Visualizing Call Graphs

Thomas D. LaToza

Brad A. Myers

School of Computer Science
Carnegie Mellon University
Pittsburgh, PA USA
{tlatoza, bam}@cs.cmu.edu

Abstract—Developers navigate and reason about call graphs
throughout investigation and debugging activities. This is often diffi-
cult: developers can spend tens of minutes answering a single ques-
tion, get lost and disoriented, and erroneously make assumptions,
causing bugs. To address these problems, we designed a new form of
interactive call graph visualization — REACHER. Instead of leaving
developers to manually traverse the call graph, REACHER lets devel-
opers search along control flow. The interactive call graph visualiza-
tion encodes a number of properties that help developers answer
questions about causality, ordering, type membership, repetition,
choice, and other relationships. And developers remain oriented
while navigating. To evaluate REACHER’S benefits, we conducted a
lab study in which 12 participants answered control flow questions.
Compared to an existing IDE, participants with REACHER were over 5
times more successful in significantly less time. All enthusiastically
preferred REACHER, with many positive comments.

Keywords-code exploration, call graphs, control flow, program
visualization, program comprehension

L. INTRODUCTION

Control flow is one of the simplest and most expressive
representations of a program. Control flow is often represented
as a control flow graph which contains an edge from statement
a to b when there exists an execution in which b executes
immediately after a. In imperative programs, control flow
expresses causality between a call site statement and a
method'. Calling a method causes statements in it (and
statements in methods it transitively calls) to execute.
Determining when something happens requires finding the
control flow by which it may be reached. And control flow
expresses the order in which statements execute.

Developers work to understand a program’s control flow
throughout investigation and debugging activities as they
mentally model, reason, and navigate [18]. For example, when
investigating an unfamiliar codebase, developers first mentally
construct a control flow representation of connections between
its parts [20]. And their knowledge of a method’s part of the
call graph increases as they interact with its code [I11].
Information foraging theory predicts that developers traverse
control flow and search for “prey” — locations in code — by
using “scent” — the similarity of the information which labels
the control flow edges to their knowledge of their prey — to
rank the potential of edges to traverse [19]. We have named

This paper uses the word “method” since our implementation is in an object-
oriented language, but the techniques described here would apply to other impera-
tive languages, where the words “function” or “procedure” might be used instead.

JEditTextArea JEditBuffer

-tallCaretDelete(..,..) O—@&—— +remove(.,.)®=

Range\ 2

setText(..,..
+setSelectedText(.., Rect
setText(
Figure 1. REACHER’s call graph visualization supports reasoning about

interprocedural control flow. For example, this visualization illustrates that
JEditTextArea.delete(..) — on the far left — may call JEditTextArea.tallCaret-
Delete(.., ..) several times in a loop before it may call JEditTextArea.setSelected-
Text(.....) at two different call sites within a loop.

' —delete(..)

questions about what happens along a control flow path as
reachability questions [18] because they ask whether certain
code is reachable from other code under certain conditions.

Ensuring control flow is easily understandable has been an
important goal of language design. Following Dijkstra’s
observation that gotos obfuscate control flow, making
reasoning difficult [9], language designers introduced
structured programming languages that simplify control flow
within methods [4]. But in order to promote reuse and
modularity, modern languages obfuscate interprocedural
control flow between methods with features such as dynamic
dispatch and indirection.

Interprocedural control flow is often visualized using a call
graph. Modern Integrated Development Environments (IDEs)
such as Eclipse and Visual Studio let developers see and
navigate call graphs with commands ranging from go to
definition (from a callsite) to providing a tree view for
exploring call paths. Unfortunately, developers report that
understanding control flow remains difficult [5][18].
developers gain experience or learn a codebase, answering
control flow questions becomes neither less frequent nor easier
[18]. Developers often become disoriented and lost when
exploring code [5]. Due to the difficulties of finding definitive
answers, developers often guess, creating bugs when these
guesses are incorrect [18]. Control flow paths which are long,
widely branching, or contain inadequate or misleading scent
can cause developers to spend tens of minutes answering a
single question [18].

We designed REACHER to help developers more effectively
answer reachability questions as they strive to understand and
navigate control flow, find “prey,” and stay oriented. REACHER
automates searches along call graphs, freeing developers from
manually traversing calls in search of statements. REACHER
helps developers to understand control flow by depicting

FusionAnalysis.java &3 J] StudentRuntimeExcept [U XMLRetriever.java w AbstractCrystalMetho ”82 =0 EE Outline | @ Reacher Search &3 =0
public void beforeAllMethods(ICompilationUnit compUnit, Search upstream from XMLRE(TERQHSI«J"COMQXI()
CompilationUnit rootNode) { for | method calls id
if (project == null || !project.equals(compUnit.getlavaProject())) { | named T‘ retri
we have a new project reset the type hierg "‘Z}'»

— Unit) £ Prod L‘()' F ‘ ren | edu.cmu.cs.fusion.xml. XMLRetriever XMLRetriever(..) : void
project = compUnit.getlavaFrojec : edu.cmu.cs.fusion.xml XMLRetriever.getStartContext(..,..) : Re
try { edu.cmu.cs.fusion.xml XML ever.retrieveRelationshipst..,.

IProgressMonitor monitor = getInput().getProgressMonitor().isNone() ? null : getInput()

types = new CachedTypeHierarchy(project, monitor);

FreeVars.setHierarchy(types);

retriever.retrieveRelationships(ResourcesPlugin.getWorkspace().getRoot(), types); e Y < »

L

E console | @ Reacher &3

XMLRetriever
AbstractCrystalMethodAnalysis ___.0 +retrieveRelationships(..,..)
® +runAnalysis(..,....,..) XMLRetriever

a) 0@@@ +getStartContext(..,..) b)

Back Forward ResetZoom — O

FusionAnalysis XMLRetriever

AbslrachryslaIMelhodAnaIM +beforeAllMethods(..,..) $, -+ retrieveRelationshipst.....)

@ +runAnalysis(..,..,..,..) e

XMLRetriever
+getStartContext(..,..)

Figure 2. Can XMLRetriever.getStartContext() ever be called without XMLRetriever.retrieveRelationships() being called first? To answer this question in
REACHER, a developer first opens XMLRetriever.getStartContext() in Eclipse. She right clicks the method declaration and invokes an upstream search. In
REACHER’S search view (upper right), she types “retri”. As she types, REACHER lists matching statements below. Clicking the third result adds it to REACHER’S call
graph visualization (a). Looking at the visualization, she sees that all calls to getStartContext() are preceded by a call to retrieveRelationships(). But maybe there is
a conditional somewhere on the path to retrieveRelationships()? Double clicking the path expands it (b), showing the method beforeAllMethods() which was previ-
ously hidden. Hovering over the call from beforeAllMethods() to retrieveRelationships() shows a popup describing the call (this edge is missing a ? due to a bug in
REACHER). Clicking it opens the file in an Eclipse editor. Reading the code, she sees that the call is guarded by a conditional.

causality, ordering, type membership, repetition, recursion, and
conditionality (see Figure 1). And REACHER helps developers
remain oriented through its Eclipse plugin integration, letting
developers open and read a method while still seeing its context
in the call graph. To evaluate REACHER, developers used
REACHER to answer reachability questions in several lab study
tasks. Compared to Eclipse, developers with REACHER were
over 5 times more successful in significantly less time.

In this paper, we describe the iterative design and user
testing of REACHER’S visualizations and interactions. Other
papers present the extensive field studies that motivated this
work [18] and the efficient static analysis used behind-the-
scenes to implement REACHER [17]. In the remainder of the
paper, we first illustrate the use of REACHER with an example.
We then describe the design of REACHER, a lab study
evaluating REACHER, related work, and conclude.

II. AN EXAMPLE

To see REACHER in action, consider a challenging
debugging task we observed: a developer debugging a null
pointer exception tried to understand how XMLRetriever.
getStartContext() could ever be called without XMLRetriever.
retrieveRelationships() being called first. Working in a code-
base she had written herself, she spent 40 minutes answering
this question, using the debugger to inspect values and
statically browsing. The task was hard because 96 paths
connected these methods, some as long as 13 calls. Manually
navigating and making sense of these paths was challenging.
REACHER makes this task easier by automating the search and
visualizing the relevant portion of the call graph. We illustrate
this with a scenario of how the developer might have instead
worked using REACHER (see Figure 2). After opening XMLRe-
triever.getStartContext() in a Eclipse editor, she selects the
method declaration and opens a context menu. She searches
along paths fo the selected method by selecting search
upstream. Moving her cursor to the textbox in the REACHER
Search view (upper right), she searches for connections to the

other method — XMLRetriever.retrieveRelationships() — by
typing “retri”. As she types each character, REACHER lists
matching statements below. Seeing retrieveRelationship() in
the list, she clicks it, adding it to the call graph visualization
below.

The call graph now contains 3 methods — XMLRetriever.
getStartContext() (the origin method), XMLRetriever.retrieve-
Relationships() (the method she searched for), and Abstract-
CrystalAnalysis.runAnalysis() (Figure 2a). As this was an
upstream search, REACHER looked for a common method
calling both retrieveRelationships() and getStartContext() and
found runAnalysis(), adding it to the call graph. Two edges
emerge from runAnalysis() — one to retrieveRelationships() and
a second to getStartContext(). The edge to retrieve-
Relationships() leaves runAnalysis() above the edge to get-
StartContext(), indicating it executes first. Inspecting the call
graph, the developer learns that, in fact, all paths to
retrieveRelationships() are preceded by a path to getStartCon-
text(). But perhaps there is a conditional guarding the path to
getStartContext() that might cause it not to be called? The
dashed edge from runAnalysis() to retrieveRelationships()
indicates that some of the path is hidden, so she double clicks
to expand the path, revealing the previously hidden method
beforeAllMethods() which connects runAnalysis() to retrieve-
Relationships() (Figure 2b). Hovering over the edge between
beforeAllMethods() and retrieveRelationships(), she sees a
popup describing the call. Clicking the edge navigates the
Eclipse editor to the callsite. She then sees the cause of the bug
— eight lines above the callsite is a conditional guarding the
call. While correct for the rest of the body, it should not guard
this call. Moving the call to getStartContext() outside the
conditional block fixes the bug.

III.

REACHER helps developers explore code by supporting
searching, navigating, reasoning, and making sense of com-
plex interprocedural control flow. REACHER’s design resulted

USER INTERFACE DESIGN

from a user-centered, iterative design process. We first con-
ducted extensive field studies of developers exploring code to
understand the questions developers ask and the challenges
they face [18]. Based on these studies, we designed a visuali-
zation which encodes the information we found to be most rel-
evant to answering these questions. Recognizing that reading
the underlying code is ultimately an important part of making
sense of paths, our visualization design focused on quickly
finding the relevant code, answering high-level questions
about paths, and providing context, leaving details about the
code itself to be inspected using the code editor. We built an
initial mockup of our design and used a paper prototype study
to further refine the details. We then implemented the visuali-
zation in the Prefuse visualization toolkit [12]. In the next sec-
tions, we describe REACHER’s final user interface design, de-
scribing the rationale for several important decisions with ref-
erences to previous alternatives we considered.

A. Searching along control flow

One of REACHER’S most important features is the ability to
search along control flow. REACHER supports both upstream
and downstream searches. An upstream search begins at a
destination method and traces paths upstream by which it may
be reached. Downstream searches begin at an origin method
and trace paths downstream to its callees (and methods they
transitively call). Downstream and upstream searches are
asymmetric (see Figure 3). A downstream search captures what
an origin does — all of the causality relationships linking the
origin to other methods, directly or indirectly. Searching
upstream finds what happens before a destination, including
both direct and indirect callers and methods called before by
direct or indirect callers. These types of searches correspond to
the two most frequent types we observed in our studies [18].

destination

a)

Figure 3. a) A downstream search finds methods (shaded ovals) on paths from
an origin method, but does not find methods on paths returning from the origin
(unshaded). b) Upstream searches find method paths terminating at a
destination, including other methods that are called.

REACHER searches along a static, conservative
approximation of paths that may execute (see [17] for full
details of the analysis algorithm). An alternative approach
would be a dynamic approach in which the user runs the
program and enters input to demonstrate the situation of
interest, and the tool records an execution trace (c.f., [16]). A
key advantage of a dynamic trace is that it is fully precise,
containing no false positives — only statements that actually
executed are included. But a static approach such as
REACHER’S enjoys several advantages. A static approach
permits reasoning about everything that could possibly happen,
which may not be evident from a single trace or even from
many traces. Generating a dynamic trace is annoying for
situations that are difficult to reproduce, time-consuming for
long running operations, difficult when special hardware or

configuration is required, and impossible when the input
necessary to cause the desired path to execute is unknown. For
example, when debugging field-reported failures with only
stack dumps to indicate the problem, developers may not know
how to generate such a stack. In our field observations of
professional developers [18], dynamic tracing would not have
worked in two-thirds of the longest tasks involving reachability
questions. Thus, developers with current tools explore code
with a combination of dynamic and static approaches.

One drawback of a static approach is false positives—
infeasible paths that never execute due to correlations between
conditionals. In codebases with extensive use of message
passing or dynamic dispatch, this can be particularly
problematic, connecting portions of the codebase that are not in
fact connected. In order to mitigate this problem, REACHER
uses fast feasible path analysis (FFPA)[17] to eliminate some
of the most common forms of infeasible paths. FFPA
constructs summaries describing possible paths through a
method. When the user initiates a search, an interprocedural
dataflow analysis uses these summaries to propagate constants,
partially-path sensitively, and determine which branches
through conditionals are feasible. In most common cases,
FFPA is able to generate paths in one to two seconds of
analysis time.

Search downstream from jEdit.newView() for

A

method calls =

—

named v EditBus.

org.gjt.sp.jedit.EditBus.addToBus(..) : void
org.gjt.sp.jedit.EditBus.getComponents() : EBComponent|)
org.gjt.sp.jedit.EditBus.removeFromBusl..) : void

send(..) : void

org.gjt.sp.jedit.

Figure 4. REACHER lists matching statements as users enter each character of a
search. Double clicking a result pins it, assigning the corresponding search a
unique color and persistently adding the selected item to the call graph
visualization.

REACHER provides a search view for describing searches
along control flow (Figure 4). REACHER indicates if the search
is downstream or upstream and the origin or destination
method. Users can select both what kind of item to search for
(method, library, or constructor calls; field read, writes, or
accesses; or any of these) and which parts of the name to match
(package name, type name, or type and method name). Our
field observations of reachability questions contained several
examples of searches scoped to a specific type of method or
statement [18]. Search text may match any portion of the
identifier, not just the first portion. The matching portion of the
result is highlighted in red. These features make it easy to find
a target by knowing just a fragment of a name or relevant
concept while also minimizing typing. Selecting a result adds it
to the call graph. Selections are ephemeral, supporting quick
scrubbing to visualize each result in turn. Double clicking a
result pins the item, persisting it in the visualization.

REACHER lists search results — methods and fields — with
their fully qualified name and type. We experimented with
instead showing a portion of all matching statements. For
example, searching for foo() might display multiple callsites
such as a.foo() and b.foo(). Searching for fields included every
access and assignment statement. This provided more context

and made it possible to select individual callsites and access
statements. But this context made the text for each result much
longer, making the result list wider and occupying more space.
Additionally, result lists were far longer — methods called
frequently could be included tens or hundreds of times rather
than once. And forcing users to choose a specific callsite or
field access statement was more distracting than helpful. So
REACHER lists each method or field only once. After selecting a
result, users see the context in the call graph visualization.

B. Methods and expressions

SearchTests

+m2(..) ®
flagField=false

Figure 5. REACHER’s depiction of the method SearchTests.m2(boolean) and the
field write flagField = false.

REACHER visualizes call graphs as graphs of method nodes
and call edges. Following the UML’s conventions [23], public,
protected, and private methods are prefixed by +, #, and -,
respectively. The identifiers of static methods are italicized. To
help distinguish overloaded methods, each parameter is
indicated with a “..”, and parameters are separated by commas.
Including the parameter names and types would be
unambiguous, but, even for common cases, names become
several times longer, with a corresponding reduction in the
number of methods shown in a fixed space. When a selected
search result is a field access or a library call, REACHER
displays the field access expression or callsite statement below
the method in which it is located (see Figure 5). The method
the user searched from is highlighted with a yellow box,
corresponding to the yellow box in the search window (Figure
2, upper right).

Previous research shows that developers often get
disoriented when trying to explore the control flow to and from
a method [15][5]. REACHER helps with this problem by
working as a navigation aid — clicking a method in the
callgraph opens the code in an Eclipse editor.

C. Causality
jEdit Buffer

() +reloadModes() @w -9- +setMode(..) (@]
jEdit Buffer

(b) +reloadModes() ®—®&—— +setMode() ®-Q®—€)- BRSO

Figure 6. (a) Indirect calls (dashed lines) expand into (b) one or more paths of
direct calls (solid lines).

Causality is a central part of reachability questions — what
does this do and when does it happen? REACHER’S call graph is
designed to help developers reason about causality. When a
method node is created in the call graph, REACHER finds all of
the control flow paths connecting it to existing nodes in the call
graph, showing all of the ways it might be triggered. Knowing
there is a causal relationship is often sufficient, so REACHER
displays these control flow paths as a single indirect call edge
(Figure 6a). These paths are often long, complex, and
uninteresting; hiding them significantly reduces irrelevant
clutter. When the path is interesting, developers can double
click it, expanding it to show the previously hidden methods in

the path (Figure 6b). Clicking a call edge navigates the editor to
the corresponding call site.

While searching helps to locate distant methods, developers
sometimes explore a method’s immediate callers and callees.
For downstream searches, REACHER depicts a circled plus icon
® when a method has hidden callees. Clicking the icon
expands all of the callees, changing the icon into a circled
minus icon. Clicking the minus icon hides the callees. Similar-
ly, for upstream searches, REACHER provides a plus icon to the
left of the method indicating that there are hidden callers.

D. Ordering

EditBus

+send(..) > Q&+ Q——

+setBuffer(..) @) F

Figure 7. Outgoing calls execute from top to bottom.

EditPane
+setBuffer(..)

In most of the exploration tasks we observed, developers
used information about the order of calls. Therefore, unlike
existing call graph visualizations, REACHER visually encodes
the call order, sorting outgoing edges in execution order from
top to bottom (see Figure 7). This unambiguously orders paths
through the call graph. To distinguish incoming from outgoing
edges, edges exit a method from the right and enter from the
left. When there are multiple incoming edges, all but the first
enter from the bottom to help disambiguate multiple incoming
edges.

Upstream searches cause additional complexity when a user
adds a method m that executes before any visible methods. As
REACHER’S edges denote indirect or direct calls and no
currently visible method calls m, no edges connect it, and its
order is not visible. To solve this problem, REACHER computes
the least upper bound method between m and currently visible
methods. A least upper bound must exist for m to be upstream.
The least upper bound is then added to the call graph. For
example, after adding getStartContext() and retrieveRelation-
ships(), REACHER adds the least upper bound runAnalysis()
(see Figure 2), showing that getStartContext() executes before
retrieveRelationships().

REACHER use a single node for methods along all paths by
which they are reached, connecting each path after the first
with backward edges. For example, in Figure 8, tallCaret-
Delete() and Range.setText() both call remove(), with a
backward edge to remove() denoting setText()’s call.
Backward edges increase visual complexity, introducing non-
tree edges that overlap and cross. We considered instead
creating a tree structure by replicating repeatedly called
methods, except for recusive calls. However, replicating not
only replicates the method itself but also its entire subtree of
direct and indirect callees. Replicating subtrees greatly
increases the call graph’s dimensions. For example, expanding
with replication the path in Figure 2 between runAnalysis() and
getStartContext() increases the number of rows from 8 to 97.
Furthermore, replication makes understanding subtrees more

challenging by forcing developers to manually compare nodes
between similar subtrees to identify differences.

However, using a single node for each method increases
visual complexity, creating overlapping and crossing edges that
can be challenging to untangle. To help solve this problem,
REACHER lets developers mouse over an element to see its
connections (see Figure 8). Entering a node highlights incom-
ing and outgoing edges; entering an edge highlights incoming
and outgoing nodes. One study participant commented, “It
kinda reminds me of a magician, that if they want to see if there
are any wires around they move their hand.”

JEditBuffer ~ ___..-Buffer

~tallCaretDelete..,..) ®—@®—— +removel..,..)@*:@-0——- ~setDM

< [—
Range~
) \ seNText(..,..) /@/

Rect
setText(..,..)

Figure 8. Mousing over a method highlights incoming and outgoing calls.

E. Type membership

Types (e.g., classes) express a developer’s intention that the
methods and fields they contain are related. REACHER visually
encodes type membership with shadows grouping adjacent
methods with a common type (see Figures 1, 6, and 9).

F. Layout

REACHER uses an automatic layout to assign each method a
position. REACHER’S layout technique begins at 7oot methods —
methods with no visible callers. Call graphs produced by
upstream searches may have multiple roots. From each root,
REACHER computes a spanning tree. For methods with multiple
incoming edges, the spanning tree includes the edge which
executes first. REACHER then walks the spanning trees in-order
to compute positions for each method, assigning positions from
top to bottom and left to right. For methods with a single callee,
both are assigned to the same row, with the caller to the left of
its callee. For methods with multiple callees, each callee is
given its own row from top to bottom. This process
hierarchically computes a row and column assignment for each
method. Row height and column width are then assigned using
the maximum vertical and horizontal dimensions, respectively,
of their cells. Finally, REACHER stacks each spanning tree
vertically, with backward edges linking trees.

G. Repetition and choice

Realizing that a call is guarded by a conditional or may
execute repeatedly can be important for answering reachability
questions. REACHER alerts developers to the presence of these
constructs by visualizing repetition and conditionals with call
edge icons. Question marks indicate a conditional guarding a
call’s execution; loop icons indicate callsites in a loop. When a
call could be to one of several overriding methods because of
dynamic dispatch, edges to these callees begin with a single
shared line and branch into separate lines at a diamond icon.
REACHER condenses repeated edges to the same method into a
single edge, indicating the edge count with a number icon. But
when an edge to a different method is interleaved between the

repetition, the repeated edges are shown separately before and
after the interleaved edge, showing ordering. For example, in
Figure 7, the repeated calls to send() are shown before and after
the interleaved call to setBuffer(). Hovering over an icon
displays a descriptive popup (see Figure 9).

/
Jpglit EditBus
-addBufferToList(..) @@ +send(..) (4
——t?

+commitTemporary(..)

o commitTemporary() ()« -finishLoading()

JEdit.commitTemporary(..) calls send(..) along 3 paths.
Open

Figure 9. Hovering over an icon or edge displays a descriptive popup.

H. Supporting rapid exploration

REACHER provides a variety of additional interactive
features for rapidly expanding details and then hiding them
again if the user decides they are not relevant. “Back” and
“forward” commands traverse a web-browser style navigation
stack of visualization states. Pan and zoom commands lets
users focus on specific areas or get an overview. To help users
track the location of methods as new methods are added and
layout positions change, REACHER smoothly animates
transitions. Showing the callers or callees of a method anchors
the method’s position, moving other nodes relative to it.

IV. EVALUATION

REACHER’S design is premised on the assumptions that
searching along control flow is faster than traversing paths
using conventional navigation techniques, and that visualizing
paths can help developers more effectively understand and
navigate code. We conducted a lab study to test these
assumptions, and evaluate the potential productivity benefits of
REACHER and the usability of REACHER’s features.

A. Method

12 participants were recruited from students and staff at
Carnegie Mellon University. All participants reported being
comfortable programming in Java (median = 4.5 years
experience), had professional software development experience
(median = 1.1 years), and knew an average of 4 programming
languages. None had previously used REACHER.

Participants performed 6 tasks and were given 15 minutes
to complete each task. Each task posed a reachability question
and involved finding and understanding control flow between
events. Table 1 lists each of the tasks’ questions. To test if
participants were able to understand the visualization notation,
each task was designed to require understanding a particular
aspect of the notation. Tasks 1 and 2 dealt with ordering, tasks
3 and 4 dealt with conditions, and tasks 5 and 6 dealt with
repetition. All participants performed all 6 tasks and did half of
the tasks with Eclipse alone and half with Eclipse and
REACHER. Participants were randomly assigned to conditions.
The order of the tasks, whether they received the 3 Eclipse only
tasks or the 3 REACHER tasks first, and which tasks were used
in each condition were all counterbalanced.

Task 1. When a new view is created in jEdit.newView(View), what

messages, in what order, may be sent on the EditBus (using EditBus.send())?
Task 2. When text is deleted (JEditTextArea.delete()), what is the first

message that may be sent on the EditBus (using EditBus.send())?

Task 3. Does setting the buffer in EditPane.setBuffer() cause the caret status
on the status bar to be updated at least once (StatusBar.updateCaretStatus())? 0%
Task 4. Other than the check that the firstLine has changed from the

oldFirstLine in setFirstLine(), are there other conditionals that might cause

JEditTextArea.setFirstLine() not to update the scroll bar
(JEditTextArea.updateScrollBar())?

Task 5. How many messages may jEdit.commitTemporary() send to the

EditBus? (i.e., how many times might it invoke EditBus.send()?)

Task 6. How many messages may jEdit.reloadModes() send to the EditBus?

(i.e., how many times might it invoke EditBus.send()?)

2
S 3 66%
[o N7
S @ 50% .
£3 33% Eclipse only
o 3 0
& 17%
1 2 3 4 5 6 Eclipse and
15 REACHER
2
2
£ 9
g ¢
® 3
[
0
1 2 3 4 5 6

Table 1. Participants were asked to answer a series of six reachability questions.

All tasks were performed in the jEdit codebase, a 55 KLOC
open source text editor used in several previous studies of code
exploration [22][6][18]. Several of the tasks dealt with jEdit’s
EditBus which provides a publish / subscribe mechanism for
sending and receiving messages. Participants were asked
questions such as what events were sent on the bus or to trace
messages through the bus.

To ensure all participants were familiar with Eclipse’s
many code navigation features, all participants were first given
a tutorial on Eclipse (adapted from [22]). Before performing
tasks with REACHER, participants completed a second tutorial
that explained the notation and interactions and in which they
used REACHER to answer a sample reachability question.
Participants were given task instructions on paper and allowed
to take notes. Participants used Eclipse 3.6.1 and were allowed
to use any feature they wished. Participants worked on a 2.8
Ghz computer with 8 GB of memory, a large 30” monitor, and
an additional laptop screen. To understand why developers
used the approaches they did, participants were asked to think
aloud, and we recorded audio and the screen with Camtasia.

B. Results

Participants completed tasks 5.6 times more successfully
with REACHER (78%) than with Eclipse alone (14%). Averaged
across all tasks, participants’ mean task time was 11.1 minutes
with Eclipse alone and 7.2 minutes with REACHER. This is a
conservative estimate of the time difference, because we used a
time of 15 minutes (the maximum) for tasks on which partici-
pants ran out of time, whereas they would likely have taken
much longer. Figure 10 shows success and task time per task.
Participants were significantly faster with REACHER in tasks 1,
2,4, and 6 (p < .05), but not tasks 3 (p = .6) or 5 (p = .25).
Participants succeeded too infrequently with only Eclipse to
compare times between just those who succeeded.

Participants with only Eclipse used a number of static
exploration strategies. When reading a method, participants
relied heavily on the “scent” of method names at call sites to
decide which methods to open and read. For example, to find
paths to EditBus messages, participants reasoned about which
methods might be likely to do something requiring an EditBus
message to be sent. Some participants tried to methodically
traverse many paths, while others guessed which would be
most likely to lead to the target. Many participants explicitly
debated whether it was better to guess or methodically explore.

task
Figure 10. Success and average task time. Task time includes partici-
pants that failed. Participants who ran out of time received 15 minutes.

Most participants also navigated to the target statement to get a
sense for what it did and when it might be likely to happen.

Most participants with only Eclipse used the call hierarchy
to traverse paths of calls. But, due to the huge fanout of
methods, most realized the hopelessness of finding their target
method in this view. Several participants did bidirectional
search, navigating call hierarchy paths both forwards and
backwards and trying to pick methods to traverse based on
similarity to calls from the other direction. A significant barrier
to static traversal were event listeners, implemented using the
Observer Pattern. To determine which methods were actually
called, participants would have to determine which classes
implemented the interface and then begin new traversals from
these methods. This forced them to perform new call hierarchy
searches, losing their place. Participants sometimes said that
trying to discover a listener was disheartening, as it signified
there was much more to understand.

One participant tried to use dynamic, rather than static, in-
vestigation, and faced different challenges. To use the debugger
to investigate a method, he first had to find a user command
which invoked it, and he statically traversed upstream using the
call hierarchy. After finding a command, he ran the program
and invoked it, but found that conditionals prevented the path
he wanted to see from executing. Returning to static
investigation, he tried to find when they were true. But even
after figuring out how to invoke the functionality, he faced a
further challenge. To find paths from an origin to the target, he
breakpointed the target, repeatedly hit the breakpoint, and
investigated the paths. But as the target was widely called by
methods other than the desired origin, many of the times that
the breakpoint was hit were not paths from the origin. While he
tried to only investigate those paths from the origin, he
occasionally forgot to check and investigated the wrong paths.

All participants began using REACHER by opening the
origin method described in the task, invoking a downstream
search, and expanding the resulting paths. While participants
often had a correct answer early in the task, they then spent
most of their time better understanding the code to be sure of
their answer, using REACHER to navigate to callsites along the
path and discover what the calls were doing. Several attempted
to more precisely determine in which situations different paths
may execute by inspecting conditionals and trying to

understand when they might be true by tracing the data that
flowed into them.

As participants read methods in the editor, REACHER’S call
graph provided context and helped them to stay oriented:

1 like it a lot. It seems like an easy way to navigate the code. And
the view maps to more of how I think of the call hierarchy.

1t seems pretty cool if you can navigate your way around a
complex graph.

Without REACHER, participants were often disoriented:
Where am I? I'm so lost.

1 think I lost where [am in this silly tree.

There was a call to it... somewhere, but I don’t remember the path.

All participants reported that tasks with REACHER were
easier; most had strongly positive impressions:

REACHER was my hero. ... It’s a lot more fun to use and look at.

1t’s very cool actually. You don’t have to ... go through many,
many files.

Oh, this is really great, how do you find this stuff [methods along
paths]?

It seems really useful.
You don 't have to think as much.
Many felt that tasks without REACHER were very difficult:
Ah, this is going to get miserable isn't it.
This is pretty ugly.

Failing tasks while using REACHER was infrequent (22%)
but not absent. 6 of the 8 failures were in tasks 1 and 3. Some
of these failures were caused by failing to find all of the paths
due to overlapping edges or paths that zigzagged through the
graph. Others were caused by participants focusing on part of a
path and missing an icon on the rest of the path. For example,
one participant failed task 3 because they missed a ? icon at the
end of a long path. Even for participants that succeeded,
following paths was hard. One participant suggested
highlighting the path from the current node to a root.

Our study revealed a number of other usability problems.
Edges that passed through methods or overlapped were initially
confusing until users discovered the highlighting feature. Some
participants found it difficult to visually locate targets in the
call graph. While these methods are already rendered using a
distinctive black fill and white text, participants suggested
making them even more easily recognizable. Participants failed
to notice that incoming and outgoing edges intersect nodes at
different positions but instead relied on popups to disambiguate
the direction of backward edges. One participant suggested
indicating edge direction with arrows. A few participants
wished to disentagle cluttered visualizations by dragging
methods and manually overriding their layout positions.

C. Limitations

Our study had several limitations. By phrasing the task
instructions as reachability questions, we did not include the
surrounding debugging or investigation task context which

normally motivates users to ask these questions. While
participants felt that searching along control flow was
representative of their actual work, several felt that questions
about path attributes (e.g., how many times...) were contrived.
We included these questions to make sure that our
visualization was clear and usable. Unlike most developers in
the field, our participants had no experience in the codebase.
Developers with more knowledge might more successfully
predict where they should navigate. However, while these
limitations may bias the magnitude of differences in our results,
it should be remembered that studies have found that answering
reachability questions is frequent and time-consuming in the
field [18].

V. RELATED WORK

A number of previous systems have been designed to
visualize call graphs. For example, Rigi provides an extensible
framework for visualizing graph structures during reverse
engineering tasks [21]. It provides interactive tools, such as
fisheye views, for exploring graphs. However, Rigi provides no
support for searching, does not hide paths inside indirect calls,
and does not depict ordering, choice, repetition, loops, or
statements.

Many previous systems have been designed to help
developers more effectively explore code. Some systems build
a graph of elements connected through relationships and let
developers traverse paths through these relationships.
Relationships which these systems have explored include static
slices (e.g., CodeSurfer [1]) and dynamic slices recorded from
execution traces (e.g., WhyLine [16]). JQuery [14] traverses
structural relationships amongst types and methods (e.g.,
method membership, subtyping, containment, references,
constructors), providing a unified tree view including both
methods and types. However, many of these tools have never
been evaluated in a lab study. One of the few such studies
evaluated JQuery and two other code exploration tools with
code exploration tasks in jEdit (as in our study) and found no
significant benefits from any of the tools [6].

While most of these systems do not support searching along
paths, a few do. In Dora [13], developers select an origin
method and enter a search string, and then may inspect a graph
depicting call graph paths to methods textually similar to the
search string. However, using Dora to answer reachability
questions would be challenging. It does not support searching
for field reads, field writes, or library calls or searching for
methods in specific types or packages, making it impossible to
directly express most of the reachability questions we observed
in our field research [18]. And Dora provides only a
rudimentary call graph view. Dora’s focus is instead on
exploring the use of information-retrieval techniques in
searches and is therefore complimentary to REACHER.

Diver provides limited support for searching along dynamic
traces [2]. Diver lets developers search along an execution trace
for method calls and visualizes traces as UML sequence
diagrams. But, in Diver, searches are used only to locate
methods, not to scope the visualization to search results. In
situations where dynamic analysis is possible and helpful,
dynamic traces could complement REACHER's static traces by

providing certainty of a path’s feasibility and supporting
inspection of concrete values.

Several systems have explored approaches for reducing
disorientation during code exploration. Relo [25], Code Canvas
[8] and Code Bubbles [3] help developers to stay oriented by
providing a map of code. Replacing a conventional editor in
which developers edit in a full size window, methods are
instead shown in many small bubbles, providing context during
reading and making it easier to rapidly switch between related
methods. Like these tools, REACHER s visualization is intended
to help minimize disorientation by letting developers select task
relevant methods and visualize relationships among these
methods. One important difference is that REACHER shows only
method names and task relevant statements rather than the
entire method’s implementation. This makes REACHER’S
visualization substantially more compact, allowing developers
to simultaneously view many more methods. REACHER’S
design may more effectively support situations in which
developers investigate relationships between small snippets
scattered across many methods. Moreover, both visualization
styles could be incorporated in the same system by letting
developers zoom in to see method’s implementation and zoom
out to see additional context.

VI. CONCLUSIONS

Our results demonstrate that REACHER helps developers
explore code more easily and effectively, transforming a
tedious, frustrating, disorienting, guess-work-filled task into
one which most participants finished successfully. Our tasks
effectively replicated the challenges exploring code that studies
have repeatedly found developers face — finding methods,
staying oriented, and understanding paths — and demonstrated
that a combination of search, task specific visualization, and
IDE integration makes code exploration significantly easier.
REACHER’S most significant benefit is search, which helped
developers more quickly locate far-away methods and
statements connected by long and confusing paths. But
REACHER also helps support the subsequent work of
understanding and reasoning about the path. Participants traced
call graph paths to identify properties of paths. Participants
ultimately wanted to see the code behind these paths, and used
REACHER to quickly jump between methods on the paths.

ACKNOWLEDGMENTS

We thank the participants of our study and Andy Ko, Polo
Chau, Ciera Jaspan, Jonathan Aldrich, Andrew Begel, Rob
DeLine, and Niki Kittur for helpful suggestions and
discussions. This research was funded in part by the National
Science Foundation, under grant CCF-0811610.

REFERENCES

[1] Anderson, P. and Teitelbaum, T. (2001). Software inspection using
CodeSurfer. In Proc. Workshop on Inspection in Software Engineering
at CAV.

[2] Bennet, C. D. Myers, Storey, M.-A., and German, D. (2007). Working
with 'monster' traces: Building a scalable, usable, sequence viewer. In
Proc. of the Workshop on Program Comprehension Through Dynamic
Analysis (PCODA), 1-5.

[3] Bragdon, A., Reiss, S. P., Zeleznik, R., Karumuri, S., Cheung, W.,
Kaplan, J., Coleman, C., Adeputra, F., and LaViola, J. J. (2010). Code

[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

(21]

[22]

(23]

[24]

[25]

bubbles: rethinking the user interface paradigm of integrated develop-
ment environments. In Proc. Int’l Conf. Software Eng (ICSE), 455-464.
Dahl, O.J., Dijkstra, E.W., and Hoare, C.AR. (1972). Structured
Programming, Academic Press, London.

de Alwis, B., and Murphy, G. C. (2006). Using visual momentum to
explain disorientation in the Eclipse IDE. In Proc. Visual Languages and
Human-Centric Computing (VL/HCC), 51-54.

de Alwis, B., Murphy, G.C., and Robillard, M.P. (2007). A comparitive
study of three program exploration tools. In Proc. Int’l Conf. on
Program Comprehension, 103-112.

DeLine, R., Khella, A., Czerwinski, M, and Robertson, G. (2005).
Towards understanding programs through wear-based filtering. In Proc.
of the ACM Symposium on Software Visualization, 183-192.

DeLine, R., Venolia, G., and Rowan, K. (2010). Software development
with code maps. In Commun. ACM, 53, 8 (Aug. 2010), 48-54.

Dijkstra, E.W. (1968). Letters to the editor: go to statement considered
harmful. Commun. ACM 11, 3 (March 1968), 147-148.

Fritz, T., and Murphy, G.C. (2010). Using information fragments to
answer the questions developers ask. In Proc. Int’l Conf. Software Eng
(ICSE), 175-184.

Fritz, T., Murphy, G.C., and Hill, E. (2007). Does a programmer's
activity indicate knowledge of code?. In Proc. of ESEC-FSE, 341-350.
Heer, J., Card, S. K., and Landay, J. A. (2005). Prefuse: a toolkit for
interactive information visualization. In Proc. Conference on Human
Factors in Computing Systems (CHI), 421-430.

Hill, E., Pollock, L., Vijay-Shanker, A K. (2007). Exploring the
neighborhood with Dora to expedite software maintenance. In Proc.
Automated Software Engineering (ASE), 14-23.

Janzen, D. and De Volder, K. (2003). Navigating and querying code
without getting lost. In Proc. Aspect-Oriented Software Development
(AOSD), 178-187.

Ko, A. J., Aung, H., and Myers, B. A. (2005). Eliciting design
requirements for maintenance-oriented IDEs: a detailed study of
corrective and perfective maintenance tasks. In Proc. Int’l Conf.
Software Eng (ICSE), 126-135.

Ko., AJ., and Myers, B.A. (2009). Finding causes of program output
with the Java WhyLine. In Proc. Conference on Human Factors in
Computing Systems (CHI), 187-196.

LaToza, T.D. (2011). Answering reachability questions. Dissertation,
Institute for Software Research, Carnegie Mellon University.

LaToza, T.D. and Myers, B.A. (2010). Developers ask reachability
questions. In Proc. Int’l Conf. Software Eng (ICSE).In Proc. ICSE, 185-
194.

Lawrance, J., Bogart, C., Burnett, M., Bellamy, R., Rector, K. (2011).
How People Debug, Revisited: An Information Foraging Theory
Perspective. In Transactions on Software Engineering (TSE), to appear.

Pennington, N. (1987). Stimulus Structures and Mental Rep-
resentations in Expert Comprehension of Computer Programs. In
Cognitive Psychology, Vol. 19, 295-341.

Storey, M.-A.D. and Muller, H.A. (1995). Manipulating and
Documenting Software Structures Using Shrimp Views. In Proc. Int’l
Conf. Software Maintenance (ICSM).

Robillard, M. P., Coelho, W., and Murphy, G.C. (2004). How effective
developers investigate source code: an exploratory study. In
Transactions on Software Engineering (TSE), 30(12), 889-903.
Rumbaugh, J., Jacobson, I., and Booch., G. (1998). The Unified
Modeling Language Reference Manual. Addison-Wesley.

Sillito, J., Murphy, G.C., and De Volder, K. (2008). Asking and
answering questions during a programming change task. In Transactions
on Software Engineering (TSE), 34, 4 (July 2008), 434-451.

Sinha, V., Karger, D., and Miller, R. (2006). Relo: helping users manage
context during interactive exploratory visualization of large codebases.
In Proc. Visual Languages and Human-Centric Computing (VL/HCC),
4-8.

