Ask the Crowd: Scaffolding Coordination and
Knowledge Sharing in Microtask Programming

Thomas D. LaToza"?, Arturo Di Lecce?, Fabio Ricci’, W. Ben Towne®, André van der Hoek?

' George Mason University
Fairfax, VA, USA
tlatoza@gmu.edu

Abstract—Programming work is inherently interdependent,
requiring developers to share and coordinate decisions that
crosscut the structure of code. This is particularly challenging for
programming in a microtasking context, in which developers are
assumed to be transient and thus cannot rely on traditional
learning and coordination mechanisms such as an extended
onboarding process and code ownership. In this paper, we ex-
plore scaffolding coordination and knowledge sharing through a
question and answer system, structuring project knowledge and
coordination into questions and answers. To investigate its poten-
tial for enabling coordination in a microtask setting, we imple-
mented a Q&A system for microtask programming work and
conducted a user study where a crowd used it to coordinate their
work on a software project over a 30-hour period. The results re-
veal both the potential for the use of Q&A systems for within-
project coordination and challenges that this approach brings.

Keywords—programming environments; crowdsourcing; mi-
crotasking; knowledge sharing; question answering

1. INTRODUCTION

As developers fix bugs and implement features, developers
make decisions and seek to discover existing decisions that
may inform and constrain their choices [18]. As architectural
and even implementation decisions often span individual
functions, classes, and modules, developers must gain a
broader understanding of the code in order to understand how
to successfully make changes without introducing new defects.
To do so, developers use a wide variety of mechanisms:
reading code, documentation, and design documents and
coordinating using meetings, emails, IM, and issue trackers. To
reduce what they must know, software development projects
often employ code ownership, where developers become
experts in modules over time through learning activities and
specialization. Yet developers still find effective coordination
and knowledge sharing to be a significant challenge [22],
especially understanding past design decisions [18].

Microtask crowdsourcing envisions a radically different
model of work [8]. Rather than working in long-term teams
and on ongoing work items, workers are recruited using an
open call and are assumed to be transient, working on short,
self-contained microtasks without an extended onboarding
process. As a result, microtask crowdsourcing has traditionally
been used for embarassingly parallel tasks requiring little
context such as labeling images [1] or transcribing video [14].
Compared to traditional work structures, microtask
crowdsourcing offers several potential benefits, including large

This work was supported in part by the NSF under 1414197.

? University of California, Irvine
Irvine, CA, USA
{arturodilecce, f.ricci89}@gmail.com; andre@ics.uci.edu

? Carnegie Mellon University
Pittsburgh, PA, USA
wbt@cs.cmu.edu

decreases in clock time through parallelism, a more fluid labor
force, and collection of diverse ideas from the crowd.

More recently, work has begun to explore the use of
microtask crowdsourcing in complex work requiring
coordination and knowledge sharing [10][6][2][16][15][24]. In
previous work, we introduced an approach for microtask
programming [21]. In microtask programming, all work occurs
through self-contained microtasks providing a local view of a
single artifact — a function or test — rather than a global view of
the entire codebase. For example, workers may be provided
with a function description and be asked to list test cases or
sketch part of an implementation, or be provided with a set of
failing tests and a function and be asked to fix a bug.

A key challenge in microtask programming is coordination:
how can a large crowd of transient workers working on small
tasks coordinate their contributions into a coherent whole [19]?
Observations of microtask programming in the small have
found a need for workers to coordinate design decisions
capturing crosscutting concerns across artifacts. Mechanisms
such as global chat can enable real-time coordination amongst
workers. However, as transient workers come and go and must
identify and understand past decisions, threads with hundreds
of responses bury ideas and are impenetrable to newcomers
[17], creating contribution barriers that break the microtask
model of short, self-contained work. Employing leaders to
manage work and coordination diminishes the crowd’s abilitity
to make their own decisions and shape the final product. Thus,
we sought to explore mechanisms for explicitly coordinating
design decisions amongst transient workers. We designed and
implemented an approach for scaffolding within-project
coordination and knowledge sharing with a Q&A system,
enabling workers to ask questions and discuss answers,
connected directly to artifacts. To examine the potential of this
approach, we conducted a study in which a crowd of 20
coordinated their work across a 30 hour period. The results
reveal both the potential of Q&A for within-project
coordination and some of the challenges this approach brings.

II. RELATED WORK

In microtask crowdsourcing, workers are traditionally treat-
ed as interchangeable automatons in a workflow, with limited
context or awareness of the overall work product [8]. This ap-
proach can scale to surprisingly complex tasks, such as editing
papers [4], coding videos [14], and multistep workflows
[13][23]. But this model begins to break down as work be-
comes more complex and interdependent. Work has investigat-

ed extending this model by designing the workflow itself
around identifying and processing interdependencies [6][2],
providing a shared global coordination forum [16], letting
workers see the current state of the work product [15], or aban-
doning the notion of transient workers who may disappear in
favor of short-term commitments within ad-hoc teams [24].
Crowdsourcing systems for programming have often relied on
a singular leader to coordinate and manage work (e.g., co-
pilots in TopCoder' and “original programmers” in micro-
outsourcing [10][9]).

Much work has examined coordination and knowledge
sharing practices and challenges in traditional software devel-
opment teams and open source projects (e.g., [7][5][3][22][20]
[11]). Microtask crowdsourcing differs in several important
ways, particularly that workers are transient and may come and
go freely and that parallelizing work is a key goal. As a
consequence, traditional crowdsourcing coordination models
emphasizing leadership (e.g., the onion model [11] or even
leadership that is partially distributed [17]) break down, as the
system cannot assume that leaders will remain involved or be
online when needed. Thus, our key design goal was to enable
coordination in this context, moving beyond both global chat
and a central leader to help the crowd itself organize
information and reach consensus.

III. BACKGROUND - MICROTASK PROGRAMMING

In previous work, we introduced a microtask approach to
programming [21], which we briefly review here. In microtask
programming, transient workers contribute to a software
project through short, self-contained microtasks, each
describing a specific task to be completed on a single function
or test. Each microtask is designed to be self-contained,
providing instructions, relevant context, and an artifact editor,
enabling workers to contribute without an extended onboarding
process. All microtasks are automatically generated and
assigned. Microtasks include editing function descriptions and
implementations, debugging, editing test cases and tests,
reviewing completed microtasks, and debugging. To prevent
individual workers from blocking progress by working on a
microtask for an extended period of time, all microtasks have a
ten minute time limit. Several coordination mechanisms are
offerred. Implementing a function is iterative: workers can
partially implement a function, using pseudocode to describe
further work to be done, which then generates a subsequent
microtask for a worker to continue its implementation.
Coordination also occurs across dependencies between
artifacts. For example, workers may, if needed, change the
signature of a function, creating microtasks to update call sites
and tests, and workers implementing a test may report an issue
with the corresponding function description, generating a
microtask on the function to resolve the issue and edit the
function. Finally, completed microtasks are reviewed by
another worker, and may be accepted as is or reissued, creating
a microtask for the artifact to be revised. Microtask
programming has been implemented in CrowdCode, a web-
based IDE.

1
www.topcoder.com

IV. SYSTEM DESIGN

We set out to enable coordination and knowledge sharing
among transient microtask workers. Inspired by the design of
knowledge sharing systems such as StackOverflow,
coordination is explicitly structured as questions and answers.
Workers may, at any time, ask and answer questions, tag
discussions, and comment, up-vote, and down-vote responses.
In contrast to their traditional use for global knowledge sharing
across projects, our Q&A system was designed for
coordination and knowledge sharing within a project. Thus,
discussions are deeply integrated with specific parts of the
code, offering workers the opportunity to collaboratively
discuss specific decisions within a project, contextualized with
its artifacts. In contrast with both Q&A systems and issue
trackers, questions are not owned and managed by a requestor.
Rather, the crowd itself is empowered to freely edit questions
and mark discussions as closed where appropriate. In the
following sections, we discuss the design in detail.

A. Finding Answers

When a worker has a question, they may first check if the
crowd has already answered it. The top-level view of the Q&A
system lists all questions (Figure 1, left), with each question’s
title, a summary of its activity, its tags, and whether it is
currently open (yellow background) or closed (gray
background). To enable workers to see when a question has
recent activity they have not yet viewed, new answers and
comments that the worker has not seen are also listed. Workers
may browse the list of questions or search using a full text
search or for questions with specific tags. Clicking on a
question opens its discussion page (Figure 1, right).

The list of questions is divided into two sections. The top
section lists questions that have been marked as relevant to the
current function. In this way, workers can immediately see
discussion of questions relevant to their current work. The
bottom section lists all other questions (relationships of these
questions to other functions, if any, are hidden). If a worker
discovers a question that seems relevant to their current work,
they can click a toggle button to mark (or unmark) it as related
to the current artifact.

B. Asking Questions

While working on a microtask, a worker may ask a
question, providing a title and description and optionally tags
describing the question. Workers may additionally choose to
mark the question as related to the function in which they are
currently working. When a new question is asked, workers

+back Mark as closed
When is the action 'move' triggered?

The description of the function 'createAction' specifies that the m
ove action starts if the mouseDown occurres on the path of one ele
ment. This is not the standard behavior of the drawing programs w
here the move starts also if the mouseDown occurres inside the sh

Related to createAction

‘When is the action 'move' triggered? (: new
ess the behav

quesTions INEIEETN
o

less than @ minute ago e ap doyou think?
G2 W3 OPEN
= G
which commands are allowed? (2 new answers) g
= [
T [comm
2 answers:
[bo W2 CLOSED createAction [l L
g e It depends. If the shape is closed, also clicking inside the closed ar
@G § ea, should trigger the 'move'.
7minutes ago - Michelle 1R
How to calculate the next element ID?
17 minutes ago elements | glo Calculating the area of a freehand closed shape, is a very hard.
b1 W2 OPEN What about simply defining bounding boxes around the shapes?

6 minutesago - you G40

write a comment

Fig. 1. Panels for browsing questions (left) and discussing answers (right).

receive an immediate notification.

C. Answering and Discussing Questions

To enable open contributions by the crowd, any worker
may, at any time, discuss a question. Discussion for each
question is threaded into answers and comments on answers
(Figure 1, right). Workers may choose to indicate their
agreement or disagreement with a question, answer, or
comment through an up-vote or down-vote. Each question,
answer, and comment is listed with its net up-votes.
Alternatives and discussions of alternatives are in this way
made explicit and recorded, enabling workers to directly see
the rationale and discussion behind decisions.

Workers may use question threads both synchronously and
asynchronously. To support the use of rapid synchronous
discussion to generate and discuss alternatives, all Q&A
content is immediately synchronized with all workers. Workers
may carry on a real-time conversation, allowing, for example, a
worker to answer a question, see a comment raising an issue,
and post an additional comment to address the issue in
response. To support asynchronous awareness of updates to
discussions, workers automatically follow a discussion after
participating by contributing a question, answer, or comment.
Whenever a contribution is made, all workers following the
discussion receive a notification. If a worker is logged out, the
notification is deferred.

One model of incorporating Q&A into microtasking work
would be for question answering or discussion to itself be a
microtask. However, such a model has significant drawbacks.
Workers may vary significantly in their knowledge and ability
to answer a question. Soliciting answers from the whole crowd
enables workers to self-select their ability and interest to
contribute. Second, organizing contributions as microtasks
delays responses, as there is a lag between when the microtask
is created and when the microtask is assigned and completed.
This may discourage discussion and debate of alternatives, as
workers cannot engage in a single synchronous disucssion.

Due to these considerations, we chose to enable Q&A
contributions to be made orthogonal to microtask work. The
Q&A system is displayed as a tab within a side panel adjacent
to the microtask work area. Workers working on a microtask
can follow discussion on a question while working, choosing to
participate as they wish. As workers may be transient and
leave, we do not assume that a question asker will return to
mark a question as answered. Instead, each question is labeled
as Open or Closed, and any worker may toggle its status at any
time. Additionally, the question title, text, and tags are
collaboratively editable, allowing any worker to, at any time,
clarify the question based on the ongoing discussion.
Interactions with the Q&A system are gamified, incentivizing
participation and consistent with CrowdCode. Workers receive
3 points when their question is up-voted, 2 points when an
answer is up-voted, and 1 point when a comment is up-voted.

V. USER STUDY

To examine the prospects and challenges of scaffolding
coordination and knowledge sharing, we performed a user
study. Rather than study the use of a Q&A system in a
controlled but artificial setting through a controlled experiment,

we chose to instead conduct a larger single study, enabling
observation of the social dynamics that arose as a crowd
worked together. 20 participants were recruited from graduate
and undergraduate students at several universities and
professional software developers through personal contacts.
Participants were geographically distributed. Participants had a
mean of 2.7 years of professional experience. 13 had used a
previous version of CrowdCode without the Q&A system. To
simulate a setting in which transient workers may freely join
and leave, participants were invited to participate whenever
they wished across a 30 hour period for up to 4 hours.
Participants worked to implement the logic of a simple
spreadsheet application. Participants were paid $20 an hour,
based on their time interacting with CrowdCode. To discourage
gaming the system, pay was not tied to points accrued in
CrowdCode. Participants’ work was captured through a
screencast and event logging within CrowdCode, and
participants completed a survey on their experiences.

VI. RESULTS

Overall, participants interacted with CrowdCode for a total
of 79 hours during the 30 hour study period. Of this time,
workers spent 52 hours working on microtasks, during which
they completed 684 microtasks, implemented 20 functions and
62 unit tests, and wrote 353 lines of function code and 2202
lines of test code. Participants spent the largest portion of their
time working on Debug Test Failure, Review, and Edit
Function microtasks. Workers were transient, logging into the
environment, on average, a total of 2.0 times for an average
time of 121 minutes. Workers interacted with CrowdCode for
an average of 3 hours and 52 minutes each. Due to worker’s
varied time zones, during 80% of the study period at least one
worker was active in CrowdCode, with as many as 7 workers
concurrently active and 2.3 on average.

A. Use of the Q&A System

Workers made use of the Q&A system to coordinate and
share knowledge. For example, after reading through several
questions and answers on the structure of spreadsheet formulas,
P13 asked a question seeking a common definition, adding the
tag “definitions.” He later edited the question to add additional
descriptive tags, including “formula” and “function.” P7, while
working on a test case for the function computeFunct-
ForRange, went through the open questions to find information
about the function. He found P13’s question and up-voted it.
After gaining additional knowledge about formulas, he
answered it, proposing two alternatives. P12, noticing the
question, then gave his opinion on one of the issues P7 raised.

Overall, workers asked a total of 26 questions. Questions
focused on a variety of topics. Some focused on crosscutting
decisions, such as how insertions and deletions would be
handled or what spreadsheet functions should be supported.
Others sought to clarify particular aspects of function
descriptions. In other cases, “questions” were appropriated to
state decisions that workers believed had already been made,
indiciating to others a convention to be followed. Workers also
used the Q&A system to ask questions about how CrowdCode
itself worked. Finally, workers sometimes used Q&A for
explicit coordination, requesting others who might be working

on an artifact to take an action with it or to gain an
understanding of the current overall status of the project.

All questions received at least one answer, and all questions
were marked as closed by the crowd by the end of the study.
However, in many cases, questions were left unanswered for
significant periods of time. 25% of questions were answered by
another worker within 5 minutes, 42% within an hour, and
85% in the first 10 hours. As a result, workers sometimes
simply made a decision themselves, sometimes recorded as an
answer to their own question. Answers were delayed for
several reasons. At many points, few were available to answer
questions. Moreover, one reported that, when working on
particularly challenging microtasks, the 10 minute microtask
time limit meant that they had no time to answer questions.
Questions varied in the amount of discussion they generated
and the attention they received. Questions received on average
2.6 answers and comments and 30 views; some questions
received as many as 6 answers and comments and 35 views.

Participants sometimes checked artifacts for conformance
to the decisions they had seen in the Q&A system, reporting
issues when the artifacts did not conform. For example, when
reviewing a test case, P12 reported that the test and description
of a function did not conform to a decision, citing a question
title in explaining his review. Similarly, participants sometimes
used the issue reporting mechanism to report non-conforming
artifacts, justifying their issues with a citation to the decision.

In other cases, participants still made conflicting decisions,
despite the Q&A system, as they did not realize that the
decisions they were making created conflicts. In CrowdCode,
work on new functions proceeds along two parallel paths.
Beginning with a function description, parallel workflows
separately implement the function and its tests. The workflows
converge when the tests are run, which may then generate a
Debug Test Failure microtask. Workers separately
implementing the function and each test often made widely
varying decisions about the interpretation of the function
description. Rather than use the Q&A system to state or discuss
these interpretations, workers often simply made decisions.
Because these conflicts were only caught after code and tests
had already been written, resolving and adjudicating these
conflicts through the Debug microtask often required signficant
rework.

B. Perceptions of the Effectiveness of the Q&A System

Participants reported varied opinions about the efficacy of
using a Q&A system for coordinating and sharing knowledge
in a microtasking context. Compared to global chat, several felt
that Q&A more effectively supported knowledge sharing.
Participants cited a range of advantages: that it was “easier to
transmit and spread the information” (P2), easier to “find
relevant issues very easily” (PS5), better than “tutorials and
documentation” (P18), less distracting, easier to reach
agreement, and easier to get up to speed. Others disagreed,
preferring the global chat they had used in a previous version
of CrowdCode. These participants felt that “time delay is one
of the most important issues” (P14), reflecting frustration that
their questions were not quickly answered and a belief that
questions would be answered more quickly in global chat. This
may have been influenced by the experiences of some workers

who had used global chat in a previous version of CrowdCode;
however, in contrast to this study and more realistic microtask
settings, workers were not transient and all participated in a
single synchronous session, ensuring there many were always
available to quickly answer questions.

Participants expressed a wide range of ideas for improving
coordination in a microtask work context. One wished that “If
you begin a task related to function F and there have been new
discussion posts since you last did something related to F, then
you should be forced to see the recent discussion posts” (P7).
Several wished there to be person to person communication to
discus reviews or continue work begun by another worker. P16
expressed the desire for workers working on related tasks —
implementing tests for the same function — to have the ability
to collaborate in real time. Another proposed that there be a
“project owner/manager... that could benevolent[ly] dictate
his opinion” (P9). Several expressed alternative ideas for
structuring information, including a wiki for terms and
definitions (P2, P3, P13, P15), adding memos to the Q&A
system (P1), and better sorting and organization of questions.

VII. DISCUSSION

Enabling effective coordination among transient microtask
workers is a key challenge in enabling microtasking to be used
for more complex, interdependent activities such as
programming. Our results revealed that a crowd of transient
workers completing highly interdependent programming
microtasks was able to use a Q&A system to help coordinate
their work. Rather than a leader or client dictating decisions,
workers themselves had a voice in shaping the direction of
their work [12]. The results also highlighted several additional
conditions for a Q&A system to effectively support crowd
work, which the design only partially supported. Workers need
to be made aware of when their work might create conflicts
and, in such situations, incentivized to ask questions so that
conflicts are identified and resolved earlier. As workers ask
questions, they may create related and duplicative questions,
highlighting the importance of explicitly identifying and
merging or connecting related questions to keep information
well-organized. It is important for decisions to be deeply and
prominently integrated with the artifacts themselves, so that
relevant decisions are made apparent and surfaced as workers
begin working on each microtask. Finally, in order for
questions to be answered in a timely fashion, it is important to
consider the size and work times of the crowd, so that workers
can be online and available at similar times.

More broadly, our results demonstrate the potential for
capturing software project knowledge at a more fine-grained
level. Software projects traditonally capture knowledge in issue
trackers, design documents, wikis, and emails. Yet these
artifacts are ill-suited for more low-level programming
decisions that shape programming tasks but still crosscut the
structure of software. Our findings suggest that Q&A systems
might be valuable within software projects, helping developers
to more explicitly coordinate important decisions in ways that
externalize decisions and capture rationale.

ACKNOWLEDGMENT
We thank the participants for their time.

[10]

[11]

[12]

REFERENCES

L. von Ahn and L. Dabbish, “Labeling images with a computer game.
Conference on Human Factors in Computing Systems (CHI), 2004, pp.
319-326.

P. André, A. Kittur, and S. P. Dow, “Crowd synthesis: extracting
categories and clusters from complex data.” Conference on Computer
Supported Cooperative Work (CSCW), 2014, pp. 989-998.

A. Begel, Y. P. Khoo, and T. Zimmermann, “Codebook: discovering
and exploiting relationships in software repositories.” International
Conference on Software Engineering (ICSE), 2010, pp. 125-134.

M. S. Bernstein, G. Little, R. C. Miller, B. Hartmann, M. S. Ackerman,
D. R. Karger, D. Crowell, and K. Panovich, “Soylent: a word processor
with a crowd inside.” Symposium on User interface software and
technology (UIST), 2010, pp. 313-322.

M. Cataldo, A. Mockus, J. A. Roberts, and J. D. Herbsleb, “Software
dependencies, work dependencies, and their impact on failures.” Trans.
Software Eng., 35(6), 2009, pp. 864-878.

L. B. Chilton, G. Little, D. Edge, D. S. Weld, and J. A. Landay,
“Cascade: crowdsourcing taxonomy creation.” Conference on Human
Factors in Computing Systems (CHI), 2013, pp. 1999-2008.

B. Curtis, H. Krasner, and N. Iscoe, “A field study of the software
design process for large systems. “ Commun. ACM, 31 (11), November
1988, pp. 1268-1287.

A. Doan, R. Ramakrishnan, and A. Y. Halevy, “Crowdsourcing systems
on the World-Wide Web.” Commun. ACM, vol. 54 (4), April 2011, pp.
86-96.

M. Goldman, “Software development with real-time collaborative
coding in a Web IDE.” Symposium on User Interface Systems and
Technologies (UIST), 2011, pp. 155-164.

M. Goldman, G. Little, and R. C. Miller, “Collabode: collaborative
coding in the browser.” Workshop on Cooperative and Human Aspects
of Software Engineering (CHASE), 2011, pp. 155-164.

C. Jensen and W. Scacchi, “Role migration and advancement processes
in OSSD projects: a comparative case study.” International Conference
on Software Engineering (ICSE), 2007, pp. 364-374.

A. Kittur, J. V. Nickerson, M. Bernstein, E. Gerber, A. Shaw, J.
Zimmerman, M. Lease, and J. Horton, “The future of crowd work.”
Conference on Computer Supported Cooperative Work (CSCW), 2013,
pp. 1301-1318.

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

(21]

[22]

(23]

[24]

A. Kittur, B. Smus, S. Khamkar, and R. E. Kraut, “CrowdForge:
crowdsourcing complex work.” Symposium on User interface software
and technology (UIST), 2011, pp. 43-52.

W. S. Lasecki, M. Gordon, D. Koutra, M. F. Jung, S. P. Dow, and J. P.
Bigham, “Glance: rapidly coding behavioral video with the crowd.”
Symposium on User interface software and technology (UIST), 2014,
pp. 551-562.

W. S. Lasecki, J. Kim, N. Rafter, O. Sen, J.P. Bigham, M.S.
Bernstein. “Apparition: crowdsourced user interfaces that come to life as
you sketch them.” Conference on Human Factors in Computing Systems
(CHD), 2015.

W. S. Lasecki, R. Wesley, J. Nichols, A. Kulkarni, J. F. Allen, and J. P.
Bigham, “Chorus: a crowd-powered conversational assistant.”
Symposium on User Interface Software and Technology (UIST), 2013,
pp. 151-162.

K. Luther, C. Fiesler, and A. Bruckman, “Redistributing leadership in
online creative collaboration.” Conference on Computer Supported
Cooperative Work (CSCW), 2013, pp. 1007-1022.

T. D. LaToza, D. Garlan, J. D. Herbsleb, B. A. Myers, “Program
comprehension as fact finding.” European Software Engineering
Conference and Foundations of Software Engineering (ESEC/FSE),
2007, pp. 361-370.

T. D. LaToza and A. van der Hoek, “A vision of crowd development”.
International Conference on Software Engineering, NIER track (ICSE
NIER), 2015.

T. D. LaToza and B. A. Myers, “Hard-to-answer questions about code.”
Workshop on the Evaluation and Usability of Programming Languages
and Tools (PLATEAU), 2010, 6 pages.

T. D. LaToza, W. B. Towne, C. M. Adriano, and A. van der Hoek,
“Microtask programming: building software with a crowd.” Symposium
on User Interface Systems and Technology (UIST), 2014, pp. 43-54.

T. D. LaToza, G. Venolia, and R. DeLine, “Maintaining mental models:
a study of developer work habits.” International Conference on Software
Engineering (ICSE), 2006, pp. 492-501.

G. Little, L. B. Chilton, M. Goldman, and R. C. Miller, “TurKit: human
computation algorithms on mechanical turk.” Symposium on User
interface software and technology (UIST), 2010, pp. 57-66.

D. Retelny, S. Robaszkiewicz, A. To, W. S. Lasecki, J. Patel, N.
Rahmati, T. Doshi, M. Valentine, and M. S. Bernstein, “Expert
crowdsourcing with flash teams.” Symposium on User Interface
Software and Technology (UIST), 2014, pp. 75-85.

