Crowdsourcing in Software Engineering: Models, Motivations, and Challenges
Thomas D. LaToza and André van der Hoek

Abstract

Almost surreptitiously, crowdsourcing has entered software engineering practice. In-house
development, contracting, and outsourcing still dominate, but many a software development
project today uses crowdsourcing for a variety of purposes, whether it is to squash bugs, test their
software, or gather alternative designs for a new user interface. While the overall impact has been
mundane thus far, crowdsourcing has the potential to lead to fundamental and disruptive changes
in how software will be developed in the future. This paper explores the models of crowdsourcing
that have been applied to software development to date, outlines the exciting opportunities that
exist, and articulates a series of challenges that must be overcome for crowdsourcing software
development to truly reach its potential.

Keywords
Programming teams, staffing, software management

Introduction
Imagine the following headlines:

“Over 1000 developers build new web browser from scratch in a weekend”

“Major software company fixes core vulnerability across 100 systems in two hours”

“Brilliantly creative approach to improve web accessibility designed by individuals across
the world”

While these may seem futuristic, even fantastic (and all are fictional), consider the following real
examples of crowdsourcing:

o Players of Foldlt, a puzzle game which has over 57,000 users, solved a protein folding
problem in three weeks that had stumped researchers for years [7];

o Tenred balloons, scattered across the entire United States, were located in less than nine
hours by a team that recruited and coordinated thousands to help in its quest;! and

o An encyclopedia of over 35 million articles in 290 languages was created and maintained by
a crowd of over 70,000 active contributors.2

All were once considered equally fantastic, or at least clearly impossible.

This article is about software engineering, the crowd, and whether similar advances to these can be
had in software. While our introductory examples are pure fiction today, it is clear that

I en.wikipedia.org/wiki/DARPA_Network_Challenge
2 en.wikipedia.org/wiki/Wikipedia:About

crowdsourcing is already penetrating software development practice. Topcoder3 has hosted over
4,000 software design, development, and data science competitions, awarding over $25,000 a day
to developers who compete in those competitions. Over 100,000 testers freelance on uTest?,
testing new apps for compatibility with devices, performing functionality testing, and conducting
usability inspections and studies. Over 16,000,000 answers have been provided to programming
questions on StackOverflow5, now the 69th most trafficked web site in the US.¢ Bug bounties,
particularly concerning security vulnerabilities, are being offered on a regular basis by major
software companies such as Netflix, Microsoft, Facebook, and Google.” New platforms for
crowdsourcing software engineering are emerging with regularity, offering different specialized
services (e.g., Bountify8, AppStorid, Pay4Bugs19).

Models

Many approaches for bringing crowds to software development work exist. To examine those
models, it is useful to return to the original definition of crowdsourcing as provided by Howe [1]:

the act of a company or institution taking a function once performed by employees and
outsourcing it to an undefined (and generally large) network of people in the form of
an open call.

Mao et al. [8] echo this closely in their definition of crowdsourced software engineering:

the act of undertaking any external software engineering tasks by an undefined,
potentially large group of online workers in an open call format.

Each definition hones in on the three factors that distinguish crowdsourcing from other outsourced
work: (1) the work being solicited through an open call to which basically anyone can respond, (2)
the resulting engagement of workers who are unknown to the organization needing the work done,
and (3) the potential for the group of workers to be large. These factors delineate crowdsourcing,
though the exact nature of the open call and how it is issued, how an overall task is or is not broken
down into smaller tasks, if and how workers collaborate, and other such factors remain unspecified.
Through variations in such aspects, a number of crowdsourcing models have emerged that have
become common in performing software development work.

Before we discuss the models, it is useful to observe that crowdsourcing itself is a form of collective
intelligence, the more general idea that information processing can emerge from the actions of

3 www.topcoder.com

4 www.utest.com

5 stackoverflow.com

6 www.alexa.com

7 bugcrowd.com/list-of-bug-bounty-programs
8 bountify.co

9 appstori.com

10 www.pay4bugs.com

groups of individuals. Several collective intelligence approaches have been applied to software
development work. For instance, companies sometimes turn to open innovation internally as a
mechanism to generate ideas, soliciting input from employees on areas beyond their normal work
assignments in order to get large numbers of ideas [2]. Systems that mine and reuse the work of
others are also a form of collective intelligence, for example code search engines that offer code
examples or autocomplete tools that mine and surface common coding idioms. We do not consider
these systems crowdsourcing, as the work is not solicited through an open call to undefined
individuals outside the boundaries of an organization.

Peer production. One of the oldest and most well-known models of software crowdsourcing is open
source. Tens of thousands contribute to software projects such as Linux, Apache, Rails, and Firefox.
Open source software development is an example of peer production, a model in which control is
decentralized and contributions are made without monetary reward [3]. Key to peer production is
that control is distributed and contributors themselves, rather than a paying client, ultimately make
the decisions about the scope and goals of the project. Contributors are typically motivated by the
opportunity to gain experience with new technologies, bolster their reputation, and contribute to a
good cause. To do so, they must first get up to speed - learning about the project’s conventions,
architecture, designs, and social norms in a process that can take days or weeks - which may
dissuade those casually interested from ever making a contribution. Yet, many contributors
continue to make open source a success today.

Beyond open source, other forms of peer production exist. In StackOverflow, for instance,
developers share hard-earned expertise by answering questions (one might argue that this is not
peer production, as goals are set by the question askers; however, the question askers themselves
are members of the crowd rather than a distinguished class). Expert questions on StackOverflow
receive an answer in a median of just 11 minutes [4], another example of the power of
crowdsourcing.

Competitions. A second crowdsourcing model, the competition, has recently gained significant
attention in software development. The competition has similarities to traditional outsourcing, in
which a client requests work and pays for its completion, but differs in treating workers as
contestants rather than collaborators. Pioneered for software by TopCoder, projects are first
proposed by a client and are then decomposed by a co-pilot (an experienced worker paid directly
for their work as a coordinator) into a series of competitions that may cover requirements,
architecture, user interface design, implementation, and testing, dividing each into tasks that can be
completed in a number of days. Contestants each provide a competing solution; from these, the co-
pilot selects a winning entry and runner up and the corresponding workers are paid. Competitions
give clients access to diverse solutions, which some believe leads to higher quality results. At the
same time, additional costs may arise that are not immediately obvious [5].

Competitions are particularly popular for software tasks in which diversity of input is most
valuable. For example, sites such as 99designs! let clients crowdsource visual design tasks,

11 www.99designs.com

reviewing alternative icons, logos, or website designs produced by the crowd to select the best
option. Bug bounties, too, fall in this category: different workers may identify different bugs,
increasing the likelihood a bug is found.

Microtasking. Another model of crowdsourcing is microtasking, in which work is decomposed into
a set of self-contained ‘microtasks’, which each can be completed in minutes and which together
compose into a solution to a more complex task. Microtasking is best typified by Amazon'’s
Mechanical Turk (AMT), a general platform in which clients post batches of microtasks (often
automatically generated) that workers (‘Turkers’) complete one-at-a-time. To ensure quality,
microtasks are often completed by multiple workers, with voting and other mechanisms used to
select the best solution. The primary advantage of this model is its extreme scalability: by making
tasks small and self-contained, work can be distributed to arbitrarily large crowds, enabling large
tasks to be completed quickly. In software development, this model has found success in testing.
Hundreds of thousands of testers participate in labor markets such as UserTesting.com12,
TryMyUI3, TestBats!4, and uTest!5, testing, for instance, small pieces of functionality or individual
aspects of usability. These services offer clients the benefits of a fluid labor force and speed: a
workforce can be located and contracted quickly, with worker screening and payment handled
through the platform. This enables a labor force to be contracted and complete a task in less time
than it might take to even post a traditional job advertisement. For example, UserTesting.com
promises to provide usability feedback in less than an hour. For small organizations looking to find
skilled help quickly, this provides an enormous benefit.

12 www.usertesting.com
13 www.trymyui.com

14 www.testbats.com

15 www.utest.com

While peer production, competitions, and microtasking are all forms of crowdsourcing, there are
important differences between them. To compare crowdsourcing models and provide a sense of
the overall space in which different such models exist, we identify eight foundational and
orthogonal dimensions along which crowdsourcing models vary, building on other models of the
use of crowdsourcing more generally [10][11]. The following table briefly explains these

dimensions.
Dimension Brief explanation Scale
crowd size size of the crowd necessary to effectively tackle the small to large
problem
task length amount of time a worker spends completing an minutes to weeks

individual task

expertise demands

level of domain familiarity required for a worker to
make a contribution

minimal to extensive

locus of control

ownership over the creation of new (sub)tasks

client to workers

incentives

motivational factors that cause workers to engage with
the task

intrinsic to extrinsic

task interdependence

degree to which tasks within the overall workflow
build on each other

low to high

task context

amount of system information a worker must know to
contribute

none to extensive

replication

the number of times the same task may be redundantly
completed

none to many

With these dimensions, then, it becomes possible to describe a wide range of models for
crowdsourcing software engineering. The table below does so for a concrete example system of
each of the three models discussed (peer production, competitions, and microtasking). Other such
systems can be similarly captured. Verification games, for instance, transform formal software
verification problems into a game-like experience to which non-experts can nonetheless contribute.
A game such as PipeJam [9] can be described as (medium, minutes, minimal, client, intrinsic,
medium, none, none). Itis clear, even from these few examples, that a wide diversity of
crowdsourcing systems are possible which vary significantly in approach.

Dimension Open source TopCoder UserTesting.com
crowd size small - medium small medium
task length hours - days week minutes
expertise demands moderate extensive minimal
locus of control workers client client
incentives intrinsic extrinsic extrinsic
task interdependence moderate low low
task context extensive minimal none
replication none several many

Sidebar 1. The dimensions of crowdsourcing models.

Opportunities

[t is interesting to consider the forces driving the current emergence of crowdsourcing models,
platforms, and environments, particularly in terms of their use within software development
organizations. Many of the crowdsourcing models are relatively novel, and their long-term benefits
and drawbacks remain poorly understood. Businesses, however, clearly must see tangible benefits
to adopt and use crowdsourcing - even if experimentally. Below, we review several motives driving
software development organizations to adopt crowdsourcing, as well as the forces motivating
software developers to participate in crowdsourcing platforms.

Reduced time to market. Increased speed of development is a frequent reason to engage in
crowdsourcing. The possibility to usability test a system in a few hours is tantalizing, given that, in-
house, such efforts typically can take much longer. The key, of course, is parallelism: many workers
contribute with small efforts that together constitute a potent whole. It would be difficult for an
individual or small team to put as many eyes searching for bugs or vulnerabilities as a bug bounty
could; neither could such an individual or small team reach the breadth of devices and situations
covered by a usability test on uTest. The presence of a fluid, dynamic labor force that can engage
with new tasks enables parallelism inherent in work to translate into faster time to market.

This does not mean that every crowdsourced effort is faster. Far from it. The argument holds for
crowdsourcing models where work can easily be broken down into short tasks, and where each
task is mostly self-contained with minimal coordination demands, enabling a worker to quickly
make a contribution. The argument is much less clear for the development of wholesale systems.

Generating alternative solutions. Organizing work into self-contained tasks makes it possible for
multiple workers to each independently complete the same task. Because workers bring with them
diverse perspectives, backgrounds, and experiences, this often leads to the creation of alternative
solutions. By selecting the best amongst these alternatives - or, in some cases, requesting further
work combining aspects of some of those alternatives - crowdsourcing makes it possible to obtain
higher quality solutions. In StackOverflow, developers can compare many alternative answers to
their question, explicitly selecting the best for their needs. Similarly, 99designs enables a client to
rapidly solicit and compare many alternative user interface designs, increasing the likelihood that
new design ideas will be identified that a single person might never have considered.

Not every task is set up to generate alternatives. Sites such as TestBats focus on achieving test
coverage by creating a wide range of diverse tasks, and do not attempt the same task repeatedly.
Similarly, in open source we see little alternative generation, as individual developers choose
themselves what to work on. Of course, alternative solutions are at times extensively discussed on
mailing lists and developers sometimes fork whole projects. But it is rare for developers to
explicitly develop and consider, for example, alternative architectures or implementations.

Employing specialists. Decomposing large software development tasks into smaller tasks enables
greater flexibility in the use of specialist freelancers. Crowdsourcing might make it possible to rely

6

less on in-house developers who are generalists (and thus perhaps less fluent) or on recruiting
specialists into the team when so needed (which tends to require a substantial lead time). Bringing
in specialist freelancers through crowdsourcing happens today on a limited basis, and often on
smaller tasks that are free to the company (e.g., a Firebase expert who is able to explain the source
of an exception on StackOverflow). The potential exists, however, for the model to be taken further
through the use of paid freelance work - witness the security experts who find a vulnerability
through a bug bounty. This may be especially valuable for development tasks that require intricate,
detailed knowledge of technologies or frameworks, where specialists can use their deep
understanding to build the best possible design, implement critical code, or troubleshoot an
existing code base that in-house developers cannot get ‘right’.

Freelancers might choose to become specialists in a narrow range of technologies, performing
highly specialized tasks for short engagements across many projects, much as a vascular surgeon is
specialized and repeatedly performs a small number of related surgeries. At the same time,
freelancing is certainly not applicable in every situation. It is important that a suitable task context
be available, otherwise more time may be spent understanding what to do than doing the work.
Such task contexts may be difficult to create. Moreover, for many organizations, it is important to
retain sufficient expertise in-house so as to guide the freelancers in their work, and check it once it
is complete. This may itself create significant new costs.

Democratization of participation. A definitional characteristic of crowdsourcing is the
democratization of participation. Rather than assigning work to a team or outsourcing it to a
subcontractor, crowdsourced work offers an open call, allowing contributors to determine how,
when, and what to contribute, even as crowdsourcing models differ in the degree of control
afforded to the crowd. In open source, anyone may choose to voice their opinion and submit
contributions for review. In a TopCoder competition, anyone can choose to submit an entry. In a
bug bounty, anyone can choose to engage with the code base in an attempt to find problems in the
code. To workers, this can be greatly liberating. No longer do they have to work on what they are
assigned; rather, they can choose where and when to contribute and be rewarded when their
efforts are successful.

Yet, significant barriers often deter prospective contributors today. In open source, developers
must first become familiar with the codebase, architecture, build environment, and work practices,
which may take days or weeks. In other cases, barriers may be more subtle. In communities that
engage in competitions, established experts sometimes win the majority of competitions,
discouraging novices and effectively shutting them out of such competitions.

Learning through work. Beyond status and glory, a key reason developers choose to contribute to
open source is to learn a new technology. They may want to learn a new framework (e.g.,
Angular]s) or get up to speed on the style and idioms of a new project by reading some code and
contributing a bug fix. While millions use communities such as Codecademy?6 to learn the basics of

16 www.codecademy.com

new technologies, going beyond requires jumping into a larger, real project. Different models of
crowdsourcing allow developers to do so with varying levels of commitment.

Learning in today’s crowdsourcing systems, however, first requires software developers to join and
acculturate to software projects. While this may be easy for those that have worked on similar
projects before, it remains a serious hurdle for those very developers who have the most to learn.

Moving forward

Even as crowdsourcing slowly but surely enters mainstream software development, key challenges
remain for crowdsourcing to reach its true potential and for the scenarios sketched in the
introduction to become reality - if it is indeed possible to do so. In particular, further realizing
many of the benefits of crowdsourcing - reduced time to market through parallelism, involvement
of experts for specialized tasks, considering more alternatives - requires further decomposition of
tasks and even greater participation in crowdsourcing platforms. In essence, this asks whether it is
possible to push - in terms of the dimensions in Sidebar 1 - the size of the crowd larger, the tasks
smaller, and the expertise and coordination demands downward.

Several problems must be solved to design such software crowdsourcing models, which must
involve new workflows that orchestrate a variety of subtasks to complete more complex tasks.
Workflows must address issues of quality, matching work to workers in consideration of their
expertise, coordinating the many contributions, sharing project knowledge across the crowd, and
other issues. None is a trivial endeavor.

Yet more fundamentally, we observe that it is likely no coincidence that many of the tasks for which
crowdsourcing has found the most success to date - testing, creating Ul mockups, answering
questions - have clear goals and require minimal context. A key tenet of crowdsourcing is that each
participant must be precisely informed of the task to be performed. Understanding the degree to
which decomposition can create such self-contained tasks for more interdependent software work,
and the potential overhead this creates, is a key challenge. Is it possible, for example, for authoring
a software architecture to be decomposed into short, self-contained tasks that do not require
contributors to understand the entire complexity of the whole? And even if decomposition methods
are found, the issue of specification remains: can requirements be crowdsourced and, if not, can
they be specified in sufficient detail without imposing onerous overhead? Researchers have begun
to study these challenges, examining how new crowdsourcing workflows might be created for a
variety of software development tasks [12][8] and examining the challenges that these new
workflows bring [5].

Conclusions

Crowdsourcing, in its various forms, has already changed software development. Open source
aside, the number of new crowdsourcing platforms, the number of workers who sign up and
actively contribute, and the number of organizations actively experimenting with crowdsourcing all
are indicative of a phenomenon that in many ways has crept up more than taken the industry by

storm. The potential advantages are tangible, and the increasing shift of software development
work to fluid labor markets (e.g., over $1 billion annually in freelancing is brokered through
Upwork?!7 alone) portends the potential for even more dramatic shifts that call into question long-
held fundamental beliefs about software development. As in any fundamentally disruptive shift, the
ultimate ramifications are far from certain. Will future developers operate as highly-skilled
freelancers, choosing microtasks to follow their passion and bolster their skillset [13], or as
mindless automatons, their work selected without their interest or consent, as Neal Stephenson
envisioned in Snow Crash [6]?

Regardless, serious challenges must be overcome if crowdsourcing is to have the same kind of
impact in software development as it has had in other fields. The nature of software has much to do
with it. Software is a complex artifact, that is not easily broken down into clearly articulated, self-
contained, and rapidly understood and completed tasks. Rather, its intricate and invisible nature
poses a challenge to crowdsourcing that we foresee will take many years to address. Even so, it is
rare that truly foundational shifts take place in our field, and crowdsourcing has that potential. It is
worthwhile for the community to develop a deep understanding of how and when crowdsourced
work can be applied within software projects.

17 www.upwork.com

Biographical Sketches

Thomas D. LaToza is an assistant professor in the Department of Computer Science at George Mason
University. His research in software engineering focuses on human aspects of software development,
with both empirical and design work on tools for programming, software design, and collaboration.
He has served on a variety of program committees, served as co-chair of the Second International
Workshop on Crowdsourcing in Software Engineering, and currently serves as co-chair of the Sixth
Workshop on the Evaluation and Usability of Programming Languages and Tools. He has degrees in
psychology and computer science from the University of Illinois, received a PhD in software
engineering from Carnegie Mellon University, and was a postdoctoral research associate at the
University of California, Irvine. He is a member of the ACM.

Department of Computer Science
George Mason University

4400 University Drive MSN 4A5
Fairfax, VA 22030 USA
tlatoza@gmu.edu

André van der Hoek is a professor and chair of the Department of Informatics at the University of
California, Irvine. His research focuses on understanding and advancing the roles of design,
collaboration, and education in software development. He has served on numerous international
program committees, was a member of the editorial board of ACM Transactions on Software
Engineering and Methodology, and was program co-chair of the 2014 International Conference on
Software Engineering. He received joint B.S. and M.S. degrees in business-oriented computer science
from the Erasmus University Rotterdam, The Netherlands, and a Ph.D. degree in computer science
from the University of Colorado at Boulder. He is a member of the IEEE and an ACM Distinguished
Scientist.

10

Department of Informatics

Donald Bren School Information and Computer Sciences
University of California, Irvine

Irvine, CA 92697

andre@ics.uci.edu

11

References
[1]]. Howe, “The rise of crowdsourcing.” Wired, 14, 2006.

[2] M. Klein and G. Convertino, “An embarrassment of riches.” Commun. ACM, vol. 57 (11), October
2014, pp. 40-42.

[3] Y. Benkler and H. Nissenbaum, “Commons-based peer production and virtue.” The Journal of
Political Philosophy, vol. 14 (4), 2006, pp. 394-419.

[4] L. Mamykina, B. Manoim, M. Mittal, G. Hripcsak, and B. Hartmann, “Design lessons from the
fastest q&a site in the west.” Conference on Human Factors in Computing Systems (CHI), 2011, pp.
2857-2866.

[5] K. Stol and B. Fitzgerald, “Two's company, three's a crowd: a case study of crowdsourcing
software development.” International Conference on Software Engineering (ICSE), 2014, pp. 187-
198.

[6] N. Stephenson, Snow Crash. Bantam Books, 1992.

[7] S. Cooper, F. Khatib, A. Treuille, J. Barbero,]. Lee, M. Beenen, A. Leaver-Fay, D. Baker, Z. Popovi¢,
Foldit players, “Predicting protein structures with a multiplayer online game.” Nature, vol. 466, 5
August 2010, pp. 756-760.

[8] K. Mao, L. Capra, M. Harman and Y. Jia, “A survey of the use of crowdsourcing in software
engineering.” Technical Report RN/15/01, Department of Computer Science, University College
London, 2015.

[9] W. Dietl, S. Dietzel, M. D. Ernst, N. Mote, B. Walker, S. Cooper, T. Pavlik, and Z. Popovi¢,
“Verification games: making verification fun.” Workshop on Formal Techniques for Java-like
Programs (FTfJP), 2012, pp. 42-49.

[10] T. W. Malone, R. Laubacher and C. Dellarocas, “The collective intelligence genome.” MIT Sloan
Management Review, vol. 41 (3), 2010, pp. 21-31.

[11]]. Surowiecki, The Wisdom of Crowds. Random House, 2005.

[12] T.D. LaToza, W. B. Towne, C. M. Adriano, and A. van der Hoek, “Microtask programming:
building software with a crowd.” Symposium on User Interface Systems and Technology (UIST), 2014,
pp. 43-54.

[13] A. Kittur, J. V. Nickerson, M. Bernstein, E. Gerber, A. Shaw,]. Zimmerman, M. Lease, and J.

Horton, “The future of crowd work.” Conference on Computer supported cooperative work (CSCW),
2013, pp. 1301-1318.

12

Tweets

(1) The majority of large software companies today have used crowdsourcing, whether to
gather alternative Ul designs, test, or fix bugs.

(2) The possibility to usability test a system in a few hours is tantalizing, given that, in-house, such
efforts typically last much longer.

(3) Can software architecting be decomposed into self-contained microtasks that do not require
undrstanding the complexity of the whole?

(4) Will future developers work as highly-skilled freelancers or mindless automatons, with
microtasks selected for them as in Snow Crash?

13

