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Abstract  
Designing useful tools for developers requires identifying 
and understanding an important problem developers face 
and designing a solution that addresses this problem. This 
paper describes a design process that uses data to under-
stand problems, design solutions, and evaluate solutions’ 
usefulness.  

Categories and Subject Descriptors D.2.6 [Software 
Engineering]: Programming Environments; D.3.0 [Pro-
gramming Languages]: General  

General Terms  Experimentation, Human Factors 

Keywords empirical software engineering, program  
comprehension, design process 

1. Introduction 
Is a development tool useful? This question ultimately asks 
how the tool affects developers’ work. This is not, as others 
argue, a question of philosophy, mathematics, or esthetics 
[8], but of science: if a developer adopts a tool, is his or her 
work faster or better? Claims about a tool’s usefulness are 
falsifiable statements about the real world and thus scien-
tific. For the purposes of this paper, the word “tools” in-
cludes anything used by a developer to develop software, 
ranging from development environment plugins to online 
documentation to type systems to programming languages. 

Unfortunately, usefulness is challenging to measure. Af-
ter designing and implementing a tool’s core features, more 
work may be required before developers can or will adopt 
the tool such as adding features, fixing usability problems, 
or even building a user interface. This work is traditionally 
viewed as an engineering effort with little research value, 
but generally must be completed before the tool’s use-

fulness can be measured. The most direct measurement of 
usefulness is through a field deployment. But measuring 
usefulness in the field requires controlling a myriad of con-
founding factors. If the developers who adopted a tool fix 
bugs 10% faster than they did last week, was this effect 
caused by the tool or by easier bugs, new debugging strate-
gies, or more code knowledge? Even when confounds have 
been controlled, skeptics may still ask if the result general-
izes to developers with different skills, in different do-
mains, with different processes, or with different existing 
tools. While not impossible (c.f., [2][16]), field evaluations 
are no small undertaking.  

Thus usefulness is most often evaluated in the lab. De-
velopers, or (more typically) students with development 
experience, are brought in and asked to complete tasks 
while using a new tool versus a comparable existing tool. 
Developer’s performance is measured by recording time 
and success, and compared between those using the new 
tool and the control. If differences are statistically signifi-
cant, the tool’s benefits have been demonstrated. 

But such a study does not, by itself, demonstrate useful-
ness.  First, does it generalize? Is the result specific to the 
situation studied; how might it change with different tasks, 
codebases, or expertise? Second, what does it mean for 
developers in the field? How frequently do developers do 
tasks equivalent to those in the study? Do limitations of the 
tool prevent it from being used in less controlled settings? 
Third, how did learning a new tool influence the result? If 
the results showed the tool did not help, was this because 
the tool is not useful or because developers had not yet 
learned new strategies or processes [7]? 

Due to these challenges, tool designers often evaluate 
usefulness less empirically with a motivating example. Mo-
tivating examples demonstrate the tool on an example task 
and can be used to claim that while existing tools make the 
task time-consuming, tedious, or error-prone, the tool 
solves these problems (e.g., statically prevents null pointer 
exceptions, reduces boilerplate code). But while motivating 
examples can be highly effective for explaining a tool’s 
features and usage, they do not show that developers do 
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these tasks, that developers do them as described, that de-
velopers have the assumed problems, that developers would 
use the tool in the way described, and that developers 
would be more productive if they did so. Motivating exam-
ples hypothesize a mechanism by which a tool helps, but do 
not provide evidence of its existence. 

This paper describes a process for using data to design 
useful tools for developers. Data is used before, during, and 
after design to understand developer’s work and how it is 
affected by a tool. Exploratory studies generate data to 
identify and describe a problem. Tools are designed to ad-
dress specific problems, with lightweight evaluation studies 
testing early design ideas before a large commitment has 
been made. Evaluation studies help both quantify perfor-
mance effects and to understand how these effects oc-
curred, allowing greater generalizability. While this design 
process is heavily influenced by contextual design [6], this 
paper explains how it can be adapting to designing tools for 
developers. 

This paper begins by examining the structure of soft-
ware development work and how tools may support work. 
The design process is then traced from beginning to end, 
describing techniques for understanding problems, design-
ing a solution, and evaluating its effects.  

2. Supporting development work 
Useful tools support software development work. But what 
is work, and how do tools support it? Software develop-
ment work can be hierarchically decomposed into tasks 
through task analysis [10] (see Figure 1). In each task at 
each level in the decomposition, developers have a goal, 
either a question to answer or something to accomplish. At 
the highest level, tasks reflect activities – e.g., fixing bugs, 
implementing features, refactoring.  These can be decom-
posed into sub-activities – e.g., debugging, editing code, 
reusing code, understanding code. At a lower level, devel-
opers formulate a specific plan for accomplishing a goal as 
a strategy – a sequence of steps. And, steps in a strategy 
may themselves involve using other strategies.  

Tasks are driven by a goal. For many of developers’ ac-
tivities, the goal is to answer a question. Developers expe-
rience problems answering a question when strategies to 
answer it are time consuming, error-prone, or tedious with 
the available tools [1][3][5][11][12][17][18][19][20][21] 
[23][24][25][26][27][28][31][34][35]. Debugging, deter-
mining how to reuse an API, or predicting the implications 
of a change are all examples of problems with answering 
questions. Tools support answering questions by helping 
developers answer them more quickly or accurately, often 
by automatically producing information. Debuggers, type 
systems, reverse engineering and understanding tools, de-
fect detectors, and protocol miners all provide information 
intended to help answer questions. For the designer, the key 

challenge is to determine exactly what question developers 
ask and what information is sufficient to answer it. 

Other activities involve accomplishing something. Here, 
developers seek to change an artifact in some fashion. Like 
answering questions, strategies can again be problematic 
when they are time-consuming, error-prone, or tedious. 

Tools support work by making a strategy faster or more 
successful. For example, the WhyLine [18] helps develop-
ers debug (an activity), which involves answering why and 
why not questions about the causes of erroneous output 
(questions). Rather than formulate and test hypotheses 
about a bug’s cause (a frequently unsuccessful strategy), 
the WhyLine lets developers directly select output and fol-
low dynamic slices explaining why it did or did not occur 
(a new strategy made possible by the WhyLine). Studies of 
the WhyLine provided evidence of its usefulness by 
demonstrating that developers frequently ask why and why 
not questions during debugging, that many of the hypothe-
ses developers formulate are wrong [23], that developers 
can use the WhyLine to answer their why and why not 
questions, and that the WhyLine helps developers work 
quantitatively more effectively [19]. Together, these studies 
provide a theory describing how the WhyLine supports 
work.  

3. Understanding a problem 
Useful tools solve an important problem. Problems may be 
important for many reasons, but often not the ones re-
searchers expect. Exploratory studies can help to identify 
and understand a problem’s true cause and importance. 

3.1. Important problems 
Problems can be characterized along three dimensions: 
frequency, duration, and quality impact. Problems vary 
along all these dimensions and come in many shapes and 
sizes. Problems need not be frequent and long to be im-
portant: an hour every week may have the same direct im-
pact on productivity as 30 seconds 120 times a week. An 
autocomplete tool which frequently saves a second of time 

 
Figure 1. Developers’ work is hierarchically composed of 
tasks that may be activities, strategies, or steps. All tasks 
have a goal and may also have associated problems. 



might have the same impact as a specification checker pre-
venting a very hard to debug but infrequently occurring 
defect. Tools may also indirectly impact productivity; per-
haps the autocomplete tool helps keep the developer more 
focused on the task, reducing time to switch among tasks. 
Problems that are neither frequent nor long in duration can 
be important if they substantially impact quality. 

Useful tools must solve an important problem in order 
to justify their adoption cost. Adopting a tool imposes costs 
to install it and to learn how to use it effectively, and there 
is always the risk that it will not actually help. One reason 
practicing developers are skeptical of academic tools is that 
their perceived benefits are too small [14]. Therefore, de-
termining which problems are sufficiently important to 
matter, so the tools addressing those problems will be per-
ceived to be beneficial, is an important function of explora-
tory studies. 

Solving a problem requires understanding its true cause, 
which often requires digging into symptoms. Consider the 
problem of code duplication. Developers have long been 
accused of copy and paste reuse – reusing short snippets of 
code by copying and editing rather than refactoring code 
into new abstractions. Copy and paste reuse creates clones, 
which are frequent in open source codebases (c.f., [3]). To 
solve this problem, researchers designed tools to detect 
short copy and paste clones, expecting developers to use 
these tools to find and refactor clones [17]. But other re-
searchers believe that code duplication is not caused by a 
lack of awareness of clone’s presence at all, but by expres-
siveness – existing languages make refactoring clones to 
abstractions mentally challenging, introduce unnecessary 
overhead, make code more complex, and may not support 
all types of clones [36]. Other studies suggest that copy and 
paste reuse is but one of many causes of code duplication, 
with others such as forking codebases for organizational 
reasons and maintaining old versions [27]. As a result, 
commercial clone detectors have found more success fo-
cusing on a different problem. For example, developers 
sometimes work with code where entire codebases have 
been duplicated and modified, in order to maintain different 
versions, configurations, or releases. Fixing a bug then re-
quires an extra step: find the equivalent code in all of the 
codebases. Missing a copy of the bug can be a serious prob-
lem: nearly half of software releases contain a security vul-
nerability already fixed elsewhere in the codebase [32]. 
Pattern Insight’s clone detector is primarily used to solve 
this problem. Common wisdom can suggest interesting 
aspects of software development, but there is often much 
more to understand. 

One of the most successful approaches to identifying 
and understanding a problem is to identify problems with 
using a strategy or answering a question (c.f., [20][24] 
[34][21][35][12][1]). Problems at this level can be directly 
addressed by tools. For example, one study examined how 

developers choose a class in an API to accomplish a goal 
[35]. Developers pick a candidate, try it out by instantiating 
it, and often get compiler errors prompting them to supply a 
required parameter. Developers then investigate how to 
correctly construct the class, only to later discover that the 
class is missing the methods they need. The compiler errors 
encourage a premature commitment, causing investigation 
into something that may be irrelevant. Understanding this 
strategy (how developers pick classes in an unfamiliar API) 
helps to identify the problems that make it hard and time 
consuming (compiler errors encourage premature commit-
ment). Tools can then be designed to address these prob-
lems (preventing premature commitment) and evaluated in 
terms of their success in doing so. 

3.2 Choosing an exploratory study 
Exploratory studies help to identify important problems and 
understand their cause. Exploratory studies may gather data 
both through developers’ perceptions of problems and 
through directly examining the problems themselves. De-
veloper perception can be an important source of ideas, 
particularly for poorly understood tasks. Developer may 
identify challenging tasks or hard-to-answer questions. But 
other problems are less salient, and may be important with-
out developers realizing it. For example, developers may 
not notice how much time they spend scrolling to revisit 
code [20].  

One of the easiest exploratory studies to conduct is an 
interview. Interviewing developers can reveal a developers’ 
typical tasks and problems (c.f., [27][15]). But recollection 
of the past is imperfect: people give vague descriptions and 
generalize [6]. While generalizations may suggest ideas, 
they may not be based on facts and can be biased by opin-
ion and perception. But, for tasks or situations for which 
little is known, interviews give a sense of the basics and 
help to focus further study on interesting aspects. 

Contextual inquiries augment interviews with direct ob-
servations, using a real, in-the-moment tasks to provide 
context [6]. Contextual inquiries replace generalization 
with examples; an experimenter watches the developers as 
they work and asks questions about the task at hand. De-
velopers work on a representative task and think-aloud as 
they work. When the developer’s goals, questions, or strat-
egy is unclear, the experimenter asks for clarification. 
When the developer generalizes, the experimenter asks for 
a concrete example. When frequently interrupting is incon-
venient or obtaining accurate timing of steps and activities 
is important, direct observations can be used alone, without 
an embedded interview. The experimenter may still briefly 
interrupt, but interruptions are focused on brief clarifica-
tions rather than extended discussions. Direct observations 
can be conducted both as field studies (c.f., [21][24][34]), 
watching developers in the field do their everyday work, or 
in lab studies which permit choice of the task and compari-



sons of developers doing the same work (c.f., [24][20][12] 
[35][1]). 

Direct observations lead to generalization by analyzing 
the data afterwards. Depending on the aspect or situation of 
interest, many types of analysis are possible. Simply report-
ing observations is sometimes sufficient. But often it helps 
to examine their generality by looking for patterns, often 
through content analysis [33]. Taxonomies investigate what 
things exist in the data – e.g., types of activities, questions, 
and strategies.  

3.3. Understanding context and frequency 
How well a strategy works often depends on the context 

[25]. Consider answering the question “Does this method 
repaint the screen?” One strategy which developers use is 
to determine, through code inspection and by traversing 
paths through the code, if the code calls repaint. Infor-
mation foraging predicts that developers use their 
knowledge to pick which edge to traverse based on its simi-
larity to the goal [28]. This is sometimes easy. But when 
there are many edges to choose from, longer paths to fol-
low, or identifiers that are misleading, this strategy is likely 
to take longer or fail. Other factors that influence its diffi-
culty include characteristics of the code and the developer. 
For example, developers less knowledgeable about the code 
may have a harder time predicting which identifiers are 
most related to what they’re trying to find. Learning about 
factors influencing a strategy’s success is an important part 
of understanding a problem, and helps ensure that solutions 
can be targeted to the most important situations.  

While observations and interviews help to understand 
questions, strategies, and problems, data about frequency is 
limited by the few situations observed. Frequency can be 
measured through studies designed to sample many devel-
opers such as surveys or indirect observations. Surveys 
gather frequency data by asking many developers questions 
(c.f., [27][24][21][5]). Surveys can also be used to under-
stand correlations. For example, one study found that a 
class of questions becomes neither less frequent nor easier 
to answer as developers become more experienced or spend 
more time in a codebase [24]. Indirect observations gather 
data about developer’s work not by directly seeing it but by 
capturing summary data, such as with logging, or by study-
ing artifacts created by work such as code, code change 
logs, emails, bug discussions, and forum posts (c.f., 
[22][4][30]). For example, one study measured the preva-
lence of protocols through an automated technique for de-
tecting protocols in code [4], built a taxonomy of protocol 
types, and examined their typical complexity.  

4. Designing a solution 
Designing a tool begins with an important problem to 
solve. A problem is the beginning of a solution – it identi

fies a specific aspect of work to improve.  Designing a so-
lution envisions a new way of doing this work and deter-
mines the features necessary to make this possible. 
Designing a tool is a leap from an old to a new way of 
working; designing a tool that solves a problem is an inher-
ently creative process that no amount of data can guarantee. 
But data can help to understand what a design must achieve 
to solve a problem and understand if it is likely to succeed. 

When using a tool to answer a question, a developer 
must translate a high-level question (e.g., what caused this 
bug?) into lower level questions the tool supports (e.g., 
using a breakpoint to answer,  “What’s the value of this 
expression when this code executes?”). For the designer, 
the key challenge is ensuring that the information that the 
tool provides really helps to answer the high-level question 
more quickly or accurately than the alternatives. One way 
to bridge this gulf is to understand how developers current-
ly work: what strategies do they use to answer high-level 
questions, and what lower-level questions do these strate-
gies entail? For example, we found that developers some-
times answer questions about the implications of a change 
[34] (e.g., what it might break) by searching along control 
flow for things that the code does [24]. Helping developers 
search along control flow is likely to help developers an-
swer higher-level implication questions, as developers are 
already using this strategy. But supporting developers’ cur-
rent strategy is not the only approach – tools could instead 
provide an entirely new strategy that is impossible with 
existing tools. But it is then necessary to determine if the 
low-level questions the tool answers actually help answer 
higher-level questions, whether these low-level questions 
are really an important part of the problem, and whether the 
developers will think to use the strategy the tool supports in 
the relevant situations.  

Consider the following example: many automated de-
bugging tools attempt to predict the faulty statement that 
caused the bug and provide the developer a ranked list of 
candidate statements. These tools change how developers 
answer “What caused this bug?” by letting developers in-
spect the list of statements and answer the question “Which 
statement contains the fault?” But how big a part is finding 
the faulty statement in determining the cause of a bug? Is 
seeing a statement sufficient for a developer to determine 
that it is faulty? A user study investigated this question by 
comparing automated to conventional debugging tools [31]. 
It suggests the answer is no: most developers spend an av-
erage of 10 minutes inspecting each statement to under-
stand how it might have caused the bug. As a result, the 
automated debugging tools only helped a fraction of devel-
opers debug one of two tasks more quickly. Understanding 
exactly what information a tool should provide to help an-
swer a high-level question is crucial to a tool’s success. 



5. Evaluating a solution 
A tool is the embodiment of a tool designer’s assump-

tions about how developers currently work and the way in 
which that work may be more effectively supported. Unfor-
tunately for the designer, these assumptions may be wrong. 
This risk can be minimized by getting feedback early in the 
design process through prototypes and lightweight evalua-
tion studies. In a paper prototype study [9], users interact 
with screenshots, narrating which buttons they click, while 
the experimenter manually simulates the tool by showing 
the next screen. Higher fidelity mockups are also possible. 
In a Wizard of Oz study [29], an interface is built, but the 
implementation is remote-controlled by the experimenter. 
For example, a bug detector might provide error messages 
that seem to be automatically generated when they are ac-
tually triggered by the experimenter. Such a study allows 
the effects of different error message designs to be evaluat-
ed before determining how such errors will be generated. 
Lightweight evaluations studies enable an iterative design 
process in which is tailored to what works rather than what 
the designer assumes will work. 

The usefulness of a tool depends both on its success in 
solving a problem and supporting work (mechanism) and 
the importance of the underlying problem. Lab studies are 
most effective for understanding mechanism. Do develop-
ers use the tool to answer questions? Does the tool help 
them do it more quickly or successfully than before? What 
strategy(s) does it support? On what aspects of the situation 
does the strategy depend? How might these aspects effect 
how developers use the tool? Did developers enjoy using 
the tool? Evaluating a tool’s usefulness is difficult without 
understanding how it supports work. 

Consider an example: one study investigated the produc-
tivity effects of dynamic typing [13]. Participants took an-
ywhere from 4% to 42% less time using a dynamically 
typed language compared to an otherwise identical statical-
ly typed language. But does this result generalize? Did the 
tasks involve any situations in which static typing might be 
expected to provide useful feedback? If so, how did devel-
opers use this information and why did it not help? Was it 
simply that the error messages provided were poorly de-
signed and unhelpful? What were developers doing during 
the additional time in the statically typed condition? Would 
developers working with different codebase or with differ-
ent tools still have these problems? Are there ways to pro-
vide useful static typing feedback without incurring the 
productivity costs? Answering these questions requires a 
deeper understanding of the tasks, activities, questions, and 
strategies developers did. 

Lab studies can also quantitatively measure a tool’s ef-
fect on task time and success. A result which shows an ef-
fect is best viewed as an existence proof: it is possible to 

achieve significant productivity benefits. Such results are 
an important demonstration that a tool can have a strong 
effect (or that it did not) (c.f., [26][19][31][11][13]). Yet 
skeptics can always argue that, for a slightly different task 
or situation, the tool’s benefits may vanish. Studying a tool 
in more situations helps to address these concerns. But the 
strongest argument is also based on mechanism – an expla-
nation of how a tool changes the way that developers work. 
Mechanisms predict the effects of a tool in unobserved cir-
cumstances. These predictions may be wrong, but even 
then, they focus research on what prevented the predicted 
effects from occurring. Did developers not do the expected 
tasks, use unexpected strategies, or did they experience 
unexpected problems with these strategies? 

Another benefit of understanding mechanism is in de-
signing lab study evaluations. Lab studies sample particular 
situations by picking tasks, participants, and materials. 
Which of the many possible situations are most interesting 
to study? Situations where developers do not do the task 
supported by the tool are not interesting, as the results only 
show the tool is not relevant. However, observing tasks for 
which the benefits are unclear is interesting. Situations 
where the tool is expected to have a strong effect provide 
evidence that the effect actually exists. 

6. Conclusions 
Designing a useful tool requires more than finding a com-
pelling motivating example, evaluating the tool’s technical 
merits, and performing a carefully designed user study. 
Designing a useful tool requires understanding how a tool 
supports work and addresses an important problem that 
developers face. This understanding is built over time 
through hypotheses and studies, investigations of the prob-
lem and potential solutions, and through direct and indirect 
observation. Understanding involves identifying both the 
mechanism of how it supports tasks, questions, and strate-
gies and the frequency that such situations occur. And eval-
uations must examine not only whether some quantitative 
productivity effect is possible but how, when, and why this 
effect is achieved.  

This paper has examined individual theories in their role 
in understanding tools. But, as theories grow in number and 
sophistication, they may have much in common. This may 
lead to larger theories of developer’s work and to better 
predictions of usefulness. Theory is a key part of building a 
science of development tools. 
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