
Thomas LaToza

Theories of Program Comprehension in
the Age of LLMs

2

Vibe coding with an LLM

3

Programming is changing fundamentally.

Future of programming will be less about coding and  
more about program comprehension

4

• How can developers understand the code LLMs generate?

• How much understanding is still necessary?

• How do developers figure out what's wrong when it doesn't work?

5

6https://github.blog/news-insights/research/research-quantifying-github-copilots-impact-on-developer-productivity-and-happiness/

"Today, more than a quarter of
all new code at Google is
generated by AI, then reviewed
and accepted by engineers.
This helps our engineers do
more and move faster."

Sundar Pichai
CEO, Google

10/30/2024

https://github.blog/news-insights/research/research-quantifying-github-copilots-impact-on-developer-productivity-and-happiness/

7https://survey.stackoverflow.co/2024/ai

8https://survey.stackoverflow.co/2024/ai

9https://survey.stackoverflow.co/2024/ai

Grounded CoPilot
• Devs use code completion LLMs in two modes

• Acceleration: completing thought process

• Developers formulate detailed idea for code

• Long suggestions break flow

• Skim suggestions to find one that matches
expectations

• Exploration: novel tasks & unexpected behavior

• Generate many solutions, mix and match solutions

• Carefully validate by testing & reading docs

10Shraddha Barke, Michael B. James, and Nadia Polikarpova. 2023. Grounded Copilot: How Programmers Interact with Code-Generating Models. Proc. ACM
Program. Lang. 7, OOPSLA1, Article 78 (April 2023), 27 pages. https://doi.org/10.1145/3586030

Evaluating the Usability of Code Generation Tools Powered by LLMs

• Developers felt more productive, but not
significantly faster

• Replaced StackOverflow for API
interactions, but only one suggestion &
solutions often had defects

• Debugging sometimes harder without
knowledge of how the code should work

• Sometimes suggested approaches that led
participants in the direction of bad solutions

11

not significant (p = 0.53)

Priyan Vaithilingam, Tianyi Zhang, and Elena L. Glassman. 2022. Expectation vs. Experience: Evaluating the Usability of Code Generation Tools
Powered by Large Language Models. In CHI Extended Abstracts,, 1–7. https://doi.org/10.1145/3491101.3519665

Perceptions of Paradigms of Automation

• For complex tasks, developers value guiding LLM rather than full automation

12Anjali Khurana, Xiaotian Su, April Yi Wang, and Parmit K Chilana. 2025. Do It For Me vs. Do It With Me: Investigating User Perceptions of
Different Paradigms of Automation in Copilots for Feature-Rich Software. CHI 2025, 1–18.

• How can developers understand the code LLMs generate?

• How much understanding is still necessary?

• How do developers figure out what's wrong when it doesn't work?

13

14

Mature scientific disciplines are characterized by their theories,
synthesizing what is known about phenomena into forms which
generate falsifiable predictions about the world. In computer
science, the role of synthesizing ideas has largely been through
formalisms that describe how programs compute. However, just
as important are scientific theories about how programmers
write these programs. For example, software engineering
research has increasingly begun gathering data, through
observations, surveys, interviews, and analysis of artifacts,
about the nature of programming work and the challenges
developers face, and evaluating novel programming tools
through controlled experiments with software developers.
Computer science education and human-computer interaction
research has done similar work, but for people with different
levels of experience and ages learning to write programs. But
data from such empirical studies is often left isolated, rather
than combined into useful theories which explain all of the
empirical results. This lack of theory makes it harder to predict
in which contexts programming languages, tools, and
pedagogy will actually help people successfully write and learn
to create software.
Computer science needs scientific theories that synthesize
what we believe to be true about programming and offer
falsifiable predictions. Whether or not a theory is ultimately
found to be consistent with evidence or discarded, theories
offer a clear statement about our current understanding,
helping us in prioritizing studies, generalizing study results from
individual empirical results to more general understanding of
phenomena, and offering the ability to design tools in ways that
are consistent with current knowledge.

Theories of Program Comprehension in the Age of LLMs

• How can developers still understand the code being generated?

⇒ Theories of Information Needs in Programming

• To what extent do developers really have to understand the code being
written?

⇒ Theories of Information Hiding

• How do developers figure out what's wrong when it doesn't work?

⇒ Theories of Debugging

15

Theories of Program Comprehension in the Age of LLMs

16

• How can developers still understand the code being generated?

⇒ Theories of Information Needs in Programming

• To what extent do developers really have to understand the code being
written?

⇒ Theories of Information Hiding

• How do developers figure out what's wrong when it doesn't work?

⇒ Theories of Debugging

Theories of Information Needs in Programming

• Developers ask questions

• Questions are task-specific

• Answering questions raises more questions.

• Tool which successfully supports the questions
a developer asks increases their productivity

17

What does this do when input is null?
What part of this is being done client side and what part server side?

debugging refactoring testing testing

Techniques for understanding code

18
Thomas D. LaToza, Gina Venolia, and Robert DeLine. 2006. Maintaining mental models: a study of developer work habits. In Proceedings of
the 28th international conference on Software engineering (ICSE '06), Experience Report, 492–501. https://doi.org/10.1145/1134285.1134355

What makes understanding code hard?

• Questions developers ask about code
that are hard to answer.

• May require substantial time and effort
to answer.

• May lead to many other questions to
answer

19

Time
(mins)

How is this data structure being mutated in this code? 83

“Where [is] the code assuming that the tables are
already there?” 53

How [does] application state change when m is called
denoting startup completion? 50

What decisions might be incompatible with reuse in
new context? 24

“Is [there] another reason why status could be non-
zero?” 11

Longest investigation activities

Thomas D. LaToza and Brad A. Myers. 2010. Developers ask reachability questions. In International Conference on Software Engineering,
185–194. https://doi.org/10.1145/1806799.1806829

How did this runtime state occur? (12) [15]
What runtime state changed when this executed? (2)
Where was this variable last changed? (1)
How is this object different from that object? (1)
Why didn’t this happen? (3)
How do I debug this bug in this environment? (3)
In what circumstances does this bug occur? (3) [15]
Which team’s component caused this bug? (1)

Debugging (26)
How do I implement this (8), given this constraint (2)? (10)
Which function or object should I pick? (2)
What’s the best design for implementing this? (7)

Implementing (19)

What is the policy for doing this? (10) [24]
Is this the correct policy for doing this? (2) [15]
How is the allocation lifetime of this object maintained? (3)

Policies (15)

Why was it done this way? (14) [15][7]
Why wasn’t it done this other way? (15)
Was this intentional, accidental, or a hack? (9)[15]
How did this ever work? (4)

Rationale (42)

When, how, by whom, and why was this code changed or
inserted? (13)[7]
What else changed when this code was changed or inserted? (2)
How has it changed over time? (4)[7]
Has this code always been this way? (2)
What recent changes have been made? (1)[15][7]
Have changes in another branch been integrated into this
branch? (1)

History (23)

What are the implications of this change for (5) API clients
(5), security (3), concurrency (3), performance (2), platforms
(1), tests (1), or obfuscation (1)? (21) [15][24]

Implications (21)

Is there functionality or code that could be refactored? (4)
Is the existing design a good design? (2)
Is it possible to refactor this? (9)
How can I refactor this (2) without breaking existing users(7)? (9)
Should I refactor this? (1)
Are the benefits of this refactoring worth the time investment? (3)

Refactoring (25)

Is this code correct? (6) [15]
How can I test this code or functionality? (9)
Is this tested? (3)
Is the test or code responsible for this test failure? (1)
Is the documentation wrong, or is the code wrong? (1)

Testing (20)

Should I branch or code against the main branch? (1)
How can I move this code to this branch? (1)
What do I need to include to build this? (3)
What includes are unnecessary? (2)
How do I build this without doing a full build? (1)
Why did the build break? (2)[59]
Which preprocessor definitions were active when this was built? (1)

Building and branching (11)

Who is the owner or expert for this code? (3)[7]
How do I convince my teammates to do this the “right way”? (12)
Did my teammates do this? (1)

Teammates (16)

What is the intent of this code? (12) [15]
What does this do (6) in this case (10)? (16) [24]
How does it implement this behavior? (4) [24]

Intent and Implementation (32)

How big is this code? (1)
How overloaded are the parameters to this function? (1)

Method properties (2)

Where is this functionality implemented? (5) [24]
Is this functionality already implemented? (5) [15]
Where is this defined? (3)

Location (13)

What is the performance of this code (5) on a large, real dataset (3)? (8)
Which part of this code takes the most time? (4)
Can this method have high stack consumption from recursion? (1)
How big is this in memory? (2)
How many of these objects get created? (1)

Performance (16)

What threads reach this code (4) or data structure (2)? (6)
Is this class or method thread-safe? (2)
What members of this class does this lock protect? (1)

Concurrency (9)

What assumptions about preconditions does this code make? (5)
What assumptions about pre(3)/post(2)conditions can be made?
What exceptions or errors can this method generate? (2)
What are the constraints on or normal values of this variable? (2)
What is the correct order for calling these methods or initializing
these objects? (2)
What is responsible for updating this field? (1)

Contracts (17)

In what situations or user scenarios is this called? (3) [15][24]
What parameter values does each situation pass to this method? (1)
What parameter values could lead to this case? (1)
What are the possible actual methods called by dynamic dispatch
here? (6)
How do calls flow across process boundaries? (1)
How many recursive calls happen during this operation? (1)
Is this method or code path called frequently, or is it dead? (4)
What throws this exception? (1)
What is catching this exception? (1)

Control flow (19)

What depends on this code or design decision? (4)[7]
What does this code depend on? (1)

Dependencies (5)

What is the original source of this data? (2) [15]
What code directly or indirectly uses this data? (5)
Where is the data referenced by this variable modified? (2)
Where can this global variable be changed? (1)
Where is this data structure used (1) for this purpose (1)? (2) [24]
What parts of this data structure are modified by this code? (1) [24]
What resources is this code using? (1)

Data flow (14)

What are the composition, ownership, or usage relationships of this type? (5) [24]
What is this type’s type hierarchy? (4) [24]
What implements this interface? (4) [24]
Where is this method overridden? (2)

Type relationships (15)

How does this code interact with libraries? (4)
What is the architecture of the code base? (3)
How is this functionality organized into layers? (1)
Is our API understandable and flexible? (3)

Architecture (11)

20

21

What does this do?
What does these functions do?

What does this do in this case?
What happens if an exception is thrown?

What happens if this operation times out?

What happens if the remote service is slow?

What is the intent of the code?
What is it trying to accomplish?

How does it implement this behavior?
How is this data aggregated and how is it translated from one place to another.

How does this class (or collection of classes) fulfill the functional feature of the application?

Thomas D. LaToza and Brad A. Myers. 2010. Hard-to-answer questions about code. In Evaluation and Usability of Programming Languages and
Tools (PLATEAU '10), 1–6. https://doi.org/10.1145/1937117.1937125

22

What depends on this code or design decision?
What else depends on this code? 	
Who else uses this code / function. (i.e. If we change this, what will break simply because
someone else has found a way to use this and we don't even know they are doing so...)	

What are the implications of this change for API clients, security, concurrency,
performance, platforms, tests, or obfuscation?
What is the implication of these changes in terms of the backward compatibility? 	
Across components with a code base the size of complete applications, what are the implications
of a functional change in base storage to all accessors in the system (including clients of
applications built on top of the place where the change is occurring)	

How can I refactor this without breaking existing users?
How can I refactor this piece w/o causing an avalanche of new places to refactor?	

Thomas D. LaToza and Brad A. Myers. 2010. Hard-to-answer questions about code. In Evaluation and Usability of Programming Languages and
Tools (PLATEAU '10), 1–6. https://doi.org/10.1145/1937117.1937125

23

Why was it done this way?
Why was this code structured in this way?

Why was this done this way? Is there some reason for this ancient code doing what it
does that I'm missing?

Why wasn't it done this other way?
Why didn't they use this method/object/interface as it appears to have been designed?

Why did the original developer not use library function X? (was there a good reason or just
ignorance)

Was this intentional, accidental, or a hack?
Is the lack of parameter validation (most often lack of null checks) intentional or
incidental?

Is the lack of ''sealed'' on the class intentional or incidental? If intentional, why?
(assuming no virtual methods are present).

Thomas D. LaToza and Brad A. Myers. 2010. Hard-to-answer questions about code. In Evaluation and Usability of Programming Languages and
Tools (PLATEAU '10), 1–6. https://doi.org/10.1145/1937117.1937125

Studies of questions developers ask

24

Failure in information needs
• Developers guess and make assumptions about answers to questions, and

sometimes are wrong, leading to defects.

25

False belief held by developer Correct fact about control flow

Method a need not call method b, as all
calls to be are redundant.

m is called in several additional
situations in which n has not been
called.

b

…
b✖

Thomas D. LaToza and Brad A. Myers. 2010. Developers ask reachability questions. In International Conference on Software Engineering,
185–194. https://doi.org/10.1145/1806799.1806829

Supporting question answering with tools

26

a) b)

T. D. LaToza and B. A. Myers, “Visualizing call graphs,” in Proc. Symp. Visual Languages and Human-Centric Computing (VL/HCC), 2011, pp. 117–124. doi: 10.1109/
VLHCC.2011.6070388. 

Programming Schemas

27

import { useState } from 'react';

function SearchableVideoList({ videos }) {
 const [searchText, setSearchText] = useState('');
 const foundVideos = filterVideos(videos, searchText);
 return (
 <>
 <SearchInput
 value={searchText}
 onChange={newText => setSearchText(newText)} />
 <VideoList
 videos={foundVideos}
 emptyHeading={`No matches for “${searchText}”`} />
 </>
);
}

Knowledgeable developers see code differently

LESS EXPERIENCED DEVELOPERS
“What it did was it…computes the new line
number and fires an event. But I didn’t see it
change any state.” (38 mins, 10 mins reading
getFoldLevel)

“So what it does, it starts off from this line, it
has this firstInvalidFoldLevel, it goes through
all these lines, it checks whether this fold
information is correct or not, which is this
newFoldLevel, this is supposed to be the
correct fold level. If that is not the case in the
data structure, it needs to change the state of
the buffer. It creates this, it does this change, it
sets the fold level of that line to the new fold
level.” (51 mins, 12 mins reading getFoldLevel)

EXPERIENCED DEVELOPER
“Well, this is just updating a cache” (1 min)

28
Thomas D. LaToza, David Garlan, James D. Herbsleb, and Brad A. Myers. 2007. Program comprehension as fact finding. In European software
engineering conference and the Symposium on the Foundations of Software Engineering, 361–370. https://doi.org/10.1145/1287624.1287675

29D. I. Samudio and T. D. LaToza, "Barriers in Front-End Web Development," 2022 IEEE Symposium on Visual Languages and Human-Centric
Computing (VL/HCC), 2022, pp. 1-11, doi: 10.1109/VL/HCC53370.2022.9833127.

Developers are already using LLMs to answer questions

• Alignment between questions
developers ask and the questions LLMs
can help answer determines support
and improvement of program
comprehension.

• Which questions is it helping answer
well already?

• Where is it still struggling or less
effective? (these questions become
more important since still hard)

30

Benchmarking Program Comprehension with LLMs

• Existing benchmarks examine full
automation of SE (e.g., success in
generating a patch)

• Many tasks will still require
developer involvement.

• Want to have benchmarks that
measure benefit to program
comprehension of an LLM assistant

• Can use hard to answer questions
as benchmark

31

LLMs and Organization Knowledge

• Big shift underway from using
StackOverflow and other crowdsourced
knowledge repos to using LLMs trained
on these resources

• Internal dev tool orgs looking to promote
knowledge sharing by connecting
communication channels (issue trackers,
Slack, design wikis, etc.) to LLMs

• If expertise all consumed through LLM,
less motivation to document it explicitly?

32

Documentation or Reverse Engineering?

• Should we build tools that create documentation?

• Developer can see and approve documentation?

• But what information is important enough to
document?

• And, given many questions are situational, how much
can you really cover in the docs?

• And can docs still go out of date?

• Or build tools that reverse engineer code to answer
questions?

• Can tackle any question

• But how to ensure trust in the answer, if there is no
developer signing off on them?

33

code

LLM draft

answer

expected questions

human  
editor docs

Documentation Generation

Reverse Engineering

issue descriptions, chat

LLM

code

expected questions

issue descriptions, chat

Theories of Program Comprehension in the Age of LLMs

34

• How can developers still understand the code being generated?

⇒ Theories of Information Needs in Programming

• To what extent do developers really have to understand the code being
written?

⇒ Theories of Information Hiding

• How do developers figure out what's wrong when it doesn't work?

⇒ Theories of Debugging

Theories of Information Hiding

• Limit information developers need to be aware of about code

35

Theories of Information Hiding

• Abstraction - only think about the high-level operations of what some code
does, not all the details

• Design by contract - don't need to understand the implementation, just the
input/ouput behavior

• Information hiding - only the person writing the library / framework really needs
to know all the details about how it works

• Enable reuse - don't write the same old code again, just reuse a library or
framework that does it

36

Powerful abstractions help build more quickly

37

1972 2025

• Parnas' Key Words in Context Problem, used to illustrate 1972 paper on information hiding

• The KWIC index system accepts an ordered set of lines, each line is an ordered set of
words, and each word is an ordered set of characters. Any line may be "circularly shifted"
by repeatedly removing the first word and appending it at the end of the line. The KWXC
index system outputs a listing of all circular shifts of all lines in alphabetical order.

D. L. Parnas. 1972. On the criteria to be used in decomposing systems into modules. Commun. ACM 15, 12 (Dec. 1972), 1053–1058. https://
doi.org/10.1145/361598.361623

What happened???!?

• Modern collections libraries do
almost all the work, with only a
tiny bit of code written on top

• Much of the code that
developers used to constantly
rewrite, from scratch, is
already written by someone
else, stored in a library /
framework somewhere

38
xkcd 2347: Dependency

Limitations of abstraction
• Leaky abstractions: details that were supposed to be hidden still matter, particularly for

qualities like performance

• Hidden dependencies: implementation may interact with other modules in unexpected
ways, creating unexpected behavior, and making debugging difficult

• Hyrum's law

• With a sufficient number of users of an API,

• it does not matter what you promise in the contract:

• all observable behaviors of your system

• will be depended on by somebody.

39
Spolsky, Joel (2002). "The Law of Leaky Abstractions".

https://www.hyrumslaw.com/

https://www.joelonsoftware.com/2002/11/11/the-law-of-leaky-abstractions/
https://www.hyrumslaw.com/

Generating code with a tool

40

Theories of Abstraction in the age of LLMs

• Developers long told not to think too much about all the code they reuse

• Trust the framework / library developers who wrote it that it works

• Developers vibe coding with an LLM generate lots of code that they also don't think
too much about

• But bad to trust the code too much, as the LLM makes more mistakes

• But....

• What if most of the code IS framework code, already written before?

41

Theories of Abstraction in the Age of LLMs

• Small teams of expert software
engineers build the hard building blocks
that require deep system expertise,
exposed as framework and libraries

• Everyone else vibe codes with LLMs to
build small ephemeral apps on top of
the underlying capabilities of LLMs

42

Continues trend of empowerment of EUP

43

AI Native Spec-Driven Development

44https://www.tessl.io/

https://www.tessl.io/

Assuring LLM interactions

• LLMs hallucinate and sometimes create bad solutions

• What techniques do developers use to build trust in
code?

• Functional correctness: unit tests

• Quality attributes (performance, extensibility,
maintainability, scalability, ...): ???

• How can developers have more visibility, control, and
traceability across what LLMs are doing?

45

Theories of Program Comprehension in the Age of LLMs

46

• How can developers still understand the code being generated?

⇒ Theories of Information Needs in Programming

• To what extent do developers really have to understand the code being
written?

⇒ Theories of Information Hiding

• How do developers figure out what's wrong when it doesn't work?

⇒ Theories of Debugging

47

"Easy" defects "Hard" defects

Alaboudi, A., LaToza, T.D. What constitutes debugging? An exploratory study of debugging episodes. Empir Software Eng 28, 117 (2023).
https://doi.org/10.1007/s10664-023-10352-5

Theories of Debugging

• Fault localization: debugging is the process of finding the line with the defect

• Slicing: navigate forwards or backwards across control & data dependencies
to locate the defective line

• Strategies: follow a strategy to investigate the code in a systematic way

• Hypothesis testing: use intuition to form hypothesis and sytematically gather
evidence to accept or reject

48

Fault Localization

• Developers debugging first locate the
statement with the fault.

• Automatic fault localization supports
debugging by showing developers
this line.

49

Limitations of Fault Localization

• Studies find that showing developers the
line with the defect may not help

• Often need an explanation about cause
of defect to explain why statement is
incorrect

• Can only sometimes find the line w/ defect
50

Slicing

• Developers start at output statement that
generates symptom.

• Developers navigate control & data flow
backwards & navigate across control &
data flow backwards to understand

51

Tools can support slicing

52

picture of WhyLine

Limitations of Slicing

• May not work well for

• Questions about what did not happen

• Interactions involving API behavior

• Long running operations

53

Why didn’t this happen? (3)
How do I debug this bug in this environment? (3)
In what circumstances does this bug occur? (3)

Debugging hypotheses

54

Hypothesis-Based Debugging: Hypothesizer

55
Abdulaziz Alaboudi and Thomas D. Latoza. 2023. Hypothesizer: A Hypothesis-Based Debugger to Find and Test Debugging Hypotheses. In
Symposium on User Interface Software and Technology, 1–14. https://doi.org/10.1145/3586183.3606781

Debugging strategies

• Developers follow debugging
strategies to debug a defect.

56

• Developers choose different strategies
depending on context factors.

Explicit debugging strategies
• Can teach developers the best

strategy for a specific defect.

57LaToza, T.D., Arab, M., Loksa, D. et al. Explicit programming strategies. Empir Software Eng 25, 2416–2449 (2020). https://doi.org/10.1007/s10664-020-09810-1

M. Arab, J. Liang, Y. Yoo, A. J. Ko and T. D. LaToza. (2021). "HowToo: A Platform for Sharing, Finding, and Using Programming Strategies," Symposium on
Visual Languages and Human-Centric Computing, 1-9, doi: 10.1109/VL/HCC51201.2021.9576337.

Debugging in the Age of LLMs

• LLMs can already help debug

• Can help diagnose and fix code
involving incorrect API interactions

• If some of these are hard defects,
could already be a big win!

• More challenging for defects that

• less connected to API interactions

• require collecting information scattered
across files or through debugging tools

• require dynamic execution information
rather than static code text

58

Supporting debugging with LLMs

• Slicing: interpret information along a slice

• Fault localization: generate explanation &
fix

• Hypothesis testing: generate hypothesis &
gather evidence and work together to test

• Strategies: script IDE interactions to
gather information

59

Supporting explicit debugging strategies

60

• Programming strategies can help direct
agents LLMs.

• Offloads some of the boilerplate of
gathering info through strategies to LLM

Yasharth Bajpai, Bhavya Chopra, Param Biyani, Cagri Aslan, Sumit Gulwani, Dustin Coleman, Chris Parnin, Arjun Radhakrishna, Gustavo
Soares. Let’s Fix this Together: Conversational Debugging with GitHub Copilot. IEEE Symposium on Visual Languages and Human-
Centric Computing (VL/HCC) | August 2024 Best Research Paper Award

https://www.microsoft.com/en-us/research/people/ybajpai/
https://www.linkedin.com/in/param-biyani/
https://www.microsoft.com/en-us/research/people/sumitg/
https://www.microsoft.com/en-us/research/people/chrisparnin/
https://www.microsoft.com/en-us/research/people/arradha/
https://www.microsoft.com/en-us/research/people/gsoares/
https://www.microsoft.com/en-us/research/people/gsoares/
https://www.microsoft.com/en-us/research/publication/lets-fix-this-together-conversational-debugging-with-github-copilot/

Theories of Program Comprehension in the Age of LLMs

61

• How can developers still understand the code being generated?

⇒ Theories of Information Needs in Programming

• To what extent do developers really have to understand the code being
written?

⇒ Theories of Information Hiding

• How do developers figure out what's wrong when it doesn't work?

⇒ Theories of Debugging

Where do you design your tool to intervene?

• LLM helps to

• Translate a requirements doc into code

• Generate a new design doc from code

• Fix issue in issue tracker

• Diagnose & fix a defect

• Answer a complex question

• Execute strategy

• Generate a few lines of code

• Produce a simple fact about code

62

Potential time 
 savings

Freedom 
 & Control Trust

High-level task

Low level task
VS Code

Agentic programming

Auto coders

Spec-driven development

Charting a future of LLMs & program comprehension w/ Theories

• Traditional cognitivist theories of developer behavior

• Information needs, strategies, schemas,

• Theories of why tools help

• Build more theories by explicitly state what we believe, where we learned this

• Identify conflicting beliefs, use studies to test

• Create new tools informed by problems & activities from theories

63

Theories of Program Comprehension in the Age of LLMs

64

