

Direct observations lead to generalization by analyzing
the data afterwards. Depending on the aspect or situation of
interest, many types of analysis are possible. Simply report-
ing observations is sometimes sufficient. But often it helps
to examine their generality by looking for patterns, often
through content analysis [33]. Taxonomies investigate what
things exist in the data — e.g., types of activities, questions,
and strategies.

3.3. Understanding context and frequency

How well a strategy works often depends on the context
[25]. Consider answering the question “Does this method
repaint the screen?” One strategy which developers use is
to determine, through code inspection and by traversing
paths through the code, if the code calls repaint. Infor-
mation foraging predicts that developers use their
knowledge to pick which edge to traverse based on its simi-
larity to the goal [28]. This is sometimes easy. But when
there are many edges to choose from, longer paths to fol-
low, or identifiers that are misleading, this strategy is likely
to take longer or fail. Other factors that influence its diffi-
culty include characteristics of the code and the developer.
For example, developers less knowledgeable about the code
may have a harder time predicting which identifiers are
most related to what they’re trying to find. Learning about
factors influencing a strategy’s success is an important part
of understanding a problem, and helps ensure that solutions
can be targeted to the most important situations.

While observations and interviews help to understand
questions, strategies, and problems, data about frequency is
limited by the few situations observed. Frequency can be
measured through studies designed to sample many devel-
opers such as surveys or indirect observations. Surveys
gather frequency data by asking many developers questions
(c.f., [27][24][21][5]). Surveys can also be used to under-
stand correlations. For example, one study found that a
class of questions becomes neither less frequent nor easier
to answer as developers become more experienced or spend
more time in a codebase [24]. Indirect observations gather
data about developer’s work not by directly seeing it but by
capturing summary data, such as with logging, or by study-
ing artifacts created by work such as code, code change
logs, emails, bug discussions, and forum posts (c.f.,
[22][4]1[30]). For example, one study measured the preva-
lence of protocols through an automated technique for de-
tecting protocols in code [4], built a taxonomy of protocol
types, and examined their typical complexity.

4. Designing a solution

Designing a tool begins with an important problem to
solve. A problem is the beginning of a solution — it identi

fies a specific aspect of work to improve. Designing a so-
lution envisions a new way of doing this work and deter-
mines the features necessary to make this possible.
Designing a tool is a leap from an old to a new way of
working; designing a tool that solves a problem is an inher-
ently creative process that no amount of data can guarantee.
But data can help to understand what a design must achieve
to solve a problem and understand if it is likely to succeed.

When using a tool to answer a question, a developer
must translate a high-level question (e.g., what caused this
bug?) into lower level questions the tool supports (e.g.,
using a breakpoint to answer, ‘“What’s the value of this
expression when this code executes?”). For the designer,
the key challenge is ensuring that the information that the
tool provides really helps to answer the high-level question
more quickly or accurately than the alternatives. One way
to bridge this gulf is to understand how developers current-
ly work: what strategies do they use to answer high-level
questions, and what lower-level questions do these strate-
gies entail? For example, we found that developers some-
times answer questions about the implications of a change
[34] (e.g., what it might break) by searching along control
flow for things that the code does [24]. Helping developers
search along control flow is likely to help developers an-
swer higher-level implication questions, as developers are
already using this strategy. But supporting developers’ cur-
rent strategy is not the only approach — tools could instead
provide an entirely new strategy that is impossible with
existing tools. But it is then necessary to determine if the
low-level questions the tool answers actually help answer
higher-level questions, whether these low-level questions
are really an important part of the problem, and whether the
developers will think to use the strategy the tool supports in
the relevant situations.

Consider the following example: many automated de-
bugging tools attempt to predict the faulty statement that
caused the bug and provide the developer a ranked list of
candidate statements. These tools change how developers
answer “What caused this bug?” by letting developers in-
spect the list of statements and answer the question “Which
statement contains the fault?” But how big a part is finding
the faulty statement in determining the cause of a bug? Is
seeing a statement sufficient for a developer to determine
that it is faulty? A user study investigated this question by
comparing automated to conventional debugging tools [31].
It suggests the answer is no: most developers spend an av-
erage of 10 minutes inspecting each statement to under-
stand how it might have caused the bug. As a result, the
automated debugging tools only helped a fraction of devel-
opers debug one of two tasks more quickly. Understanding
exactly what information a tool should provide to help an-
swer a high-level question is crucial to a tool’s success.



5. Evaluating a solution

A tool is the embodiment of a tool designer’s assump-
tions about how developers currently work and the way in
which that work may be more effectively supported. Unfor-
tunately for the designer, these assumptions may be wrong.
This risk can be minimized by getting feedback early in the
design process through prototypes and lightweight evalua-
tion studies. In a paper prototype study [9], users interact
with screenshots, narrating which buttons they click, while
the experimenter manually simulates the tool by showing
the next screen. Higher fidelity mockups are also possible.
In a Wizard of Oz study [29], an interface is built, but the
implementation is remote-controlled by the experimenter.
For example, a bug detector might provide error messages
that seem to be automatically generated when they are ac-
tually triggered by the experimenter. Such a study allows
the effects of different error message designs to be evaluat-
ed before determining how such errors will be generated.
Lightweight evaluations studies enable an iterative design
process in which is tailored to what works rather than what
the designer assumes will work.

The usefulness of a tool depends both on its success in
solving a problem and supporting work (mechanism) and
the importance of the underlying problem. Lab studies are
most effective for understanding mechanism. Do develop-
ers use the tool to answer questions? Does the tool help
them do it more quickly or successfully than before? What
strategy(s) does it support? On what aspects of the situation
does the strategy depend? How might these aspects effect
how developers use the tool? Did developers enjoy using
the tool? Evaluating a tool’s usefulness is difficult without
understanding ow it supports work.

Consider an example: one study investigated the produc-
tivity effects of dynamic typing [13]. Participants took an-
ywhere from 4% to 42% less time using a dynamically
typed language compared to an otherwise identical statical-
ly typed language. But does this result generalize? Did the
tasks involve any situations in which static typing might be
expected to provide useful feedback? If so, how did devel-
opers use this information and why did it not help? Was it
simply that the error messages provided were poorly de-
signed and unhelpful? What were developers doing during
the additional time in the statically typed condition? Would
developers working with different codebase or with differ-
ent tools still have these problems? Are there ways to pro-
vide useful static typing feedback without incurring the
productivity costs? Answering these questions requires a
deeper understanding of the tasks, activities, questions, and
strategies developers did.

Lab studies can also quantitatively measure a tool’s ef-
fect on task time and success. A result which shows an ef-
fect is best viewed as an existence proof: it is possible to

achieve significant productivity benefits. Such results are
an important demonstration that a tool can have a strong
effect (or that it did not) (c.f., [26][19][31][11][13]). Yet
skeptics can always argue that, for a slightly different task
or situation, the tool’s benefits may vanish. Studying a tool
in more situations helps to address these concerns. But the
strongest argument is also based on mechanism — an expla-
nation of ow a tool changes the way that developers work.
Mechanisms predict the effects of a tool in unobserved cir-
cumstances. These predictions may be wrong, but even
then, they focus research on what prevented the predicted
effects from occurring. Did developers not do the expected
tasks, use unexpected strategies, or did they experience
unexpected problems with these strategies?

Another benefit of understanding mechanism is in de-
signing lab study evaluations. Lab studies sample particular
situations by picking tasks, participants, and materials.
Which of the many possible situations are most interesting
to study? Situations where developers do not do the task
supported by the tool are not interesting, as the results only
show the tool is not relevant. However, observing tasks for
which the benefits are unclear is interesting. Situations
where the tool is expected to have a strong effect provide
evidence that the effect actually exists.

6. Conclusions

Designing a useful tool requires more than finding a com-
pelling motivating example, evaluating the tool’s technical
merits, and performing a carefully designed user study.
Designing a useful tool requires understanding how a tool
supports work and addresses an important problem that
developers face. This understanding is built over time
through hypotheses and studies, investigations of the prob-
lem and potential solutions, and through direct and indirect
observation. Understanding involves identifying both the
mechanism of how it supports tasks, questions, and strate-
gies and the frequency that such situations occur. And eval-
uations must examine not only whether some quantitative
productivity effect is possible but how, when, and why this
effect is achieved.

This paper has examined individual theories in their role
in understanding tools. But, as theories grow in number and
sophistication, they may have much in common. This may
lead to larger theories of developer’s work and to better
predictions of usefulness. Theory is a key part of building a
science of development tools.
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