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What	
  if	
  so:ware	
  could	
  be	
  built	
  by	
  a	
  crowd?

Decomposing	
  tasks	
  (hours	
  -­‐	
  days)	
  into	
  
microtasks	
  (seconds	
  -­‐	
  to	
  minutes)	
  increases	
  
parallelism,	
  reducing	
  -me	
  to	
  market.	
  
	
  	
  	
  	
  	
  	
  	
  
Could	
  1,000,000	
  developers	
  build	
  a	
  large	
  
applica?on	
  in	
  a	
  day?

Lowering	
  joining	
  costs	
  exploits	
  the	
  “long	
  tail”	
  
of	
  poten?al	
  contributors.	
  
	
  	
  	
  	
  	
  	
  	
  	
  
Could	
  a	
  developer	
  join	
  a	
  project,	
  and	
  
immediately	
  contribute?	
  

task	
  

microtasks	
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!
!

Could	
  this	
  work?	
  
!
!
!

Let’s	
  find	
  out!
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Microtasking	
  programming
Workers	
  work	
  on	
  a	
  single	
  func?on	
  or	
  test	
  at	
  a	
  ?me,	
  decomposing	
  tasks	
  to	
  implement	
  a	
  
feature	
  or	
  fix	
  a	
  bug	
  into	
  many	
  microtasks	
  that	
  can	
  be	
  done	
  in	
  parallel	
  by	
  the	
  crowd.
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Self-­‐contained	
  microtasks
Microtasks	
  are	
  designed	
  to	
  provide	
  self-­‐contained,	
  well-­‐defined	
  tasks,	
  including	
  all	
  
informa?on	
  necessary,	
  allowing	
  transient	
  workers	
  to	
  login	
  and	
  immediately	
  begin	
  work.
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Automa-c	
  task	
  genera-on
System	
  tracks	
  the	
  state	
  of	
  each	
  ar?fact,	
  determine	
  work	
  to	
  be	
  done,	
  generates	
  microtasks.	
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Workers	
  login	
  to	
  system	
  and	
  are	
  automa-cally	
  assigned	
  a	
  microtask.
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Key	
  simplifica-ons
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Work	
  begins	
  with	
  a	
  set	
  of	
  user	
  stories	
  (scenarios)	
  specified	
  by	
  client	
  which	
  do	
  not	
  change.	
  
	
  	
  	
  	
  	
  	
  	
  Each	
  user	
  story	
  can	
  be	
  tested	
  by	
  a	
  set	
  of	
  tests	
  of	
  a	
  main()	
  func?on.	
  
!
Func?ons	
  are	
  completely	
  specified	
  by	
  their	
  inputs	
  and	
  outputs.	
  (e.g.,	
  a	
  library)	
  
	
  	
  	
  	
  	
  	
  	
  Func?ons	
  do	
  not	
  mutate	
  global	
  state	
  or	
  interact	
  with	
  environment	
  (e.g.,	
  write	
  output).	
  

All	
  bugs	
  can	
  be	
  detected	
  through	
  unit	
  tests.	
  
!
Programs	
  are	
  wriWen	
  in	
  a	
  (basic	
  subset	
  of)	
  Javascript	
  (e.g.,	
  no	
  callbacks).	
  
!
Programming	
  tasks	
  are	
  to	
  implement	
  a	
  feature,	
  fix	
  a	
  bug,	
  write	
  tests.	
  
!
All	
  design	
  is	
  done	
  locally	
  and	
  itera?vely	
  (e.g.,	
  through	
  refactoring).	
  
!
Workers	
  are	
  mo-vated	
  by	
  pay	
  or	
  reputa?on	
  and	
  not	
  malicious.	
  
!
==>	
  crowdsourcing	
  the	
  programming	
  of	
  func?onal	
  Javascript	
  libraries	
  
!
!



Demo!
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Challenges	
  crowdsourcing	
  so:ware	
  development

!
• How	
  does	
  the	
  system	
  generate	
  microtasks?	
  
!
!

• How	
  can	
  microtasks	
  be	
  done	
  concurrently?
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How	
  does	
  the	
  system	
  generate	
  microtasks?
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Exis?ng	
  approaches	
  to	
  crowdsourcing	
  complex	
  work	
  rely	
  on	
  a	
  fixed	
  sequence	
  of	
  steps.	
  
e.g.,	
  map	
  reduce	
  approach	
  
So_ware	
  development	
  is	
  dynamic,	
  cannot	
  enumerate	
  tasks	
  in	
  advance

Each	
  ar?fact	
  has	
  aOributes	
  describing	
  its	
  state.	
  Submi`ng	
  microtask	
  may	
  change	
  a	
  
func?on’s	
  aWributes,	
  genera-ng	
  microtasks.	
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If	
  code	
  changes,	
  run	
  tests,	
  unless	
  there’s	
  pseudocode.

Func-on	
  state	
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How	
  can	
  microtasks	
  be	
  done	
  concurrently?

So_ware	
  development	
  involves	
  dependencies	
  between	
  ar?facts;	
  as	
  an	
  ar?fact	
  changes,	
  
others	
  may	
  also	
  need	
  to	
  change.	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  All	
  ar?facts	
  in	
  the	
  system	
  may	
  be	
  changing	
  concurrently.	
  
!
Only	
  one	
  microtask	
  may	
  be	
  ac?ve	
  per	
  ar?fact,	
  preven?ng	
  merge	
  conflicts.	
  Events	
  
propagate	
  changes	
  (signature,	
  tests)	
  across	
  dependencies.	
  Microtasks	
  may	
  “check	
  out”	
  
a	
  readonly	
  copy	
  of	
  global	
  interfaces,	
  but	
  may	
  only	
  commit	
  a	
  change	
  to	
  a	
  single	
  ar?fact.	
  
Events	
  received	
  on	
  an	
  ar?fact	
  queue	
  microtasks	
  to	
  be	
  done.	
  
!
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Current	
  status

!
!
!
!
!
Ran	
  a	
  pilot	
  study,	
  crowdsourcing	
  a	
  small	
  (~500	
  line?)	
  checkers	
  program	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  Revealed	
  bugs,	
  usability	
  issues,	
  need	
  for	
  data	
  structures.	
  
!
!
!
!
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Emergent	
  design:	
  aggrega-ng	
  conflic-ng	
  local	
  views
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Mul?ple	
  func?ons	
  may	
  call	
  the	
  same	
  func?on.	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  What	
  happens	
  when	
  their	
  expecta?ons	
  conflict?	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  ==>	
  edit	
  war,	
  as	
  func?ons	
  repeatedly	
  changed	
  to	
  conform	
  to	
  conflic?ng	
  tests	
  
!
Aggrega?on	
  through	
  discussion	
  threads,	
  bringing	
  in	
  relevant	
  ar?facts	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  Func?on	
  has	
  a	
  discussion	
  thread	
  visible	
  to	
  func?on,	
  tests,	
  callers.	
  	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
Workers	
  are	
  transient,	
  so	
  can’t	
  reference	
  workers	
  (e.g.,	
  they	
  might	
  leave).	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  Use	
  @	
  to	
  reference	
  ar?facts	
  in	
  discussion,	
  microtask	
  assigned	
  to	
  followup.	
  
!
!
!
!

work	
  by	
  Lucinda	
  Lim	
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Conclusions
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Programming	
  tasks	
  can	
  be	
  decomposed	
  into	
  microtasks	
  at	
  a	
  func-on	
  granularity.	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
Challenges	
  involve	
  ensuring	
  microtasks	
  are	
  self-­‐contained	
  and	
  can	
  be	
  done	
  in	
  parallel.	
  
!
Open	
  ques?ons	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  Decomposi?on	
  at	
  what	
  granularity?	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  Smaller	
  -­‐>	
  more	
  parallel,	
  less	
  entry	
  barrier;	
  larger	
  -­‐>	
  less	
  overhead	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  How	
  much	
  context	
  is	
  necessary?	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  How	
  much	
  background	
  about	
  the	
  system	
  is	
  necessary?	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  Tradeoffs	
  between	
  pulling	
  informa?on	
  (Q&A)	
  vs.	
  pushing	
  (reviews)	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  What’s	
  the	
  role	
  of	
  design?	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  Can	
  so_ware	
  be	
  built	
  en?rely	
  modularly?	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  Does	
  this	
  increase	
  the	
  duplica?on	
  and	
  conflicts	
  within	
  the	
  system?	
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Ques-ons
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Backup
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Fixing	
  a	
  bug
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