
Department	
  of	
  Informa-cs,	
  UC	
  IrvineSDCLCollabora-on	
  Laboratory
So:ware	
  Design	
  and

sdcl.ics.uci.edu	
  	
  

CrowdCode: A Platform for 
Crowd Development	



Thomas D. LaToza1, Eric Chiquillo1, 2, W. Ben Towne3, Christian M. Adriano1, André van der Hoek1
	



1University of California, Irvine	

 2 Zynga 3 Carnegie Mellon University



Department	
  of	
  Informa-cs,	
  UC	
  IrvineSDCLCollabora-on	
  Laboratory
So:ware	
  Design	
  and

What	
  if	
  so:ware	
  could	
  be	
  built	
  by	
  a	
  crowd?

Decomposing	
  tasks	
  (hours	
  -­‐	
  days)	
  into	
  
microtasks	
  (seconds	
  -­‐	
  to	
  minutes)	
  increases	
  
parallelism,	
  reducing	
  -me	
  to	
  market.	
  
	
  	
  	
  	
  	
  	
  	
  
Could	
  1,000,000	
  developers	
  build	
  a	
  large	
  
applica?on	
  in	
  a	
  day?

Lowering	
  joining	
  costs	
  exploits	
  the	
  “long	
  tail”	
  
of	
  poten?al	
  contributors.	
  
	
  	
  	
  	
  	
  	
  	
  	
  
Could	
  a	
  developer	
  join	
  a	
  project,	
  and	
  
immediately	
  contribute?	
  

task	
  

microtasks	
  

�2



!
!

Could	
  this	
  work?	
  
!
!
!

Let’s	
  find	
  out!

�3



Department	
  of	
  Informa-cs,	
  UC	
  IrvineSDCLCollabora-on	
  Laboratory
So:ware	
  Design	
  and

Microtasking	
  programming
Workers	
  work	
  on	
  a	
  single	
  func?on	
  or	
  test	
  at	
  a	
  ?me,	
  decomposing	
  tasks	
  to	
  implement	
  a	
  
feature	
  or	
  fix	
  a	
  bug	
  into	
  many	
  microtasks	
  that	
  can	
  be	
  done	
  in	
  parallel	
  by	
  the	
  crowd.

�4



Department	
  of	
  Informa-cs,	
  UC	
  IrvineSDCLCollabora-on	
  Laboratory
So:ware	
  Design	
  and

Self-­‐contained	
  microtasks
Microtasks	
  are	
  designed	
  to	
  provide	
  self-­‐contained,	
  well-­‐defined	
  tasks,	
  including	
  all	
  
informa?on	
  necessary,	
  allowing	
  transient	
  workers	
  to	
  login	
  and	
  immediately	
  begin	
  work.

�5



Department	
  of	
  Informa-cs,	
  UC	
  IrvineSDCLCollabora-on	
  Laboratory
So:ware	
  Design	
  and �6

Automa-c	
  task	
  genera-on
System	
  tracks	
  the	
  state	
  of	
  each	
  ar?fact,	
  determine	
  work	
  to	
  be	
  done,	
  generates	
  microtasks.	
  

described
!written

!described

described
written
buggy

described
written
!buggy

Write 
description

Edit
code

Edit code

Run tests
Edit
code

Debug

Debug

Edit
code

Func-on	
  state	
  machine

Workers	
  login	
  to	
  system	
  and	
  are	
  automa-cally	
  assigned	
  a	
  microtask.



Department	
  of	
  Informa-cs,	
  UC	
  IrvineSDCLCollabora-on	
  Laboratory
So:ware	
  Design	
  and

Key	
  simplifica-ons

�7

Work	
  begins	
  with	
  a	
  set	
  of	
  user	
  stories	
  (scenarios)	
  specified	
  by	
  client	
  which	
  do	
  not	
  change.	
  
	
  	
  	
  	
  	
  	
  	
  Each	
  user	
  story	
  can	
  be	
  tested	
  by	
  a	
  set	
  of	
  tests	
  of	
  a	
  main()	
  func?on.	
  
!
Func?ons	
  are	
  completely	
  specified	
  by	
  their	
  inputs	
  and	
  outputs.	
  (e.g.,	
  a	
  library)	
  
	
  	
  	
  	
  	
  	
  	
  Func?ons	
  do	
  not	
  mutate	
  global	
  state	
  or	
  interact	
  with	
  environment	
  (e.g.,	
  write	
  output).	
  

All	
  bugs	
  can	
  be	
  detected	
  through	
  unit	
  tests.	
  
!
Programs	
  are	
  wriWen	
  in	
  a	
  (basic	
  subset	
  of)	
  Javascript	
  (e.g.,	
  no	
  callbacks).	
  
!
Programming	
  tasks	
  are	
  to	
  implement	
  a	
  feature,	
  fix	
  a	
  bug,	
  write	
  tests.	
  
!
All	
  design	
  is	
  done	
  locally	
  and	
  itera?vely	
  (e.g.,	
  through	
  refactoring).	
  
!
Workers	
  are	
  mo-vated	
  by	
  pay	
  or	
  reputa?on	
  and	
  not	
  malicious.	
  
!
==>	
  crowdsourcing	
  the	
  programming	
  of	
  func?onal	
  Javascript	
  libraries	
  
!
!



Demo!

�8



Department	
  of	
  Informa-cs,	
  UC	
  IrvineSDCLCollabora-on	
  Laboratory
So:ware	
  Design	
  and

Challenges	
  crowdsourcing	
  so:ware	
  development

!
• How	
  does	
  the	
  system	
  generate	
  microtasks?	
  
!
!

• How	
  can	
  microtasks	
  be	
  done	
  concurrently?

�9



Department	
  of	
  Informa-cs,	
  UC	
  IrvineSDCLCollabora-on	
  Laboratory
So:ware	
  Design	
  and

How	
  does	
  the	
  system	
  generate	
  microtasks?

�10

Exis?ng	
  approaches	
  to	
  crowdsourcing	
  complex	
  work	
  rely	
  on	
  a	
  fixed	
  sequence	
  of	
  steps.	
  
e.g.,	
  map	
  reduce	
  approach	
  
So_ware	
  development	
  is	
  dynamic,	
  cannot	
  enumerate	
  tasks	
  in	
  advance

Each	
  ar?fact	
  has	
  aOributes	
  describing	
  its	
  state.	
  Submi`ng	
  microtask	
  may	
  change	
  a	
  
func?on’s	
  aWributes,	
  genera-ng	
  microtasks.	
  

described
!written

!described

described
written
buggy

described
written
!buggy

Write 
description

Edit
code

Edit code

Run tests
Edit
code

Debug

Debug

Edit
code

wriWen	
  (no	
  pseudocode)	
  
described	
  (has	
  a	
  func?on	
  descrip?on)	
  
buggy	
  (fails	
  test)	
  

If	
  code	
  changes,	
  run	
  tests,	
  unless	
  there’s	
  pseudocode.

Func-on	
  state	
  machine



Department	
  of	
  Informa-cs,	
  UC	
  IrvineSDCLCollabora-on	
  Laboratory
So:ware	
  Design	
  and

How	
  can	
  microtasks	
  be	
  done	
  concurrently?

So_ware	
  development	
  involves	
  dependencies	
  between	
  ar?facts;	
  as	
  an	
  ar?fact	
  changes,	
  
others	
  may	
  also	
  need	
  to	
  change.	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  All	
  ar?facts	
  in	
  the	
  system	
  may	
  be	
  changing	
  concurrently.	
  
!
Only	
  one	
  microtask	
  may	
  be	
  ac?ve	
  per	
  ar?fact,	
  preven?ng	
  merge	
  conflicts.	
  Events	
  
propagate	
  changes	
  (signature,	
  tests)	
  across	
  dependencies.	
  Microtasks	
  may	
  “check	
  out”	
  
a	
  readonly	
  copy	
  of	
  global	
  interfaces,	
  but	
  may	
  only	
  commit	
  a	
  change	
  to	
  a	
  single	
  ar?fact.	
  
Events	
  received	
  on	
  an	
  ar?fact	
  queue	
  microtasks	
  to	
  be	
  done.	
  
!

�11

function a

function c

function d

function e

function f

function b

Edit
[interface 
change]

[new test]

Queued:
Interface change

Debug

Debug

Edit

Queued:
debug

Edit

Edit



Department	
  of	
  Informa-cs,	
  UC	
  IrvineSDCLCollabora-on	
  Laboratory
So:ware	
  Design	
  and

Current	
  status

!
!
!
!
!
Ran	
  a	
  pilot	
  study,	
  crowdsourcing	
  a	
  small	
  (~500	
  line?)	
  checkers	
  program	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  Revealed	
  bugs,	
  usability	
  issues,	
  need	
  for	
  data	
  structures.	
  
!
!
!
!

�12



Department	
  of	
  Informa-cs,	
  UC	
  IrvineSDCLCollabora-on	
  Laboratory
So:ware	
  Design	
  and

Emergent	
  design:	
  aggrega-ng	
  conflic-ng	
  local	
  views

�13

Mul?ple	
  func?ons	
  may	
  call	
  the	
  same	
  func?on.	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  What	
  happens	
  when	
  their	
  expecta?ons	
  conflict?	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  ==>	
  edit	
  war,	
  as	
  func?ons	
  repeatedly	
  changed	
  to	
  conform	
  to	
  conflic?ng	
  tests	
  
!
Aggrega?on	
  through	
  discussion	
  threads,	
  bringing	
  in	
  relevant	
  ar?facts	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  Func?on	
  has	
  a	
  discussion	
  thread	
  visible	
  to	
  func?on,	
  tests,	
  callers.	
  	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
Workers	
  are	
  transient,	
  so	
  can’t	
  reference	
  workers	
  (e.g.,	
  they	
  might	
  leave).	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  Use	
  @	
  to	
  reference	
  ar?facts	
  in	
  discussion,	
  microtask	
  assigned	
  to	
  followup.	
  
!
!
!
!

work	
  by	
  Lucinda	
  Lim	
  



Department	
  of	
  Informa-cs,	
  UC	
  IrvineSDCLCollabora-on	
  Laboratory
So:ware	
  Design	
  and

Conclusions

�14

Programming	
  tasks	
  can	
  be	
  decomposed	
  into	
  microtasks	
  at	
  a	
  func-on	
  granularity.	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
Challenges	
  involve	
  ensuring	
  microtasks	
  are	
  self-­‐contained	
  and	
  can	
  be	
  done	
  in	
  parallel.	
  
!
Open	
  ques?ons	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  Decomposi?on	
  at	
  what	
  granularity?	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  Smaller	
  -­‐>	
  more	
  parallel,	
  less	
  entry	
  barrier;	
  larger	
  -­‐>	
  less	
  overhead	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  How	
  much	
  context	
  is	
  necessary?	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  How	
  much	
  background	
  about	
  the	
  system	
  is	
  necessary?	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  Tradeoffs	
  between	
  pulling	
  informa?on	
  (Q&A)	
  vs.	
  pushing	
  (reviews)	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  What’s	
  the	
  role	
  of	
  design?	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  Can	
  so_ware	
  be	
  built	
  en?rely	
  modularly?	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  Does	
  this	
  increase	
  the	
  duplica?on	
  and	
  conflicts	
  within	
  the	
  system?	
  



Department	
  of	
  Informa-cs,	
  UC	
  IrvineSDCLCollabora-on	
  Laboratory
So:ware	
  Design	
  and

Ques-ons

�15



Department	
  of	
  Informa-cs,	
  UC	
  IrvineSDCLCollabora-on	
  Laboratory
So:ware	
  Design	
  and

Backup

�16



�17



�18



�19



�20



�21



�22



Department	
  of	
  Informa-cs,	
  UC	
  IrvineSDCLCollabora-on	
  Laboratory
So:ware	
  Design	
  and

Fixing	
  a	
  bug

�23


