
	

1	

Crowdsourcing	in	Software	Engineering:	Models,	Motivations,	and	Challenges	
Thomas	D.	LaToza	and	André	van	der	Hoek	
	
	
Abstract	
Almost	surreptitiously,	crowdsourcing	has	entered	software	engineering	practice.		In-house	
development,	contracting,	and	outsourcing	still	dominate,	but	many	a	software	development	
project	today	uses	crowdsourcing	for	a	variety	of	purposes,	whether	it	is	to	squash	bugs,	test	their	
software,	or	gather	alternative	designs	for	a	new	user	interface.		While	the	overall	impact	has	been	
mundane	thus	far,	crowdsourcing	has	the	potential	to	lead	to	fundamental	and	disruptive	changes	
in	how	software	will	be	developed	in	the	future.		This	paper	explores	the	models	of	crowdsourcing	
that	have	been	applied	to	software	development	to	date,	outlines	the	exciting	opportunities	that	
exist,	and	articulates	a	series	of	challenges	that	must	be	overcome	for	crowdsourcing	software	
development	to	truly	reach	its	potential.	
	
Keywords	
Programming	teams,	staffing,	software	management	
	
	
Introduction	
Imagine	the	following	headlines:	
	

“Over	1000	developers	build	new	web	browser	from	scratch	in	a	weekend”	
“Major	software	company	fixes	core	vulnerability	across	100	systems	in	two	hours”	
“Brilliantly	creative	approach	to	improve	web	accessibility	designed	by	individuals	across	

	 the	world”	
	
While	these	may	seem	futuristic,	even	fantastic	(and	all	are	fictional),	consider	the	following	real	
examples	of	crowdsourcing:	
	

o Players	of	FoldIt,	a	puzzle	game	which	has	over	57,000	users,	solved	a	protein	folding	
problem	in	three	weeks	that	had	stumped	researchers	for	years	[7];	

o Ten	red	balloons,	scattered	across	the	entire	United	States,	were	located	in	less	than	nine	
hours	by	a	team	that	recruited	and	coordinated	thousands	to	help	in	its	quest;1	and	

o An	encyclopedia	of	over	35	million	articles	in	290	languages	was	created	and	maintained	by	
a	crowd	of	over	70,000	active	contributors.2	
	

All	were	once	considered	equally	fantastic,	or	at	least	clearly	impossible.	
	
This	article	is	about	software	engineering,	the	crowd,	and	whether	similar	advances	to	these	can	be	
had	in	software.		While	our	introductory	examples	are	pure	fiction	today,	it	is	clear	that	

																																																								
1	en.wikipedia.org/wiki/DARPA_Network_Challenge	
2	en.wikipedia.org/wiki/Wikipedia:About	

	

2	

crowdsourcing	is	already	penetrating	software	development	practice.		Topcoder3	has	hosted	over	
4,000	software	design,	development,	and	data	science	competitions,	awarding	over	$25,000	a	day	
to	developers	who	compete	in	those	competitions.		Over	100,000	testers	freelance	on	uTest4,	
testing	new	apps	for	compatibility	with	devices,	performing	functionality	testing,	and	conducting	
usability	inspections	and	studies.		Over	16,000,000	answers	have	been	provided	to	programming	
questions	on	StackOverflow5,	now	the	69th	most	trafficked	web	site	in	the	US.6		Bug	bounties,	
particularly	concerning	security	vulnerabilities,	are	being	offered	on	a	regular	basis	by	major	
software	companies	such	as	Netflix,	Microsoft,	Facebook,	and	Google.7		New	platforms	for	
crowdsourcing	software	engineering	are	emerging	with	regularity,	offering	different	specialized	
services	(e.g.,	Bountify8,	AppStori9,	Pay4Bugs10).		
	 	
Models	
	
Many	approaches	for	bringing	crowds	to	software	development	work	exist.		To	examine	those	
models,	it	is	useful	to	return	to	the	original	definition	of	crowdsourcing	as	provided	by	Howe	[1]:	
	

the	act	of	a	company	or	institution	taking	a	function	once	performed	by	employees	and	
outsourcing	it	to	an	undefined	(and	generally	large)	network	of	people	in	the	form	of	
an	open	call.	

	
Mao	et	al.	[8]	echo	this	closely	in	their	definition	of	crowdsourced	software	engineering:	
	

the	act	of	undertaking	any	external	software	engineering	tasks	by	an	undefined,	
potentially	large	group	of	online	workers	in	an	open	call	format.	

	
Each	definition	hones	in	on	the	three	factors	that	distinguish	crowdsourcing	from	other	outsourced	
work:	(1)	the	work	being	solicited	through	an	open	call	to	which	basically	anyone	can	respond,	(2)	
the	resulting	engagement	of	workers	who	are	unknown	to	the	organization	needing	the	work	done,	
and	(3)	the	potential	for	the	group	of	workers	to	be	large.		These	factors	delineate	crowdsourcing,	
though	the	exact	nature	of	the	open	call	and	how	it	is	issued,	how	an	overall	task	is	or	is	not	broken	
down	into	smaller	tasks,	if	and	how	workers	collaborate,	and	other	such	factors	remain	unspecified.	
Through	variations	in	such	aspects,	a	number	of	crowdsourcing	models	have	emerged	that	have	
become	common	in	performing	software	development	work.	
	
Before	we	discuss	the	models,	it	is	useful	to	observe	that	crowdsourcing	itself	is	a	form	of	collective	
intelligence,	the	more	general	idea	that	information	processing	can	emerge	from	the	actions	of	
																																																								
3	www.topcoder.com	
4	www.utest.com	
5	stackoverflow.com	
6	www.alexa.com	
7	bugcrowd.com/list-of-bug-bounty-programs	
8	bountify.co	
9	appstori.com	
10	www.pay4bugs.com	

	

3	

groups	of	individuals.		Several	collective	intelligence	approaches	have	been	applied	to	software	
development	work.		For	instance,	companies	sometimes	turn	to	open	innovation	internally	as	a	
mechanism	to	generate	ideas,	soliciting	input	from	employees	on	areas	beyond	their	normal	work	
assignments	in	order	to	get	large	numbers	of	ideas	[2].		Systems	that	mine	and	reuse	the	work	of	
others	are	also	a	form	of	collective	intelligence,	for	example	code	search	engines	that	offer	code	
examples	or	autocomplete	tools	that	mine	and	surface	common	coding	idioms.	We	do	not	consider	
these	systems	crowdsourcing,	as	the	work	is	not	solicited	through	an	open	call	to	undefined	
individuals	outside	the	boundaries	of	an	organization.		
	
Peer	production.		One	of	the	oldest	and	most	well-known	models	of	software	crowdsourcing	is	open	
source.		Tens	of	thousands	contribute	to	software	projects	such	as	Linux,	Apache,	Rails,	and	Firefox.		
Open	source	software	development	is	an	example	of	peer	production,	a	model	in	which	control	is	
decentralized	and	contributions	are	made	without	monetary	reward	[3].		Key	to	peer	production	is	
that	control	is	distributed	and	contributors	themselves,	rather	than	a	paying	client,	ultimately	make	
the	decisions	about	the	scope	and	goals	of	the	project.	Contributors	are	typically	motivated	by	the	
opportunity	to	gain	experience	with	new	technologies,	bolster	their	reputation,	and	contribute	to	a	
good	cause.		To	do	so,	they	must	first	get	up	to	speed	–	learning	about	the	project’s	conventions,	
architecture,	designs,	and	social	norms	in	a	process	that	can	take	days	or	weeks	–	which	may	
dissuade	those	casually	interested	from	ever	making	a	contribution.		Yet,	many	contributors	
continue	to	make	open	source	a	success	today.	
	
Beyond	open	source,	other	forms	of	peer	production	exist.		In	StackOverflow,	for	instance,	
developers	share	hard-earned	expertise	by	answering	questions	(one	might	argue	that	this	is	not	
peer	production,	as	goals	are	set	by	the	question	askers;	however,	the	question	askers	themselves	
are	members	of	the	crowd	rather	than	a	distinguished	class).	Expert	questions	on	StackOverflow	
receive	an	answer	in	a	median	of	just	11	minutes	[4],	another	example	of	the	power	of	
crowdsourcing.		
	
Competitions.		A	second	crowdsourcing	model,	the	competition,	has	recently	gained	significant	
attention	in	software	development.		The	competition	has	similarities	to	traditional	outsourcing,	in	
which	a	client	requests	work	and	pays	for	its	completion,	but	differs	in	treating	workers	as	
contestants	rather	than	collaborators.		Pioneered	for	software	by	TopCoder,	projects	are	first	
proposed	by	a	client	and	are	then	decomposed	by	a	co-pilot	(an	experienced	worker	paid	directly	
for	their	work	as	a	coordinator)	into	a	series	of	competitions	that	may	cover	requirements,	
architecture,	user	interface	design,	implementation,	and	testing,	dividing	each	into	tasks	that	can	be	
completed	in	a	number	of	days.		Contestants	each	provide	a	competing	solution;	from	these,	the	co-
pilot	selects	a	winning	entry	and	runner	up	and	the	corresponding	workers	are	paid.		Competitions	
give	clients	access	to	diverse	solutions,	which	some	believe	leads	to	higher	quality	results.		At	the	
same	time,	additional	costs	may	arise	that	are	not	immediately	obvious	[5].	
	
Competitions	are	particularly	popular	for	software	tasks	in	which	diversity	of	input	is	most	
valuable.		For	example,	sites	such	as	99designs11	let	clients	crowdsource	visual	design	tasks,	

																																																								
11	www.99designs.com	

	

4	

reviewing	alternative	icons,	logos,	or	website	designs	produced	by	the	crowd	to	select	the	best	
option.		Bug	bounties,	too,	fall	in	this	category:	different	workers	may	identify	different	bugs,	
increasing	the	likelihood	a	bug	is	found.	
	
Microtasking.		Another	model	of	crowdsourcing	is	microtasking,	in	which	work	is	decomposed	into	
a	set	of	self-contained	‘microtasks’,	which	each	can	be	completed	in	minutes	and	which	together	
compose	into	a	solution	to	a	more	complex	task.		Microtasking	is	best	typified	by	Amazon’s	
Mechanical	Turk	(AMT),	a	general	platform	in	which	clients	post	batches	of	microtasks	(often	
automatically	generated)	that	workers	(‘Turkers’)	complete	one-at-a-time.		To	ensure	quality,	
microtasks	are	often	completed	by	multiple	workers,	with	voting	and	other	mechanisms	used	to	
select	the	best	solution.		The	primary	advantage	of	this	model	is	its	extreme	scalability:	by	making	
tasks	small	and	self-contained,	work	can	be	distributed	to	arbitrarily	large	crowds,	enabling	large	
tasks	to	be	completed	quickly.		In	software	development,	this	model	has	found	success	in	testing.		
Hundreds	of	thousands	of	testers	participate	in	labor	markets	such	as	UserTesting.com12,	
TryMyUI13,	TestBats14,	and	uTest15,	testing,	for	instance,	small	pieces	of	functionality	or	individual	
aspects	of	usability.		These	services	offer	clients	the	benefits	of	a	fluid	labor	force	and	speed:	a	
workforce	can	be	located	and	contracted	quickly,	with	worker	screening	and	payment	handled	
through	the	platform.		This	enables	a	labor	force	to	be	contracted	and	complete	a	task	in	less	time	
than	it	might	take	to	even	post	a	traditional	job	advertisement.		For	example,	UserTesting.com	
promises	to	provide	usability	feedback	in	less	than	an	hour.		For	small	organizations	looking	to	find	
skilled	help	quickly,	this	provides	an	enormous	benefit.	
	
	 	

																																																								
12	www.usertesting.com	
13	www.trymyui.com	
14	www.testbats.com	
15	www.utest.com	

	

5	

While	peer	production,	competitions,	and	microtasking	are	all	forms	of	crowdsourcing,	there	are	
important	differences	between	them.		To	compare	crowdsourcing	models	and	provide	a	sense	of	
the	overall	space	in	which	different	such	models	exist,	we	identify	eight	foundational	and	
orthogonal	dimensions	along	which	crowdsourcing	models	vary,	building	on	other	models	of	the	
use	of	crowdsourcing	more	generally	[10][11].	The	following	table	briefly	explains	these	
dimensions.	
	

Dimension	 Brief	explanation	 Scale	
crowd	size	 size	of	the	crowd	necessary	to	effectively	tackle	the	

problem	
small	to	large	

task	length	 amount	of	time	a	worker	spends	completing	an	
individual	task	

minutes	to	weeks	

expertise	demands	 level	of	domain	familiarity	required	for	a	worker	to	
make	a	contribution	

minimal	to	extensive	

locus	of	control	 ownership	over	the	creation	of	new	(sub)tasks	
	

client	to	workers	

incentives	 motivational	factors	that	cause	workers	to	engage	with	
the	task	

intrinsic	to	extrinsic	

task	interdependence	 degree	to	which	tasks	within	the	overall	workflow	
build	on	each	other	

low	to	high	

task	context	 amount	of	system	information	a	worker	must	know	to	
contribute			

none	to	extensive	

replication	 the	number	of	times	the	same	task	may	be	redundantly	
completed	

none	to	many	

	
With	these	dimensions,	then,	it	becomes	possible	to	describe	a	wide	range	of	models	for	
crowdsourcing	software	engineering.		The	table	below	does	so	for	a	concrete	example	system	of	
each	of	the	three	models	discussed	(peer	production,	competitions,	and	microtasking).		Other	such	
systems	can	be	similarly	captured.		Verification	games,	for	instance,	transform	formal	software	
verification	problems	into	a	game-like	experience	to	which	non-experts	can	nonetheless	contribute.		
A	game	such	as	PipeJam	[9]	can	be	described	as	(medium,	minutes,	minimal,	client,	intrinsic,	
medium,	none,	none).		It	is	clear,	even	from	these	few	examples,	that	a	wide	diversity	of	
crowdsourcing	systems	are	possible	which	vary	significantly	in	approach.	
	

Dimension	 Open	source	 TopCoder	 UserTesting.com	
crowd	size	 small	–	medium	 small	 medium	
task	length	 hours	–	days		 week	 minutes	
expertise	demands	 moderate	 extensive	 minimal	
locus	of	control	 workers	 client	 client	
incentives	 intrinsic	 extrinsic	 extrinsic	
task	interdependence	 moderate	 low	 low	
task	context	 extensive	 minimal	 none	
replication	 none	 several	 many	

	
Sidebar	1.	The	dimensions	of	crowdsourcing	models.	

	

	

6	

	
Opportunities		
	
It	is	interesting	to	consider	the	forces	driving	the	current	emergence	of	crowdsourcing	models,	
platforms,	and	environments,	particularly	in	terms	of	their	use	within	software	development	
organizations.	Many	of	the	crowdsourcing	models	are	relatively	novel,	and	their	long-term	benefits	
and	drawbacks	remain	poorly	understood.	Businesses,	however,	clearly	must	see	tangible	benefits	
to	adopt	and	use	crowdsourcing	–	even	if	experimentally.	Below,	we	review	several	motives	driving	
software	development	organizations	to	adopt	crowdsourcing,	as	well	as	the	forces	motivating	
software	developers	to	participate	in	crowdsourcing	platforms.	
	
Reduced	time	to	market.		Increased	speed	of	development	is	a	frequent	reason	to	engage	in	
crowdsourcing.		The	possibility	to	usability	test	a	system	in	a	few	hours	is	tantalizing,	given	that,	in-
house,	such	efforts	typically	can	take	much	longer.		The	key,	of	course,	is	parallelism:	many	workers	
contribute	with	small	efforts	that	together	constitute	a	potent	whole.		It	would	be	difficult	for	an	
individual	or	small	team	to	put	as	many	eyes	searching	for	bugs	or	vulnerabilities	as	a	bug	bounty	
could;	neither	could	such	an	individual	or	small	team	reach	the	breadth	of	devices	and	situations	
covered	by	a	usability	test	on	uTest.		The	presence	of	a	fluid,	dynamic	labor	force	that	can	engage	
with	new	tasks	enables	parallelism	inherent	in	work	to	translate	into	faster	time	to	market.		
	
This	does	not	mean	that	every	crowdsourced	effort	is	faster.		Far	from	it.		The	argument	holds	for	
crowdsourcing	models	where	work	can	easily	be	broken	down	into	short	tasks,	and	where	each	
task	is	mostly	self-contained	with	minimal	coordination	demands,	enabling	a	worker	to	quickly	
make	a	contribution.	The	argument	is	much	less	clear	for	the	development	of	wholesale	systems.		
	
Generating	alternative	solutions.		Organizing	work	into	self-contained	tasks	makes	it	possible	for	
multiple	workers	to	each	independently	complete	the	same	task.		Because	workers	bring	with	them	
diverse	perspectives,	backgrounds,	and	experiences,	this	often	leads	to	the	creation	of	alternative	
solutions.		By	selecting	the	best	amongst	these	alternatives	–	or,	in	some	cases,	requesting	further	
work	combining	aspects	of	some	of	those	alternatives	–	crowdsourcing	makes	it	possible	to	obtain	
higher	quality	solutions.		In	StackOverflow,	developers	can	compare	many	alternative	answers	to	
their	question,	explicitly	selecting	the	best	for	their	needs.		Similarly,	99designs	enables	a	client	to	
rapidly	solicit	and	compare	many	alternative	user	interface	designs,	increasing	the	likelihood	that	
new	design	ideas	will	be	identified	that	a	single	person	might	never	have	considered.		
	
Not	every	task	is	set	up	to	generate	alternatives.	Sites	such	as	TestBats	focus	on	achieving	test	
coverage	by	creating	a	wide	range	of	diverse	tasks,	and	do	not	attempt	the	same	task	repeatedly.		
Similarly,	in	open	source	we	see	little	alternative	generation,	as	individual	developers	choose	
themselves	what	to	work	on.		Of	course,	alternative	solutions	are	at	times	extensively	discussed	on	
mailing	lists	and	developers	sometimes	fork	whole	projects.	But	it	is	rare	for	developers	to	
explicitly	develop	and	consider,	for	example,	alternative	architectures	or	implementations.	
	
Employing	specialists.		Decomposing	large	software	development	tasks	into	smaller	tasks	enables	
greater	flexibility	in	the	use	of	specialist	freelancers.	Crowdsourcing	might	make	it	possible	to	rely	

	

7	

less	on	in-house	developers	who	are	generalists	(and	thus	perhaps	less	fluent)	or	on	recruiting	
specialists	into	the	team	when	so	needed	(which	tends	to	require	a	substantial	lead	time).	Bringing	
in	specialist	freelancers	through	crowdsourcing	happens	today	on	a	limited	basis,	and	often	on	
smaller	tasks	that	are	free	to	the	company	(e.g.,	a	Firebase	expert	who	is	able	to	explain	the	source	
of	an	exception	on	StackOverflow).	The	potential	exists,	however,	for	the	model	to	be	taken	further	
through	the	use	of	paid	freelance	work	–	witness	the	security	experts	who	find	a	vulnerability	
through	a	bug	bounty.	This	may	be	especially	valuable	for	development	tasks	that	require	intricate,	
detailed	knowledge	of	technologies	or	frameworks,	where	specialists	can	use	their	deep	
understanding	to	build	the	best	possible	design,	implement	critical	code,	or	troubleshoot	an	
existing	code	base	that	in-house	developers	cannot	get	‘right’.	
	
Freelancers	might	choose	to	become	specialists	in	a	narrow	range	of	technologies,	performing	
highly	specialized	tasks	for	short	engagements	across	many	projects,	much	as	a	vascular	surgeon	is	
specialized	and	repeatedly	performs	a	small	number	of	related	surgeries.		At	the	same	time,	
freelancing	is	certainly	not	applicable	in	every	situation.		It	is	important	that	a	suitable	task	context	
be	available,	otherwise	more	time	may	be	spent	understanding	what	to	do	than	doing	the	work.	
Such	task	contexts	may	be	difficult	to	create.		Moreover,	for	many	organizations,	it	is	important	to	
retain	sufficient	expertise	in-house	so	as	to	guide	the	freelancers	in	their	work,	and	check	it	once	it	
is	complete.	This	may	itself	create	significant	new	costs.		
	
Democratization	of	participation.		A	definitional	characteristic	of	crowdsourcing	is	the	
democratization	of	participation.		Rather	than	assigning	work	to	a	team	or	outsourcing	it	to	a	
subcontractor,	crowdsourced	work	offers	an	open	call,	allowing	contributors	to	determine	how,	
when,	and	what	to	contribute,	even	as	crowdsourcing	models	differ	in	the	degree	of	control	
afforded	to	the	crowd.	In	open	source,	anyone	may	choose	to	voice	their	opinion	and	submit	
contributions	for	review.		In	a	TopCoder	competition,	anyone	can	choose	to	submit	an	entry.		In	a	
bug	bounty,	anyone	can	choose	to	engage	with	the	code	base	in	an	attempt	to	find	problems	in	the	
code.		To	workers,	this	can	be	greatly	liberating.		No	longer	do	they	have	to	work	on	what	they	are	
assigned;	rather,	they	can	choose	where	and	when	to	contribute	and	be	rewarded	when	their	
efforts	are	successful.	
	
Yet,	significant	barriers	often	deter	prospective	contributors	today.		In	open	source,	developers	
must	first	become	familiar	with	the	codebase,	architecture,	build	environment,	and	work	practices,	
which	may	take	days	or	weeks.	In	other	cases,	barriers	may	be	more	subtle.		In	communities	that	
engage	in	competitions,	established	experts	sometimes	win	the	majority	of	competitions,	
discouraging	novices	and	effectively	shutting	them	out	of	such	competitions.	
	
Learning	through	work.		Beyond	status	and	glory,	a	key	reason	developers	choose	to	contribute	to	
open	source	is	to	learn	a	new	technology.		They	may	want	to	learn	a	new	framework	(e.g.,	
AngularJs)	or	get	up	to	speed	on	the	style	and	idioms	of	a	new	project	by	reading	some	code	and	
contributing	a	bug	fix.		While	millions	use	communities	such	as	Codecademy16	to	learn	the	basics	of	

																																																								
16	www.codecademy.com	

	

8	

new	technologies,	going	beyond	requires	jumping	into	a	larger,	real	project.	Different	models	of	
crowdsourcing	allow	developers	to	do	so	with	varying	levels	of	commitment.	
	
Learning	in	today’s	crowdsourcing	systems,	however,	first	requires	software	developers	to	join	and	
acculturate	to	software	projects.	While	this	may	be	easy	for	those	that	have	worked	on	similar	
projects	before,	it	remains	a	serious	hurdle	for	those	very	developers	who	have	the	most	to	learn.		
	
Moving	forward	
	
Even	as	crowdsourcing	slowly	but	surely	enters	mainstream	software	development,	key	challenges	
remain	for	crowdsourcing	to	reach	its	true	potential	and	for	the	scenarios	sketched	in	the	
introduction	to	become	reality	–	if	it	is	indeed	possible	to	do	so.	In	particular,	further	realizing	
many	of	the	benefits	of	crowdsourcing	–	reduced	time	to	market	through	parallelism,	involvement	
of	experts	for	specialized	tasks,	considering	more	alternatives	–	requires	further	decomposition	of	
tasks	and	even	greater	participation	in	crowdsourcing	platforms.	In	essence,	this	asks	whether	it	is	
possible	to	push	–	in	terms	of	the	dimensions	in	Sidebar	1	–	the	size	of	the	crowd	larger,	the	tasks	
smaller,	and	the	expertise	and	coordination	demands	downward.	
	
Several	problems	must	be	solved	to	design	such	software	crowdsourcing	models,	which	must	
involve	new	workflows	that	orchestrate	a	variety	of	subtasks	to	complete	more	complex	tasks.		
Workflows	must	address	issues	of	quality,	matching	work	to	workers	in	consideration	of	their	
expertise,	coordinating	the	many	contributions,	sharing	project	knowledge	across	the	crowd,	and	
other	issues.		None	is	a	trivial	endeavor.	
	
Yet	more	fundamentally,	we	observe	that	it	is	likely	no	coincidence	that	many	of	the	tasks	for	which	
crowdsourcing	has	found	the	most	success	to	date	–	testing,	creating	UI	mockups,	answering	
questions	–	have	clear	goals	and	require	minimal	context.		A	key	tenet	of	crowdsourcing	is	that	each	
participant	must	be	precisely	informed	of	the	task	to	be	performed.	Understanding	the	degree	to	
which	decomposition	can	create	such	self-contained	tasks	for	more	interdependent	software	work	,	
and	the	potential	overhead	this	creates,	is	a	key	challenge.	Is	it	possible,	for	example,	for	authoring	
a	software	architecture	to	be	decomposed	into	short,	self-contained	tasks	that	do	not	require	
contributors	to	understand	the	entire	complexity	of	the	whole?	And	even	if	decomposition	methods	
are	found,	the	issue	of	specification	remains:	can	requirements	be	crowdsourced	and,	if	not,	can	
they	be	specified	in	sufficient	detail	without	imposing	onerous	overhead?	Researchers	have	begun	
to	study	these	challenges,	examining	how	new	crowdsourcing	workflows	might	be	created	for	a	
variety	of	software	development	tasks	[12][8]	and	examining	the	challenges	that	these	new	
workflows	bring	[5].	
	
Conclusions	
	
Crowdsourcing,	in	its	various	forms,	has	already	changed	software	development.		Open	source	
aside,	the	number	of	new	crowdsourcing	platforms,	the	number	of	workers	who	sign	up	and	
actively	contribute,	and	the	number	of	organizations	actively	experimenting	with	crowdsourcing	all	
are	indicative	of	a	phenomenon	that	in	many	ways	has	crept	up	more	than	taken	the	industry	by	

	

9	

storm.	The	potential	advantages	are	tangible,	and	the	increasing	shift	of	software	development	
work	to	fluid	labor	markets	(e.g.,	over	$1	billion	annually	in	freelancing	is	brokered	through	
Upwork17	alone)	portends	the	potential	for	even	more	dramatic	shifts	that	call	into	question	long-
held	fundamental	beliefs	about	software	development.		As	in	any	fundamentally	disruptive	shift,	the	
ultimate	ramifications	are	far	from	certain.	Will	future	developers	operate	as	highly-skilled	
freelancers,	choosing	microtasks	to	follow	their	passion	and	bolster	their	skillset	[13],	or	as	
mindless	automatons,	their	work	selected	without	their	interest	or	consent,	as	Neal	Stephenson	
envisioned	in	Snow	Crash	[6]?				
	
Regardless,	serious	challenges	must	be	overcome	if	crowdsourcing	is	to	have	the	same	kind	of	
impact	in	software	development	as	it	has	had	in	other	fields.		The	nature	of	software	has	much	to	do	
with	it.		Software	is	a	complex	artifact,	that	is	not	easily	broken	down	into	clearly	articulated,	self-
contained,	and	rapidly	understood	and	completed	tasks.		Rather,	its	intricate	and	invisible	nature	
poses	a	challenge	to	crowdsourcing	that	we	foresee	will	take	many	years	to	address.		Even	so,	it	is	
rare	that	truly	foundational	shifts	take	place	in	our	field,	and	crowdsourcing	has	that	potential.		It	is	
worthwhile	for	the	community	to	develop	a	deep	understanding	of	how	and	when	crowdsourced	
work	can	be	applied	within	software	projects.	
	
	
	 	

																																																								
17	www.upwork.com	

	

10	

Biographical	Sketches	

Thomas	D.	LaToza	is	an	assistant	professor	in	the	Department	of	Computer	Science	at	George	Mason	
University.	His	research	in	software	engineering	focuses	on	human	aspects	of	software	development,	
with	both	empirical	and	design	work	on	tools	for	programming,	software	design,	and	collaboration.	
He	has	served	on	a	variety	of	program	committees,	served	as	co-chair	of	the	Second	International	
Workshop	on	Crowdsourcing	in	Software	Engineering,	and	currently	serves	as	co-chair	of	the	Sixth	
Workshop	on	the	Evaluation	and	Usability	of	Programming	Languages	and	Tools.	He	has	degrees	in	
psychology	 and	 computer	 science	 from	 the	 University	 of	 Illinois,	 received	 a	 PhD	 in	 software	
engineering	 from	 Carnegie	 Mellon	 University,	 and	 was	 a	 postdoctoral	 research	 associate	 at	 the	
University	of	California,	Irvine.	He	is	a	member	of	the	ACM.		
	

	
	
Department	of	Computer	Science	
George	Mason	University	
4400	University	Drive	MSN	4A5	
Fairfax,	VA	22030	USA	
tlatoza@gmu.edu	
	
	
	
André	van	der	Hoek	is	a	professor	and	chair	of	the	Department	of	Informatics	at	the	University	of	
California,	 Irvine.	 His	 research	 focuses	 on	 understanding	 and	 advancing	 the	 roles	 of	 design,	
collaboration,	 and	 education	 in	 software	 development.	He	 has	 served	 on	numerous	 international	
program	 committees,	 was	 a	 member	 of	 the	 editorial	 board	 of	 ACM	 Transactions	 on	 Software	
Engineering	and	Methodology,	and	was	program	co-chair	of	the	2014	International	Conference	on	
Software	Engineering.	He	received	joint	B.S.	and	M.S.	degrees	in	business-oriented	computer	science	
from	the	Erasmus	University	Rotterdam,	The	Netherlands,	and	a	Ph.D.	degree	in	computer	science	
from	the	University	of	Colorado	at	Boulder.	He	is	a	member	of	the	IEEE	and	an	ACM	Distinguished	
Scientist.	

	

11	

	

	
	
Department	of	Informatics	
Donald	Bren	School	Information	and	Computer	Sciences	
University	of	California,	Irvine	
Irvine,	CA	92697	
andre@ics.uci.edu	
	
	
	 	

	

12	

References	
	
[1]	J.	Howe,	“The	rise	of	crowdsourcing.”	Wired,	14,	2006.	

[2]	M.	Klein	and	G.	Convertino,	“An	embarrassment	of	riches.”	Commun.	ACM,	vol.	57	(11),	October	
2014,	pp.	40-42.	

[3]	Y.	Benkler	and	H.	Nissenbaum,	“Commons-based	peer	production	and	virtue.”	The	Journal	of	
Political	Philosophy,	vol.	14	(4),	2006,	pp.	394-419.	

[4]	L.	Mamykina,	B.	Manoim,	M.	Mittal,	G.	Hripcsak,	and	B.	Hartmann,	“Design	lessons	from	the	
fastest	q&a	site	in	the	west.”	Conference	on	Human	Factors	in	Computing	Systems	(CHI),	2011,	pp.	
2857-2866.		

[5]	K.	Stol	and	B.	Fitzgerald,	“Two's	company,	three's	a	crowd:	a	case	study	of	crowdsourcing	
software	development.”	International	Conference	on	Software	Engineering	(ICSE),	2014,	pp.	187-
198.	

[6]	N.	Stephenson,	Snow	Crash.	Bantam	Books,	1992.	

[7]	S.	Cooper,	F.	Khatib,	A.	Treuille,	J.	Barbero,	J.	Lee,	M.	Beenen,	A.	Leaver-Fay,	D.	Baker,	Z.	Popović,	
Foldit	players,	“Predicting	protein	structures	with	a	multiplayer	online	game.”	Nature,	vol.	466,	5	
August	2010,	pp.	756-760.	

[8]	K.	Mao,	L.	Capra,	M.	Harman	and	Y.	Jia,	“A	survey	of	the	use	of	crowdsourcing	in	software	
engineering.”	Technical	Report	RN/15/01,	Department	of	Computer	Science,	University	College	
London,	2015.	
	
[9]	W.	Dietl,	S.	Dietzel,	M.	D.	Ernst,	N.	Mote,	B.	Walker,	S.	Cooper,	T.	Pavlik,	and	Z.	Popović,	
“Verification	games:	making	verification	fun.”	Workshop	on	Formal	Techniques	for	Java-like	
Programs	(FTfJP),	2012,	pp.	42-49.	
	
[10]	T.	W.	Malone,	R.	Laubacher	and	C.	Dellarocas,	“The	collective	intelligence	genome.”	MIT	Sloan	
Management	Review,	vol.	41	(3),	2010,	pp.	21-31.	
	
[11]	J.	Surowiecki,	The	Wisdom	of	Crowds.	Random	House,	2005.	
	
[12]	T.	D.	LaToza,	W.	B.	Towne,	C.	M.	Adriano,	and	A.	van	der	Hoek,	“Microtask	programming:	
building	software	with	a	crowd.”	Symposium	on	User	Interface	Systems	and	Technology	(UIST),	2014,	
pp.	43-54.	
	
[13]	A.		Kittur,	J.	V.	Nickerson,	M.	Bernstein,	E.	Gerber,	A.	Shaw,	J.	Zimmerman,	M.	Lease,	and	J.	
Horton,	“The	future	of	crowd	work.”	Conference	on	Computer	supported	cooperative	work	(CSCW),	
2013,	pp.	1301-1318.	
	

	

13	

Tweets	

(1)	The	majority	of	large	software	companies	today	have	used	crowdsourcing,	whether	to	
gather	alternative	UI	designs,	test,	or	fix	bugs.	

(2)	The	possibility	to	usability	test	a	system	in	a	few	hours	is	tantalizing,	given	that,	in-house,	such	
efforts	typically	last	much	longer.	

(3)	Can	software	architecting	be	decomposed	into	self-contained	microtasks	that	do	not	require	
undrstanding	the	complexity	of	the	whole?	

(4)	Will	future	developers	work	as	highly-skilled	freelancers	or	mindless	automatons,	with	
microtasks	selected	for	them	as	in	Snow	Crash?	

	

	

	

