The 33rd IEEE/ACM International

i} conference on Program Comprehension
IC 2% 125 ottawa, ON, Canada - April 27 - 28, 2025

Theories of Program Comprehension in
the Age of LLMs

Thomas LaToza

D’(Developer Experience Design Laboratory (GM SEICI)\?E% ESKI_IY\SON

Vibe coding with an LLM

+ Create App

() Home
[Apps

& Deployments

«n Usage

2, Teams Hi Thomas, what do you want to make?
Explore Replit |Describe an app or site you want to create... T

© Bounties

&) Templates

Q Learn
L) Documentation [J AI chat L) Book scanner 1 Stock analysis
Agent just got better! .
Your Starter Plan We've granted you 10 free checkpoints so you can try it out. Click to learn more.
<> Free Apps O

1/3 created

§$ Agent Checkpoints
® 0/10 used | Expire 5/3/2025

‘.’ Upgrade to Replit Core Your recent ADDS View All =

Programming is changing fundamentally.

Future of programming will be less about coding and
more about program comprehension

 How can developers understand the code LLMs generate?
 How much understanding is still necessary?

 How do developers figure out what's wrong when it doesn't work”?

& GitHub Copilot

We recruited

2 95

developers, and split them randomly into two groups.

"Today, more than a quarter of
all new code at Google 1s
generated by Al, then reviewed
and accepted by engineers.

We gave them the task of writing a web server in JavaScript

& 45 Used 2 50 Did not use This helps our engineers do
GitHub Copilot GitHub Copilot more and move faSter."
£ 78% E 70%
finished finished . .
Sundar Pichai
& 1 hour, 11 minutes & 2 hours, 41 minutes CEQO, Google
average to complete the task average to complete the task
10/30/2024

< ’ Results are statistically significant (P=.0017) and the 95% confidence interval is [21%, 89%]

https://qgithub.blog/news-insights/research/research-quantifying-github-copilots-impact-on-developer-productivity-and-happiness/

https://github.blog/news-insights/research/research-quantifying-github-copilots-impact-on-developer-productivity-and-happiness/

A\

\ 2024

= stackoverflow S sevetoeer

Al tools 1n the
development
process

76% of all respondents are using or are
planning to use Al tools in their
development process this year, an increase
from last year (70%). Many more
developers are currently using Al tools this
year, too (62% vs. 44%,).

[Do you currently use Al tools in your
development process? *

Al tool sentiment

72% of all respondents are favorable or
very favorable of Al tools for development.
This is lower than last year's favorability of
77%; a decline in favorability could be due
to disappointing results from usage.

3 How favorable is your stance on using Al
tools as part of your development workflow?

All Respondents Professional Developers Learning to Code Other Coders

Yes
No, but | plan to soon

No, and | don't plan to

¥ Download [Share

All Respondents Professional Developers Learning to Code Other Coders

Very favorable
Favorable
Indifferent
Unsure
Unfavorable

Very unfavorable

¥ Download [A Share

https://survey.stackoverflow.co/2024/ai

N

o
—

\ 2024

stackoverflow S evetorer

Benefits of Al tools

81% agree increasing productivity is the
biggest benefit that developers identify for
Al tools. Speeding up learning is seen as a
bigger benefit to developers learning to
code (71%) compared to professional
developers (61%).

ﬂ For the Al tools you use as part of your
development workflow, what are the MOST
important benefits you are hoping to
achieve? Please check all that apply.

Accuracy of Al tools

Similar to last year, developers remain split
on whether they trust Al output: 43% feel
good about Al accuracy and 31% are
skeptical. Developers learning to code are
trusting Al accuracy more than their
professional counterparts (49% vs. 42%).

ﬂ How much do you trust the accuracy of the
output from Al tools as part of your
development workflow?

All Respondents Professional Developers Learning to Code

Increase productivity

Speed up learning

Greater efficiency

Improve accuracy in coding

Make workload more manageable

Improve collaboration

¥ Download [A Share

All Respondents Professional Developers Learning to Code

Highly trust

Somewhat trust

Neither trust nor distrust
Somewhat distrust

Highly distrust

¥ Download (A Share

https://survey.stackoverflow.co/2024/ai

Other Coders

Other Coders

= stackoverflow S detoper

Currently Using Interested in Using Not Interested in Using

Al 1n the
development
workflow

Developers currently using Al tools mostly
use them to write code (82%) and those
who are interested but not yet using Al
tools are mostly curious about testing code
(46%). Developers with experience can
trust Al tools to help write code to get
started but perhaps know testing is a
complex step best left to traditional
processes.

ﬂ Which parts of your development workflow
are you currently using Al tools for and which
are you interested in using Al tools for over
the next year? Please select all that apply.

Writing code

Search for answers

Debugging and getting help
Documenting code

Generating content or syntheti...
Learning about a codebase
Testing code

Committing and reviewing code
Project planning

Predictive analytics

Deployment and monitoring

¥ Download [A Share

https://survey.stackoverflow.co/2024/ai

Grounded CoPilot

* Devs use code completion LLMs in two modes 29 iy) g —
%3 . I‘|||- ”-Ihﬁ l|-‘ IH|-‘|| “- - ||| ,n |||-- lﬂ-l
- . 16 A | | | SR I[HEET | B EEEESE [EE (
* Acceleration: completing thought process RS B e IR L K< BT IR X
£ 13 - Hoes | e - | - o
| | T8 I TP ey i el W o T el B il
* Developers formulate detailed idea for code e e e e -
T 8- - oE e e [ow LR e IR |
. . ZS: | |I'Iﬁﬂ !lll- e - 1“' Il:'_m:I 1
* Long suggestions break flow 2] i e—— F i
3 1 - e - [=~ |) e
1 L e A T e A
e Skim suggestions to find one that matches vercent of study compieted
expectations oo rutiog MR xoraton- i R g st
 EXxploration: novel tasks & unexpected behavior
* (Generate many solutions, mix and match solutions
» Carefully validate by testing & reading docs
Shraddha Barke, Michael B. James, and Nadia Polikarpova. 2023. Grounded Copilot: How Programmers Interact with Code-Generating Models. Proc. ACM 10

Program. Lang. 7, OOPSLAT1, Article 78 (April 2023), 27 pages. https://doi.org/10.1145/3586030

Evaluating the Usability of Code Generation Tools Powered by LLMs

* D_evlellcpers felt more prOd UCtlve’ bUt nOt Intel’flésse];sle- Ea(llszpilot Intrle‘alllsi]:ezn-sivI e((lli::illot Inteill?ss:(n::; Hél;)dpilot
significantly faster m Ml memml e
oot o1 1416 1505 05 DRE

* Replaced StackOverflow for API aoRd Il B
interactions, but only one suggestion & 2 aia| s DNE| DNE ss
SOlUtiOnS Often had defeCtS Areraee T(‘;::;all averagZ:tOirlne fori:liltasks comt)li::d - izgg I;gg —‘

not significant (p = 0.53)

 Debugging sometimes harder without
knowledge of how the code should work

o Sometimes suggested approaches that led
participants in the direction of bad solutions

Priyan Vaithilingam, Tianyi Zhang, and Elena L. Glassman. 2022. Expectation vs. Experience: Evaluating the Usability of Code Generation Tools 11
Powered by Large Language Models. In CHI Extended Abstracts,, 1-7. https://doi.org/10.1145/3491101.3519665

Perceptions of Paradigms of Automation

 For complex tasks, developers value guiding LLM rather than full automation

AutoCopilot: users experienced higher trial-and-error

Y

Prompt 1 Prompt 2 Prompt 3-6 Prompt 7

| want login page Can we remove the
() I want to create a to be very simple section that has | do not want this
Q login page for with just username product? [just template.
website. and password. want username
and password.
- .
(=’ Give instructions G& Customize/Debug Undo the generated ¢ Abandon copilot

Nthe automation task automation

GuidedCopilot: users experienced lower trial-and-error

Prompt1 Prompt 2 Prompt 3

O , How can | create a s Can you help add , Can you adjust the 5 Successful Task
D web page? text in the shape? font size for me? Completion

©

c§> Give instructions @ Execute tasks Refine tasks

Anjali Khurana, Xiaotian Su, April Yi Wang, and Parmit K Chilana. 2025. Do It For Me vs. Do It With Me: Investigating User Perceptions of
Different Paradigms of Automation in Copilots for Feature-Rich Software. CHI 2025, 1-18.

 How can developers understand the code LLMs generate?
 How much understanding is still necessary?

 How do developers figure out what's wrong when it doesn't work”?

13

Dagstuhl Seminar 22231

Theories of Programming
(Jun 06 - Jun 10, 2022)

Amy Ko (University of Washington - Seattle, US)

e Thomas D. LaToza (George Mason University - Fairfax, US)

David C. Shepherd (Virginia Commonwealth University - Richmond, US)
Dag Sjgberg (University of Oslo, NO)

Mature scientific disciplines are characterized by their theories,
synthesizing what is known about phenomena into forms which
generate falsifiable predictions about the world. In computer
science, the role of synthesizing ideas has largely been through
formalisms that describe how programs compute. However, just
as important are scientific theories about how programmers
write these programs. For example, software engineering
research has increasingly begun gathering data, through
observations, surveys, interviews, and analysis of artifacts,
about the nature of programming work and the challenges
developers face, and evaluating novel programming tools
through controlled experiments with software developers.
Computer science education and human-computer interaction
research has done similar work, but for people with different
levels of experience and ages learning to write programs. But
data from such empirical studies is often left isolated, rather
than combined into useful theories which explain all of the
empirical results. This lack of theory makes it harder to predict
INn which contexts programming languages, tools, and
pedagogy will actually help people successfully write and learn
to create software.

Computer science needs scientific theories that synthesize
what we believe to be true about programming and offer
falsifiable predictions. Whether or not a theory is ultimately
found to be consistent with evidence or discarded, theories
offer a clear statement about our current understanding,

helping us in prioritizing studies, generalizing study results from
individual empirical results to more general understanding of
phenomena, and offering the ability to design tools in ways that
are consistent with current knowledge. 14

Theories of Program Comprehension in the Age of LLMs

 How can developers still understand the code being generated?

= Theories of Information Needs in Programming

* [o what extent do developers really have to understand the code being
written?

= Theories of Information Hiding

 How do developers figure out what's wrong when it doesn't work”?

= Theories of Debugging

15

Theories of Program Comprehension in the Age of LLMs

« How can developers still understand the code being generated?

= Theories of Information Needs in Programming

* o what extent do developers really have to understand the code being
written?

= Theories of Information Hiding

« How do developers figure out what's wrong when it doesn't work”?

= Theories of Debugging

16

Theories of Information Needs in Programming

° DevelOperS aSk queStionS What does this do when input is null?

What part of this is being done client side and what part server side?

¢ QueStIOHS dle taSk-SpeCifiC debugging refactoring testing testing

Why is an event being issued by forcing a cache update?

How is BufferHandler using its buffer field? Are there any other mutations on it?

Read methods of BufferHandler

Why is there a buffer member variable that is never used?

 Answering questions raises more questions.

Why is doDelayedUpdate() a member of BufferHandler?

Reads methods along path, concludes that BufferHandler tracks update delays

Why wouldn’t isFoldStart() call getFoldLevel()

Reads isFoldStart(), getFoldAtLine()
Concludes isFoldStart() doesn’t call because of short circuit evaluation

Implement fix

Assure correctness

* Tool which successfully supports the questions
a developer asks increases their productivity

Techniques for understanding code

Debligger Reading code
®

5_

Trace statements
. . 9o eCheckin messages
4_H'9h .Ievel VEWSRuUNnning code

Low, 7=High)

®
Other
3 -

Effectiveness (1

| |

0 10 20 30 40
% understanding code time

Thomas D. LaToza, Gina Venolia, and Robert DeLine. 2006. Maintaining mental models: a study of developer work habits. In Proceedings of
the 28th international conference on Software engineering (ICSE '06), Experience Report, 492-501. https://doi.org/10.1145/1134285.1134355

18

What makes understanding code hard?

Longest investigation activities

* Questions developers ask about code

that are hard tO answer How is this data structure being mutated in this code?
* May require substantial time and effort aroaty oot g it ihe (bles are

to dNSWEI. How [does] application state change when m is called

denoting startup completion?

 May lead to many other questions to S |
What decisions might be incompatible with reuse in
aﬂ SWGF new context?

“Is [there] another reason why status could be non-
zero?”

Thomas D. LaToza and Brad A. Myers. 2010. Developers ask reachability questions. In International Conference on Software Engineering,
185-194. https://doi.org/10.1145/1806799.1806829

Time
(mins)

83

53

50

24

11

19

Rationale (42)

Why was it done this way? (14) [15][7]

Why wasn t it done this other way? (15)

Was this intentional, accidental, or a hack? (9)[15]
How did this ever work? (4)

Debugging (26)

How did this runtime state occur? (12) [15]

What runtime state changed when this executed? (2)
Where was this variable last changed? (1)

How is this object different from that object? (1)
Why didn t this happen? (3)

How do I debug this bug in this environment? (3)

In what circumstances does this bug occur? (3) [15]
Which team's component caused this bug? (1)

Intent and Implementation (32)

What is the intent of this code? (12) [15]
What does this do (6) in this case (10)? (16) [24]
How does it implement this behavior? (4) [24]

Refactoring (25)

Is there functionality or code that could be refactored? (4)

Is the existing design a good design? (2)

Is it possible to refactor this? (9)

How can I refactor this (2) without breaking existing users(7)? (9)
Should I refactor this? (1)

Are the benefits of this refactoring worth the time investment? (3)

History (23)

When, how, by whom, and why was this code changed or
inserted? (13)[7]

What else changed when this code was changed or inserted? (2)
How has it changed over time? (4)[7]

Has this code always been this way? (2)

What recent changes have been made? (1)[15][7]

Have changes in another branch been integrated into this

branch? (1)

Implications (21)
What are the implications of this change for (5) API clients

(5), security (3), concurrency (3), performance (2), platforms
(1), tests (1), or obfuscation (1)? (21) [15][24]

Testing (20)

Is this code correct? (6) [15]

How can [test this code or functionality? (9)

Is this tested? (3)

Is the test or code responsible for this test failure? (1)
Is the documentation wrong, or is the code wrong? (1)

Implementing (19)

How do I implement this (8), given this constraint (2)? (10)
Which function or object should I pick? (2)

What s the best design for implementing this? (7)

Control flow (19)

In what situations or user scenarios is this called? (3) [15][24]
What parameter values does each situation pass to this method? (1)
What parameter values could lead to this case? (1)

What are the possible actual methods called by dynamic dispatch
here? (6)

How do calls flow across process boundaries? (1)

How many recursive calls happen during this operation? (1)

Is this method or code path called frequently, or is it dead? (4)
What throws this exception? (1)

What is catching this exception? (1)

Contracts (17)

What assumptions about preconditions does this code make? (35)
What assumptions about pre(3)/post(2)conditions can be made?
What exceptions or errors can this method generate? (2)

What are the constraints on or normal values of this variable? (2)
What is the correct order for calling these methods or initializing
these objects? (2)

What is responsible for updating this field? (1)

Performance (16)

What is the performance of this code (5) on a large, real dataset (3)? (8)

Which part of this code takes the most time? (4)

Can this method have high stack consumption from recursion? (1)
How big is this in memory? (2)

How many of these objects get created? (1)

Teammates (16)

Who is the owner or expert for this code? (3)[7]
How do I convince my teammates to do this the “right way”’? (12)
Did my teammates do this? (1)

Policies (15)

What is the policy for doing this? (10) [24]

Is this the correct policy for doing this? (2) [15]

How is the allocation lifetime of this object maintained? (3)

Type relationships (15)

What are the composition, ownership, or usage relationships of this type? (5) [24]
What is this type s type hierarchy? (4) [24]

What implements this interface? (4) [24]

Where is this method overridden? (2)

Data flow (14)

What is the original source of this data? (2) [15]

What code directly or indirectly uses this data? (5)

Where is the data referenced by this variable modified? (2)

Where can this global variable be changed? (1)

Where is this data structure used (1) for this purpose (1)? (2) [24]
What parts of this data structure are modified by this code? (1) [24]
What resources is this code using? (1)

Location (13)

Where is this functionality implemented? (5) [24]
Is this functionality already implemented? (5) [15]
Where is this defined? (3)

Building and branching (11)

Should I branch or code against the main branch? (1)
How can I move this code to this branch? (1)

What do I need to include to build this? (3)

What includes are unnecessary? (2)

How do I build this without doing a full build? (1)
Why did the build break? (2)[59]

Which preprocessor definitions were active when this was built? (1)

Architecture (11)
How does this code interact with libraries? (4)
What is the architecture of the code base? (3)

How is this functionality organized into layers? (1)
Is our API understandable and flexible? (3)

Concurrency (9)

What threads reach this code (4) or data structure (2)? (6)
Is this class or method thread-safe? (2)
What members of this class does this lock protect? (1)

Dependencies (5)

What depends on this code or design decision? (4)[7]
What does this code depend on? (1)

Method properties (2)
How big is this code? (1) 20

How overloaded are the parameters to this function? (1)

What does this do?
What does these functions do?

What does this do in this case?

What happens if an exception is thrown?
What happens if this operation times out?
What happens if the remote service is slow?

What is the intent of the code?
What is it trying to accomplish?

How does it implement this behavior?
How is this data aggregated and how is it translated from one place to another.
How does this class (or collection of classes) fulfill the functional feature of the application?

Thomas D. LaToza and Brad A. Myers. 2010. Hard-to-answer questions about code. In Evaluation and Usability of Programming Languages and
Tools (PLATEAU '10), 1-6. https://doi.org/10.1145/1937117.1937125

21

What depends on this code or design decision?
What else depends on this code?

Who else uses this code / function. (i.e. If we change this, what will break simply because
someone else has found a way to use this and we don't even know they are doing so...)

What are the implications of this change for API clients, security, concurrency,
performance, platforms, tests, or obfuscation?

What is the implication of these changes in terms of the backward compatibility?
Across components with a code base the size of complete applications, what are the implications

of a functional change in base storage to all accessors in the system (including clients of
applications built on top of the place where the change is occurring)

How can I refactor this without breaking existing users?
How can I refactor this piece w/o causing an avalanche of new places to refactor?

Thomas D. LaToza and Brad A. Myers. 2010. Hard-to-answer questions about code. In Evaluation and Usability of Programming Languages and
Tools (PLATEAU '10), 1-6. https://doi.org/10.1145/1937117.1937125

22

Why was it done this way?
Why was this code structured in this way?

Why was this done this way? Is there some reason for this ancient code doing what it
does that I'm missing?

Why wasn't it done this other way?

Why didn't they use this method/object/interface as it appears to have been designed?

Why did the original developer not use library function X? (was there a good reason or just
ignorance)

Was this intentional, accidental, or a hack?

Is the lack of parameter validation (most often lack of null checks) intentional or
incidental?

Is the lack of ''sealed'’ on the class intentional or incidental? If intentional, why?
(assuming no virtual methods are present).

Thomas D. LaToza and Brad A. Myers. 2010. Hard-to-answer questions about code. In Evaluation and Usability of Programming Languages and
Tools (PLATEAU '10), 1-6. https://doi.org/10.1145/1937117.1937125

23

Studies of questions developers ask

Information Needs in Collocated Software Development Teams

Amy J. Ko
Human-Computer Interaction Institute
Carnegie Mellon University
5000 Forbes Ave, Pittsburgh PA 15213
ajko@cs.cmu.edu

Abstract

Previous research has documented the fragmented na-
ture of software development work. To explain this in
more detail, we analyzed software developers’ day-to-day
information needs. We observed seventeen developers at
a large software company and transcribed their activities
in 9o-minute sessions. We analyzed these logs for the
information that developers sought, the sources that they
used, and the situations that prevented information from
being acquired. We identified twenty-one information
types and cataloged the outcome and source when each
type of information was sought. The most frequently
sought information included awareness about artifacts
and coworkers. The most often deferred searches in-
cluded knowledge about design and program behavior,
such as why code was written a particular way, what a
program was supposed to do, and the cause of a program
state. Developers often had to defer tasks because the
only source of knowledge was unavailable coworkers.

1. Introduction

Software development is an expensive and time-intensive
endeavor. Projects ship late and buggy, despite develop-
ers’ best efforts, and what seem like simple projects be-
come difficult and intractable [2]. Given the complex
work involved, this should not be surprising. Designing
software with a consistent vision requires the consensus
of many people, developers exert great efforts at under-
standing a system’s dependencies and behaviors [11],and
bugs can arise from large chasms between the cause and
the symptom, often making tools inapplicable [6].

One approach to understanding why these activities
are so difficult is to understand them from an informa-
tion perspective. Some studies have investigated informa-
tion sources, such as people [13], code repositories [5],
and bug reports [16]. Others have studied means of ac-
quiring information, such as email, instant messages
(1m), and informal conversations [16]. Studies have even
characterized developers’ strategies [9], for example, how
they decide whom to ask for help.

Robert DeLine and Gina Venolia
Microsoft Research
One Microsoft Way
Redmond, WA 98052
{rdeline, ginav}@microsoft.com

While these studies provide several concrete insights
about aspects of software development work, we still
know little about what information developers look for
and why they look for it. For example, what information
do developers use to triage bugs? What knowledge do
developers seek from their coworkers? What are develop-
ers looking for when they search source code or use a
debugger? By identifying the types of information that
developers seek, we might better understand what tools,
processes and practices could help them more easily find
such information.

To understand these information needs in more de-
tail, we performed a two-month field study of software
developers at Microsoft. We took a broad look, observing
17 groups across the corporation, focusing on three
specific questions:

What information do software developers’ seek?

- Where do developers seek this information?

What prevents them from finding information?

In our observations, we found several information needs.
The most difficult to satisfy were design questions: for
example, developers needed to know the intent behind
existing code and code yet to be written. Other informa-
tion seeking was deferred because the coworkers who had
the knowledge were unavailable. Some information was
nearly impossible to find, like bug reproduction steps
and the root causes of failures.

In this paper, we discuss prior field studies of software
development, and then describe our study’s methodol-
ogy. We then discuss the information needs that weiden-
tified in both qualitative and quantitative terms. We then
discuss our findings’ implications on software design and
engineering.

2. Related Work

Several previous studies have documented the social na-
ture of development work. Perry, Staudenmayer and
Votta reported that over half of developers’ time was
spent interacting with coworkers [15]. Much of this
communication is to maintain awareness. De Souza,
Redmiles, Penix and Sierhuis found that developers send
emails before check-ins to allow their peers to prepare for

434 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 34, NO. 4, JULY/AUGUST 2008

Asking and Answering Questions
during a Programming Change Task

Jonathan Sillito, Member, IEEE,
Gail C. Murphy, Member, IEEE, and Kris De Volder

Abstract—Little is known about the specific kinds of questions programmers ask when evolving a code base and how well existing
tools support those questions. To better support the activity of programming, answers are needed to three broad research questions:
1) What does a programmer need to know about a code base when evolving a software system? 2) How does a programmer go about
finding that information? 3) How well do existing tools support programmers in answering those questions? We undertook two
qualitative studies of programmers performing change tasks to provide answers to these questions. In this paper, we report on an
analysis of the data from these two user studies. This paper makes three key contributions. The first contribution is a catalog of
44 types of questions programmers ask during software evolution tasks. The second contribution is a description of the observed
behavior around answering those questions. The third contribution is a description of how existing deployed and proposed tools do,

and do not, support answering programmers’ questions.

Index Terms—Change tasks, software evolution, empirical study, development environments, programming tools, program

comprehension.

1 INTRODUCTION

ITTLE is known about the specific kinds of questions
programmers ask when evolving a code base and how
well existing and proposed tools support those questions.
Some previous work has focused on developing models of
program comprehension, which are descriptions of the
cognitive processes a programmer uses to build an under-
standing of a software system (e.g., [50], [34]). Other work
has focused on how programmers perform change tasks,
including how programmers use tools in that context (e.g.,
[13], [54]). These previous efforts do not consider in detail
what a programmer needs to know about a code base when
performing a change task, how the programmer finds that
information, nor how well tools support those activities.
To address this gap, we undertook two qualitative
studies. In each of these studies, we observed programmers
making source changes to medium (20 KLOC) to large-
sized (over 1 million LOC) code bases. To structure our
data collection and the analysis of our data, we used a
grounded theory approach [16], [63]. Based on our analysis of
the data from these user studies, as well as an analysis of
the support that current programming tools provide for
these activities, this research makes three key contributions.
The first contribution is a catalog of 44 types of questions

e |. Sillito is with the Department of Computer Science, University of
Calgary, 2500 University Dr. NW, Calgary, AB, T2N 1N4 Canada.
E-mail: sillito@ucalgary.ca.

e G.C. Murphy and K. De Volder are with the Department of Computer
Science, University of British Columbia, ICICS/CS Building, 201-2366
Main Mall, Vancouver, BC, V6T 174 Canada.

E-mail: {murphy, kdvolder)@cs.ubc.ca.

Manuscript received 11 May 2007; revised 24 Nov. 2007; accepted 27 Mar.
2008; published online 21 Apr. 2008.
Recommended for acceptance by M. Young and P. Devanbu.

Pas seokrsusenboncs nes nlhiadcsdet s oisssomssle Al 8kin nobinte ecalanns nsesd = csened das

programmers ask, organized into four categories based on
the kind and scope of information needed to answer a
question. The second contribution is a description of the
behavior we observed around answering those questions.
The third contribution is a description of how well tools
support a programmer in answering questions. Based on
these results, we discuss the support that is missing from
existing programming tools.

Section 2 of this paper compares the work presented in
this paper to previous efforts in the area of program
comprehension and empirical studies of how programmers
manage change tasks. Section 3 describes the two studies
we performed. Section 4 presents the 44 types of questions
organized around four top-level categories and a descrip-
tion of the behavior we observed around answering
questions. Section 5 considers the support existing research
and industry tools provide for those activities. In Section 6,
we discuss gaps in tool support. In Section 7, we discuss the
limits of our results. We conclude with a summary in
Section 8.

2 RELATED WORK

In this section, we discuss three categories of related work.
The first is the area of program comprehension, in
particular efforts to use theories about program compre-
hension to inform tool design (see Section 2.1). The second
covers work involving the analysis of programmers’
questions (see Section 2.2). The third category includes
empirical studies that have looked at how programmers
use tools and generally how they carry out change tasks
and other programming activities (see Section 2.3). Our
review of these studies includes a discussion of studies that

Asking and Answering Questions during a
Programming Change Task in Pharo Language

Juraj Kubelka

Alexandre Bergel

Romain Robbes

PLEIAD Laboratory, Department of Computer Science (DCC)
University of Chile, Santiago, Chile

{jkubelka,abergel,rrobbes}@dcc.uchile.cl

Abstract

Previous studies focus on the specific questions software en-
gineers ask when evolving a codebase. Though these studies
observe developers using statically typed languages, little
is known about the developer questions using dynamically
typed languages. Dynamically typed languages present new
challenges to understanding and navigating in a codebase
and could affect results reported by previous studies.

This paper replicates a previous study and presents the
analysis of six programming sessions made in Pharo, a dy-
namically typed language. We found a similar result when
comparing sessions on an unfamiliar codebase with the pre-
vious work. Our result on the familiar code greatly deviates
from the replicated study, likely caused by different tasks
and development strategies. Both missing type information
and test driven development affected participant behavior
and prudence on codebase understanding, where some par-
ticipants made changes based on assumptions.

We provide a set of questions that are useful in charac-
terizing activity related to the use of a dynamically typed
language and test-driven development — questions not ex-
plicitly considered in previous research. We also present
a number of issues that we would like to discuss during the
PLATEAU workshop.

1. Introduction

Programming environments have tremendously improved
over the last decade. What were previously simple text edi-
tors are now fully fledged studios for code production. Nav-
igating between source code elements is now supported in
many different ways by most programming environments.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

PLATEAU 2014, October 21, 2014, Portland, Oregon, United States.

Copyright © 2014 ACM 978-1-nnnn-nnnn-n/yy/mm. .. $15.00.
http://dx.doi.org/10.1145/nnnnnnn.nnnnnnn

Sillito et al. [9] (herein designated as Sillito) made a num-
ber of observations on developer navigation. They identify
four question categories and levels of tool support for get-
ting answers. They conducted two studies observing soft-
ware programmers of statically typed languages C++, C,
C#, and Java. In their first study, the participants worked
on a change task for one unique open source project, Ar-
goUML!, of which they were not familiar. The second study
was conducted in an industrial setting including software
engineers working on a change task of familiar codebase.
The context setting used by Sillito in their experiment does
not cover some commonly found software engineering prac-
tices. For example, they only consider statically typed lan-
guages, one industrial codebase, and one open source code-
base.

Research question. Our work replicates the experiment by
Sillito et al. and validates it in a new scenario. The partic-
ipants worked on tasks in Pharo, a dynamically typed pro-
gramming language, and in distinct open source software
systems. The dynamically typed languages present new chal-
lenges to understanding and navigating in a codebase. Both
aspects — dynamically typed language and different code-
bases could affect results reported by Sillito. In summary,
our research question is:

Are findings presented by Sillito applicable to pro-
gramming change tasks using the Pharo programming
language?

Pharo. The Pharo? environment (Pharo IDE) illustrated in
Figure 1 is largely different from the ones considered in the
Sillito experiment. The Pharo programming environment of-
fers a set of expressive and flexible programming tools. The
System Browser (2) is the main tool for writing and reading
source code. Navigation within the source code is essentially
based on the SendersOf (4), ImplementorOf, and UsersOf
tools; whenever a user asks to where a particular method is
called, or asks for method definition, field reference, or class

'http://argouml.tigris.org, verified September 2014
Zhttp://pharo.org, verified September 2014

24

Failure in information needs

* Developers guess and make assumptions about answers to questions, and
sometimes are wrong, leading to defects.

False belief held by developer Correct fact about control flow

m 1S called in several additional
situations in which n has not been
called.

~ X

Method a need not call method b, as all
calls to be are redundant.

Thomas D. LaToza and Brad A. Myers. 2010. Developers ask reachability questions. In International Conference on Software Engineering,
185-194. https://doi.org/10.1145/1806799.1806829

25

Supporting question answering with tools

FusionAnalysis.java 53' [1] StudentRuntimeExcept i] XMLRetriever.java EJ AbstractCrystalMetho 782 = 0 8‘3 Outline | @ Reacher Search 23- = 0
public void beforeAllMethods(ICompilationUnit compUnit, Search upstream from XMLRetriever.getStartContext()
CompilationUnit rootNode) { for | method calls s
if (project == null || !project.equals(compUnit.getlavaProject())) { named :" retri
//we have a new project. reset the type hierarchy , , . : .
roject = compUnit.get)avaProject():] edu.cmu.cs.fusion.xml.XMLRetriever. XMLRetriever(..) : void
z J{ - P -9 J ’ ' edu.cmu.cs.fusion.xml . XMLRetriever.getStartContext(..,..) : Re
ry edu.cmu.cs.fusion.xml. XML ever.retrieveRelationshipsi..,.
IProgressMonitor monitor = getlnput().getProgressMonitor().isNone() 7 null getInput()
types = new CachedTypeHierarchy(project, monitor);
FreeVars.setHierarchy(types);
retriever.retrieveRelationships(ResourcesPlugin. getWorkspace().getRoot(), types); c y < »l
Q
Back Forward ResetZoom — O
FusionAnalysis XMLRetriever
XMLRetriever
: +beforeAllMethods(..,..) @, +retrieveRelationships
AbstractCrystalMethodAnalysis _.-* L 2O, +retrieveRelationships(AbStrathrYStlalMethOdAan@ P
® +runAnalysis(..,..,..,..) =27 @ +runAnalysis(..,..,..,..) =% XMLRetriever

XMLRetriever

a) °@® -(¥) +getStartContext(..,..) b)

egm +getStartContext(..,..)

T. D. LaToza and B. A. Myers, “Visualizing call graphs,” in Proc. Symp. Visual Languages and Human-Centric Computing (VL/HCC), 2011, pp. 117-124. doi: 10.1109/
VLHCC.2011.6070388. 26

Programming Schemas

import { useState } from 'react';

function SearchableVideolList ({ wvideos }) {

const [searchText, setSearchText] = useState('');
const foundVideos = filterVideos (videos, searchText);
return (
<>
<SearchInput

value={searchText}

onChange={newText => setSearchText (newText)} />

<VideolList
videos={foundVideos}
emptyHeading={ No matches for “S$S{searchText}”
</>

Y />

27

Knowledgeable developers see code differently

public int getFoldLeveli{int line) {
if (line < 0 || line *>= lineMgr.getLineCount())

LESS EXPERIENCED DEVELOPERS throw new ArrayIndexOutOfBoundsException(line);
“What it did was it...computes the new line 1f {foldiandler instanceof DumnyFoldandler!
r]LJrT1t)EBr Ear](j flreess Eir] Ga\lear]t' ESLJt I (jl(jr1 t ESEBEB It int firstInvalidFoldLevel = lineMgr.getFirstInwvalidFoldLewvel();
change any state.” (38 mins, 10 mins reading e e dlveltliney e = Ppstinvaladioddieved! |
getFoldLevel) Sl

i (Debug.FDLQ_DEBUG)
"So what it does, it starts off from this line, it bog-logtlos DEBUS, this, 'Invalid fold devels from !
has this firstinvalidFoldLevel, it goes through it mewoldievel = 0,
all these lines, it checks whether this fold boolean changed = false;
information is correct or not, which is this R e YO S
newFoldLevel, this is supposed to be the e w01 Doy TreraRATELE
correct fold level. If that is not the case in the changod = teuey o BT TR devel shenaedls
data structure, it needs to change the state of ! netior seFoldievel (4. mewFaldievel
the buffer. It creates this, it does this change, it }
sets the fold level of that line to the new fold e e i,
level.” (51 mins, 12 mins reading getFoldLevel) else

lineMgr. setFirstInvalidFoldLevel{line + 1) ;

if {(changed) {

EXPERIENCED DEVELOPER " Log. 2ogilog. DEBUG, this, *fold level changed: °

+ firstInvalidFoldLevel + "," + line);

“Well, this is jUSt updating a cache” (1 min) fireFoldLevelChanged{firstInvalidFoldLevel, line);
}

return newFoldLevel;

}

Thomas D. LaToza, David Garlan, James D. Herbsleb, and Brad A. Myers. 2007. Program comprehension as fact finding. In European software
engineering conference and the Symposium on the Foundations of Software Engineering, 361-370. https://doi.org/10.1145/1287624.1287675

EBT] causackipioms |

290, BIND TARGETS IDENTIFYING OR CHOOSING AN EVENT, LIFECYCLE HOOK, OR
°" TRIGGER TO REGISTER A CALLBACK

CB1 Unidentified Target:
desired bind target = target name & code fragment
CB2 Constrained Target:
bind target code fragment = API rules making fragment (in)valid
CB3 Confused Target:
current & desired bind targets = API use differences, new target’s code fragment

25, CALLBACK CONTEXTS IDENTIFYING WHEN THE CALLBACK IS DISPATCHED,
%" USING ITS ARGUMENTS, OR OTHER RELATED OBJECTS

CB4 Improper Scheduling:

callback code fragments & desired schedule = correct callback order & code fix
CB5 Unidentified State:

desired state = API rationale for identifying state & code fragment to obtain it
CB6 Missed Callbacks:

callback code fragment = API rationale & state required for callback to occur

230\ BIND CONFIGURATIONS SETTING OPTIONS OF A CALLBACK TRIGGER, OR
% MODIFYING PARAMETERS OF ITS BIND MECHANISM

CB7 Incorrect Bind Parameters:
callback parameter fragments & desired behavior = correct code fragments

CB8 Misconfigured Framework:

framework configuration fragments & desired behavior = correct framework code

EP2] GrarHicALiDIOMS ||

373 GRAPHICAL SETTERS UPDATING GRAPHICAL PROPERTIES OF THE LAYOUT VIA
%) AP| (DOM ACCESS METHODS, CSS SELECTORS)

GB1 Unidentified Setter:

visual property change = code fragment to mutate property

GB2 Unobservable Setter:

setterA & visual property change - setterB to mutate property

GB3 Indirect Setter:
setterA = elements which inherit properties from setterA or occlude mutations

GB4 Overwritten Setter:
setterA - setterB overwriting setterA & code fragments with alternative fixes

21? GRAPHICAL QUERIES RETRIEVING GRAPHICAL ELEMENTS OR SIMILAR
% REPRESENTATIONS VIA API (DOM ACCESS METHODS, CSS SELECTORS)

GB5 Incomplete Query:
queryA and desired elements to be matched = queryB matching those elements

GB6 Outdated Query:
queryA - changes to query result set over time & code fragment fixing it

GB7 Overwritten Query:
queryA - queryB intersecting queryA’s mutations & code fragment fixing queryA

8 GRAPHICAL GETTERS OBTAINING GRAPHICAL PROPERTIES OF THE LAYOUT
% \/IA AP METHODS

GB8 Unidentified Getter:
visual property = getter code fragment to retrieve it

OBJECT-INTERACTION IDIOMS |}

21\ VALID REFERENCES DETERMINING DEFINED STANDARD, OR FRAMEWORK
% |DENTIFIERS AT COMPILE TIME OR RUNTIME
OB1 Inactionable Reference Error:
statement generating error & error message - explanation of error message
OB2 Silent Invalid Reference:
invalid statement = warning message & statement fixing warning

> BACK-END REQUESTS SENDING STRUCTURED DATA TO A SERVER, OR
16% HANDLING SERVER RESPONSES
OB6 Misconfigured Request:

back-end request & desired behavior = modified request matching behavior
OB7 Unclear Transmission:

back-end request as sent =2 back-end request as received

OB8 Mishandled Response:
Eack-end request =2 code fragment for response(s) listening and parsing

8o SCOPE CONTEXTS IDENTIFYING THE CONTEXT GIVEN TO THE KEYWORD
° this WITHIN A CODE BLOCK, OR A VARIABLE’S VISIBILITY

OB12 Unclear Scope: this statement = owner scope of this

D. |. Samudio and T. D. LaToza, "Barriers in Front-End Web Development,” 2022 IEEE Symposium on Visual Languages and Human-Centric

2@ COLLECTIONS AND FORMATS CREATING OR MANIPULATING A COLLECTION,
OR FORMATTING DATA FOR USE IN A FRAMEWORK OR LIBRARY
OB3 Unidentified Iteration Construct:
collection object = code fragment with corresponding iteration construct
OB4 Occluded Modification:
collection object & loop fragment = modifications of collection per iteration

OB5 Confused Formatting:
object in format A = code fragment converting object to format B

(=
8 METHOD CHAINS DETERMINING THE EFFECTS OF A METHOD INVOCATION
% WITHIN A SEQUENCE OF CONSECUTIVE CALLS

OB9 Incomplete Sequence:
o.m1(...).m2(...)....mn(....) 2 o.m1(...).m2(...)....
OB10 Incorrect Sequence:

o.m1(...).m2(...)....mMn(....) 2 o.

OB11 Overwritten Effect:
o.m1(...).m2(...)....mn(

(.)...mn(..)
(...)...m1(..).mn(..)

) 2 methods and m! where both mutate object

Computing (VL/HCC), 2022, pp. 1-11, doi: 10.1109/VL/HCC53370.2022.9833127.

Developers are already using LLMs to answer questions

e Alignment between questions APt Endpolnts Guestion

developers ask and the questions LLMs utiple-devfot-ai

can help answer determines support

and improvement of program :

com prehenSIO n. What endpoints does this controller support?

* Which questions is it helping answer rrmr——
well already? p p '

1. GET | - Get current user details

api/src/controller/user.controller.ts

 Where is it still struggling or less

@Get ()
effective”? (these questions become St pcose
more important since still hard)

description: 'Get the current user',
type: Jolt.MeResponseDto,
1)
async me (
@UserDataFromRequest() { id }:
RequestUserData,

): Promise<Jolt.MeResponseDto>

Benchmarking Program Comprehension with LLMs

o . SWE-bench*
» Existing benchmarks examine full

automation of SE (e.g., success in

Alexander Wettig, Shunyu Yao, Kexin Pei,

g e n e rat i n g a p atC h) Ofir Press, Karthik Narasimhan
 Many tasks will still require

developer involvement. 3 SWE-bench &

£ SWE-agent 1.0 is the open source SOTA on SWE-bench Lite!
* Want to have benchmarks that
b f't t Lite Verified Full Multimodal

I I I eas u re e n e I O p ro g ral I I Model % Resolved Org Date Logs Trajs Site
comprehension of an LLM assistant NN NN W
p & Gru(2024-12-08) 48.67 a v v o2

6 Globant Code Fixer Agent 48.33 G v v @

devlo 47.33 @ v v &

e Can use hard to answer questions M
q " Kodu-v1 + Claude-3.5 Sonnet (20241022) 4467 = v v &

b h k % OpenHands + CodeAct v2.1 (claude-3-5-sonnet-20241022) 4167 g8 v v e

aS e n C I I l a r % PatchKitty-0.9 + Claude-3.5 Sonnet (20241022) 4133 © v v -

Orcaloca + Agentless-1.5 + Claude-3.5 Sonnet (20241022) 4100 O - &

" Composio SWE-Kit (2024-10-30) 4100 v v &

Agentless-1.5 + Claude-3.5 Sonnet (20241022) 4067 X v v oo

LLMs and Organization Knowledge

* Big shift underway from using
StackOverflow and other crowdsourced
knowledge repos to using LLMs trained
on these resources

* |nternal dev tool orgs looking to promote
knowledge sharing by connecting
communication channels (issue trackers,
Slack, design wikis, etc.) to LLMs

* |f expertise all consumed through LLM,
less motivation to document it explicitly?

swim

How it works

A powerful engine

oo

uuuuuuuuuuuu

Generate the information that engineering, product, and business analyst teams need

Complete

Customizable

32

Documentation or Reverse Engineering?

« Should we build tools that create documentation®?
 Developer can see and approve documentation?

 But what information is important enough to
document?

* And, given many questions are situational, how much
can you really cover in the docs?

* And can docs still go out of date?

* Or build tools that reverse engineer code to answer
questions?

» Can tackle any question

 But how to ensure trust in the answer, if there is no
developer signing off on them?

Documentation Generation

code \

issue descriptions, chat — |EERV/ M — draft — human

editor

expected questions

Reverse Engineering

code \\\\\\\\‘

Issue descriptions, chat — EEERY — answer

expected questions

— docs

33

Theories of Program Comprehension in the Age of LLMs

 How can developers still understand the code being generated?

= Theories of Information Needs in Programming

 To what extent do developers really have to understand the code being
written?

= Theories of Information Hiding

 How do developers figure out what's wrong when it doesn't work”?

= Theories of Debugging

34

Theories of Information Hiding

* Limit information developers need to be aware of about code

35

Theories of Information Hiding

* Abstraction - only think about the high-level operations of what some code
does, not all the detalls

* Design by contract - don't need to understand the implementation, just the
input/ouput behavior

* |Information hiding - only the person writing the library / framework really needs
to know all the details about how it works

 Enable reuse - don't write the same old code again, just reuse a library or
framework that does it

36

Powerful abstractions help build more quickly

 Parnas' Key Words in Context Problem, used to illustrate 1972 paper on information hiding

 The KWIC index system accepts an ordered set of lines, each line is an ordered set of
words, and each word is an ordered set of characters. Any line may be "circularly shifted”
by repeatedly removing the first word and appending it at the end of the line. The KWXC
index system outputs a listing of all circular shifts of all lines in alphabetical order.

def kwic(lines):
shifts = [' '.join(line[i:] + linel[:i]) for line in lines for i in range(len(line))]

return sorted(shifts)

within a week or two.

1972 2025

D. L. Parnas. 1972. On the criteria to be used in decomposing systems into modules. Commun. ACM 15, 12 (Dec. 1972), 1053-1058. https://
doi.org/10.1145/361598.361623 37

What happened??

e Modern collections libraries do
almost all the work, with only a
tiny bit of code written on top

 Much of the code that
developers used to constantly
rewrite, from scratch, Is
already written by someone
else, stored in a library /
framework somewhere

217

ALL MODERN DIGITAL
INFRASTRUCTURE
AL
(R
i

A PROJECT SOME
RANDOM PERSON
IN NEBRASKA HAS

s BEEN THANKLESSLY
MAINTAINING
SINCE 2003

- 1

xkcd 2347: Dependency

38

Limitations of abstraction

* | eaky abstractions: details that were supposed to be hidden still matter, particularly for
qualities like performance

 Hidden dependencies: implementation may interact with other modules in unexpected
ways, creating unexpected behavior, and making debugging difficult

e Hyrum's law
 With a sufficient number of users of an API,
* |t does not matter what you promise in the contract:
 all observable behaviors of your system
* will be depended on by somebody.

Spolsky, Joel (2002). "The Law of Leaky Abstractions".

https://www.hyrumslaw.com/

39

https://www.joelonsoftware.com/2002/11/11/the-law-of-leaky-abstractions/
https://www.hyrumslaw.com/

Generating code with a tool

~, Project1 - Microsoft Visual Basic [design] - [Form1 (Form)]

03 Ble Edt Vew Project Format Debug Run Query Didgram Tools Add-ins Window Help X
g.b.m D‘bn a:"\ - - 3 | | =1 adeg*am
~ o oy

© ™

- Project1 X
OB O

= 9 Projectl (Projectl)
- =Y Forms
3 Formi (Form1)

Retumns/sets the text deplayed
n an object’s Bl bar or below

an object’s kon.

40

Theories of Abstraction In the age of LLMs

* Developers long told not to think too much about all the code they reuse
* Trust the framework / library developers who wrote it that it works

* Developers vibe coding with an LLM generate lots of code that they also don't think
too much about

 But bad to trust the code too much, as the LLM makes more mistakes

e But....

 What if most of the code IS framework code, already written before?

41

Theories of Abstraction in the Age of LLMs

e Small teams of expert software
engineers build the hard building blocks
that require deep system expertise,
exposed as framework and libraries

 Everyone else vibe codes with LLMs to
build small ephemeral apps on top of
the underlying capabillities of LLMs

42

Continues trend of empowerment of EUP

o ¢

.
. c RailsRocket Brand Access Data
Groups Tables
V- - y
R— . T rmmeeen 0
Name o™ For s N ngut leed =
- I Name %eaule
Promge tes M“ Ll
- v— 3 Promge feed sCe . .
Posion L App data Admins area < Compames area &
o Ol sem wem » Pestion o Multi-tenant
Detast ’ Outaat ' 23 What types of data would you like in your app? Multi-user
Detug Mz Matones maSiogaMeside " .-.‘,. .] 195473
> j Detug 3
U assign] @ =] rests 0 fem feiched » A T L— L —
“Fotn Data LI v ! [Admms] [Companles] [Llnks]] Sggwrganles SN2 =[,2
- =] llln:= =
"y
Pah w nem st 200y cubine ’ w S w .- .
- Suggestions: ‘ Users ‘ ‘ Clients ’ Posts ‘ Pages \ ‘ Customers
| Reges 4 Lo T - - 2k ~)\ J { J(Fages J{ ,
‘Renave . AR USe regutr erpred on palerrts hers | 0 St o
J Ndes v s
O Vagpengs - {
- A - Pal Pl D MM putyes b n| descenang 'l |
8 e o dae M Copy A *] pubvem o n demputvew P replace arh g' »! .
- y O N M sudemoom repace \SITO ~1 Fal“sFml” v fam putmons "I"“"-‘"G:]’ { .
D e oc aaw M oor s %) pusenones ’ e loacanntio S geng X - Companies Users database table
O N M pUdRON b - P f‘;r‘ Falr W B pubday h‘du\-v&-r; 0]
D sem ok oon Oij ¥ %] putday ' e s .) y . - Options —-—-—
oSN e pudan § regiace \2da Do ~h Fel sl mf v B puthow § [Sesconang #] ¢ Database __—
B fem o Gae OI Roenamwm fl Tt Has roles U
;,,_—-] O n MM puDoNy b replace T+ P FCglh sl mf -
2 Bem y pubestel sabl Renamw %) putven
e DN e pustow B replace ARG DS IIT W el el User Roles
& Bem ¢ Dubisted e ’{""""" :J DuBmOn v : iai Admins & | Companies &
O sem s putesres say b Rename ‘_;] Uty Partners © ‘ ‘Staff [x) I e—. 2.
- EaS— \) ' =©) =©)
By DA el hin){-4!-'\0"-' 'I SV] :.I e - - ‘,._a ai =i
O fem wer oiv: Pl Menan . i@ Inviteable
W e feedDusser ong Bl Rename ¥ B Tours e Wed alfer 9 invi i
9 Users can be invited by email
—— % - i i-
(hpeviot Companies multi-tenant
Links & & Companies &
Continue >
< Users
—
0 =6
A B C D E F G H I J K L M N (o] P Q R S T L
1 Assumptions
2
3 Ads
4 Budget 10,000 USD per month
S5 |FCPC 1.0 USD
6
7 Conversion ratios
8 Visitor - Registration 10%
9 Registered - Subscription 2.5%
10
11 Conversion lag
12| Visitor - Registration 0 months
13 Registered - Subscription 1 months
14
15 Churn
16 Rate 10% per month
17 lag 12 months
18
19 Virality
20 per registered user 1 per month
21 per subscribed user 2 per month
22
23 Subscription price 19 USD per month
24
25 Monthly numbers
26
27 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
28 Visitors 0 10,000 11,000 12,150 13,420 14,823 16,372 18,083 19,974 22,061 24,367 26,915 29,728 32,835 36,267 40,053 44,229 48,836 53,917 59,°
29 Organic 0 0 1,000 2,150 3,420 4,823 6,372 8,083 9974 12,061 14,367 16915 19,728 22,835 26,267 30,053 34,229 38,836 43,917 49,
30 Paid 0 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000
31 Registrations 0 1,000 1,100 1,215 1,342 1,482 1,637 1,808 1,997 2,206 2,437 2,691 2,973 3,284 3,627 4,005 4,423 4,884 5,392
32 New subscriptions 0 0 25 28 30 34 37 41 45 50 55 61 67 74 82 91 100 111 122 1
33
34 Churn 0 0 0 0 0 0 0 0 0 0 0 0 0 3 5 8 12 15
35

Al Native Spec-Driven Development

S 0 B @ Format Converter 00 Pause)
W

<. FITIU IVidppilly.

DISFOSABLE LONG LIVED BUILT/GENERATED DESCRIPTIVE @ Specification - Accept custom mappings to rename fields during conversion.
- Support flat-to-complex (or vice versa) transformation through mappings.
Specification
API 4. Error Handling:
: - Handle malformed input strings by throwing descriptive errors.
Assertions . . . T
- Notify when conversions are not possible due to structural limitation

Enhancements Code
) > Tests | want a format converter that converts

&8 Technical design 5. Data Type Preservation: between CSV, JSON, XML, and HTML

Bug Fixes Spec . - Retain original data types (e.g., numbers, booleans, strings) during c strings. API should have two string
+¢ Layout diagram - Offer configurable options to transform or coerce data types if need i
parameters: the data, and its format.

2) Implementation
6. Schema Enforcement:

] index.js) .

: » - Allow users to define and enforce schemas for input data.
RGQUI[@”\G"[S PaCkag e v convert - Validate data compliance with schemas and issue warnings or errors
- Provide configurable delimiters for CSV input, including custom line
- Support special character handling, such as escaping quotes or dea
characters.

spec.md
api.js
Edge Cases w| assertions.md
] index.js

Ecosystem) testjs
C A
Changes | csvConverter Layout d|agram

htmlIConverter
jsonConverter
xmlConverter
convert dataValidator

® Commit history

csvConverter htmlConverter jsonConverter xmlConverter

https://www.tessl.io/

https://www.tessl.io/

Assuring LLM interactions

e LLMs hallucinate and sometimes create bad solutions

 \WWhat techniques do developers use to build trust In
code?

e Functional correctness: unit tests

e Quality attributes (performance, extensibility,
maintainabillity, scalability, ...): 7?7?77

 How can developers have more visibility, control, and
traceabllity across what LLLMs are doing?

45

Theories of Program Comprehension in the Age of LLMs

 How can developers still understand the code being generated?

= Theories of Information Needs in Programming

* [o what extent do developers really have to understand the code being
written?

= Theories of Information Hiding

« How do developers figure out what's wrong when it doesn't work?

= Theories of Debugging

46

"Easy" defects "Hard" defects

0. 25% 75%

=
o
o

1% of debugging time
median = 30 sec
IQR = (18-42) sec

20% of debugging time
median = 4 min
IQR = (2-6) min

79% of debugging time
median = 19 min
IQR = (15-33) min

00
Q

Episodes Length (Minutes)
N
-

o))
-

Q

2 5 8 11 14 17 20 23 26 29 32 35 38 41 4’4 47 50 53 56 59 62 65 68 71 74 77 80 83 86 89
Episodes

Alaboudi, A., LaToza, T.D. What constitutes debugging? An exploratory study of debugging episodes. Empir Software Eng 28, 117 (2023).
https://doi.org/10.1007/s10664-023-10352-5 47

Theories of Debugging

* Fault localization: debugging is the process of finding the line with the defect

» Slicing: navigate forwards or backwards across control & data dependencies
to locate the defective line

o Strategies: follow a strategy to investigate the code in a systematic way

* Hypothesis testing: use intuition to form hypothesis and sytematically gather
evidence to accept or reject

48

Fault Localization

* Developers debugging first locate the
statement with the fault.

 Automatic fault localization supports
debugging by showing developers
this line.

Fault Localization using Execution Slices and Dataflow Tests

*

Hiralal Agrawal, Joseph R. Horgan, Saul London, and W. Eric Wong

{{hira, jrh, saul, ewong}@bellcore.com }

Abstract

Finding a fault in a program is a complexr process
which 1nvolves understanding the program’s purpose,
structure, semantics, and the relevant characteristics
of fatlure producing tests. We describe a tool which
supports erecution slicing and dicing based on test
cases. We report the results of an experiment that
uses heuristic techniques in fault localization.

Keywords: program slicing, fault detection, testing,
debugging, block coverage, decision coverage, dataflow
coverage

1 Introduction

The relationship between testing and debugging is
an intimate one. Thorough testing requires an under-
standing not only of program requirements but also of
the program implementation. To understand a pro-
gram’s implementation the program’s semantics and
syntax must be understood. The tester, often the au-
thor of the program, exploits this understanding to
design tests which are effective in eliciting program
failures. Once the program fails, various debugging
techniques and tools are employed to locate the bug.
In this paper we describe a practical slicing tool for C
language programs. We also describe an experiment
that shows the usefulness of slicing in locating faults
on a single complex C program. Although the experi-
ment 1s limited, we believe that the tools and methods
of debugging we use are widely applicable.

Weiser [9] originally conceived of the static program
slice as an abstraction used by programmers in locat-
ing bugs. The literature of slicing is extensive and well
surveyed in Tip [10]. Most simply, a static slice is the
set of statements of a program which might affect the

*Hiralal Agrawal, Joseph R. Horgan, Saul London and W.
Eric Wong are with Bell Communications Research, Morris-
town, NJ 07960. This paper was published in the Proceedings of
the Sixth International Symposium on Software Reliability En-
gineering (ISSRE95), pp. 143-151, Toulouse, France, October
1995.

intersection of
slices A and B

Figure 1: Bugs, Slices, and Dices

value of a particular output (or the value of a variable
instance). A dynamic slice is the set of statements
of a program which do affect the value of the output
on the execution of a particular input. Dynamic slic-
ing, first proposed by Korel and Laski [4], was further
explored by Agrawal and Horgan [2]. The use of dy-
namic slices in debugging was extensively investigated
by Agrawal [1] where the notion of erecution slices
was defined. In the present paper an execution slice
is the set of a program’s basic blocks or a program’s
decisions executed by a test input.

The set difference of two slices is known as a dice, a
concept which first appears in Lyle and Weiser [8]. In
this paper an execution dice is the set of basic blocks
or decisions in one execution slice which do not ap-
pear in the other execution slice. A concept very close
to our use of execution dicing for fault localization is
suggested in Colofello and Cousins [3].

Limitations of Fault Localization

Using Hypotheses as a Debugging Aid

« Studies find that showing developers the
line with the defect may not help

variables Odd ratio SE A3

Wald

Sig. (p)

0.77
.88
0.06
0.43

Fault locations 1.4
Potential hypotheses 6.24
Years of experience .14
Technology knowledge 2.19

0.4

o o

o0

0.64
0.03*
0.04*
0.07.

e Often need an explanation about cause
of defect to explain why statement is

INncorrect

e Can only sometimes find the line w/ defect

Abdulaziz Alaboudi
George Mason University
Fairfax, Virginia, USA
aalaboud@gmu.edu

Abstract—As developers debug, developers formulate hypothe-
ses about the cause of the defect and gather evidence to test
these hypotheses. To better understand the role of hypotheses in
debugging, we conducted two studies. In a preliminary study,
we found that, even with the benefit of modern internet re-
sources, incorrect hypotheses can cause developers to investigate
irrelevant information and block progress. We then conducted
a controlled experiment where 20 developers debugged and
recorded their hypotheses. We found that developers have few
hypotheses, two per defect. Having a correct hypothesis early
strongly predicted later success. We also studied the impact of
two debugging aids: fault locations and potential hypotheses.
Offering fault locations did not help developers formulate more
correct hypotheses or debug more successfully. In contrast,
offering potential hypotheses made developers six times more
likely to succeed. These results demonstrate the potential of
future debugging tools that enable finding and sharing relevant
hypotheses.

Index Terms—Debugging, hypotheses, fault localization

[. INTRODUCTION

Debugging has long been a focus of software engineering
research, encompassing studies of the debugging process as
well as the creation of numerous techniques to more effectively
support it [1]-[7]. Key to the process of debugging are
hypotheses. A debugging hypothesis is a verifiable specula-
tion about the possible cause of the incorrect behavior [2],
[8], [9]. Developers build mental models of the program by
asking questions about the incorrect behavior of the program,
hypothesizing possible causes, and collecting information to
test them [8], [10], [11]. For example, a developer who sees
a search feature fail might ask, "Why did the search not
return the correct answer?”. She might then hypothesize that it
was caused by an incorrect comparison in its implementation
of string matching. From this hypothesis, she might gather
evidence to test it, searching for locations related to string
matching and using the debugger to gather information about
the run-time state to determine if each step in the string
matching algorithm is correct [9], [12].

Unfortunately, developers often formulate incorrect hy-
potheses, resulting in wasted time gathering evidence and
looking at irrelevant code that ultimately does not lead the

Jdacralcacmmasr ~lAacas 44~ 4lhAa te139a AAfLCande TT1D YY haAaa +tlhAacy €431 4

Thomas D. LaToza
George Mason University
Fairfax, Virginia, USA
tlatoza@gmu.edu

help from an experienced coworker is one way to find the
correct hypothesis. Unfortunately, developers may not always
find their coworkers available [8]. One might also expect
that, given the wealth of developer information available on
the internet, finding hypotheses might be easy. To explore
this, we conducted a small preliminary study in which we
observed three professional developers working in three open-
source projects. We found that developers often got stuck
because they lacked correct hypotheses or had an insufficiently
precise hypothesis. Lacking a correct hypothesis, developers
formulated search queries beginning from incorrect output
(e.g., error messages) or an insufficiently specific hypothesis
(e.g., example of API usage based on the hypothesis that
the API is being used incorrectly). This resulted in irrelevant
information that did not lead to a fix, wasting further time.

Despite their centrality to debugging [9], many important
questions remain unanswered about the role of hypotheses in
debugging. It is unclear how hard it is to formulate correct
hypotheses and how closely hypotheses are tied to developers’
debugging performance. And, in situations where developers
lack hypotheses, questions remain about how debugging aids
might assist developers in finding hypotheses, such as suggest-
ing potential fault locations to investigate or directly offering
developers potential hypotheses.

To fill this gap, we investigated three research questions:

RQ1 How hard is it to formulate correct hypotheses? Does for-
mulating correct hypotheses predict debugging success?

RQ2 Does offering developers fault locations help developers
to form correct hypotheses and debug more successfully?

RQ3 Does offering developers potential hypotheses help de-
velopers debug more successfully?

We conducted a lab study in which 20 developers worked
to debug defects in three small programs taken from Stack
Overflow. We chose to focus on API-related defects, as studies
suggest these can be challenging to debug [14]. To observe
the process of how developers formulate hypotheses during
debugging, we organized the debugging tasks into three stages
and asked developers to write down their hypotheses at each
stage. At each stage, developers were given access to more

Slicing

 Developers start at output statement that
generates symptom.

* Developers navigate control & data flow
backwards & navigate across control &
data flow backwards to understand

Human Aspects Henry Ledgard
of Computing Editor

Programmers Use Slices
When Debugging

Mark Weiser
University of Maryland

Computer programmers break apart large programs
into smaller coherent pieces. Each of these pieces: func-
tions, subroutines, modules, or abstract datatypes, is
usually a contiguous piece of program text. The experi-
ment reported here shows that programmers also rou-
tinely break programs into one kind of coherent piece
which is not coniguous. When debugging unfamiliar pro-
grams programmers use program pieces called slices
which are sets of statements related by their flow of data.
The statements in a slice are not necessarily textually
contiguous, but may be scattered through a program.

CR Categories and Subject Descriptors: D.2.5 [Soft-
ware Engineering]: Testing and Debugging—debugging
aids; H.1.2 [Models and Principles]: User/Machine Sys-
tems—human information processing; D.2.7 [Software
Engineering]: Distribution and Maintenance—correc-
tions, enhancement, restructuring

General Terms: Experimentation, Human Factors,
Languages

Additional Key Words and Phrases: program decom-
position, slice

Introduction

Experts differ from novices in their processing of
information. This difference has been studied in chess
[2, 4], physics [3, 10], and computer programming [12,
16]. An expert in physics problem-solving encodes and
processes physics problems in terms of laws such as
conservation of energy or Newton’s second law. A chess
expert processes only reasonable positions when thinking
about a game. An expert computer programmer encodes
and processes information semantically, ignoring pro-
gramming language syntactic details [17].

This work was supported in part by the Air Force Office of
Scientific Research Grant no. F49620-80-C-001, by National Science
Foundation Grant no. MCS-80-18294, and by a grant from the General
Research Board of the University of Maryland. Computer time was

provided in part by the Computer Science Center of the University of
Marviand

How do expert programmers encode and process
information for program debugging? Gould [7] reports
that many programmers start debugging by carefully
reading the faulty program from top to bottom, without
ever bothering to look closely at the erroneous program
output. Dijkstra [S] and others have proposed that de-
bugging time could be shortened by rigorous reasoning
about a program’s correctness. However, perhaps the
most basic method of debugging is to start at the point
in the program where an error first becomes manifest,
and then proceed to reason about the sequence of events
(as verified by the program text) that could have led to
that error. Since this reasoning generally moves through
the program’s flow-of-control backwards (compared to
its ordinary execution sequence), this debugging strategy
is called working backwards.

Gould [7] and Lukey [11] report instances of pro-
grammers working backwards from an error’s appear-
ance, attempting to locate its source. Supporting this,
Sime, Green, and Guest [20] report that debugging is
better aided by program constructs describing program
state than by the usual program constructs describing
flow-of-control. A flow-of-control construct (such as
ELSE) can be understood only in context (with its
accompanying IF) while program state constructs (Sime,
Green, and Guest use ELSE (assertion)) have meaning
in isolation and hence are more useful while working
backwards. Zelkowitz [27] reports on the efficacy of a
interactive debugger capable of backwards execution.

Less rigorously, programmers generally accept work-
ing backwards as an important debugging method [15],
but there has been little investigation of the working
backwards process or its advantages for the programmer.
The results reported here clarify this process by showing
that while working backwards, programmers construct
in their minds a specific kind of abstract representation
of the program being debugged.

Program Slicing

Tracing backwards from a particular variable in a
particular statement to identify all possible sources of
influence on the value of that variable often reveals that
many statements in a program have no influence. The
process of stripping a program of statements without
influence on a given variable at a given statement is
called program slicing. A brief summary of automatic
program slicing follows. More details may be found in
[21, 22, 23]. Proofs of many of the assertions below are

c ormAT e e Tk o1 e v ot e A

Tools can support slicing

Figure 1. Using the Whyline: (1) The developer demonstrates the behavior; (2) after the trace loads, the developer finds the
output of interest by scrubbing the I/O history; (3) the developer clicks on the output and chooses a question; (4) the Whyline
provides an answer, which the developer navigates (5) in order to understand the cause of the behavior (6).

/) P Distinguished Paper
l 2 (" M M - .
— 1 E'_./ Z ({r) why did this execute? 4) . . .
- L _ _ ¥ 1) why did color = rgb(0.0,0)? Debugging Reinvented: Asking and Answering Why and
showing mouse drag events prope of this j why did x1 =777 /v l y = rgo(0,0,0)<{ Whv N . b) Behavi
objects rendering this ¥ why did y1 = 2747 /wp-(2) why did this = PencilPaint #25,2 y Not Questions about Program Behavior
ndows » ' = ’ Amy J. Ko and Brad A. Myer:
after this mouse drag 4 \wmyhy o cywz - * ¢ Color Huma):lrjéomo Lierd Interaalgtior.l Ing,tﬁuie
—— i :.? #19,941 School of Comput Sg ce, Carnegie Mellon Universi
ey p— : ’ mputer lence, negie mMellon universi
why did font = Dialog 5000 Forbes Avenue, Pitsburgh, PA 15213 Y
{ajko, bam}@cs.cmu.edu
.
L. | PaintWindowjava | [graphics | text exceptions
_ : Abstract about the relationship between the symptoms of a problem and
. é J\ { ' N
+ (default package) . Color() on (- Pebevden 91,708 When software developers want to understand the reason for a ﬁ;li;lcau:seselz ;eiznﬁljnlsiﬁols? 9(3; 1:;' tel;s:tgi?rt::?;,silevelopers
edu.cmu.hcii.paint o (1{r) why did this execute? . = program’s behavior, they must translate their questions about the gu g o 2o
Act ' 25 o S y) . : _ | e behavior into a series of questions about code, speculating about Unfortunately, today’s debugging and program understanding
: EC OnSP.] a.V? . > (1) why did getValue() return 07 (producer) the causes in the process. The Whyline is a new kind of debugging tools do not help with this part of the task. Breakpoint debuggers
+ EraserPaintjava o \ : » m 07 (tool that avoids such speculation by instead enabling developers require people to choose a line of code. Slicing tools require a
+ PaintCanvas.java 27 public void stateChanged(Chan l2‘) rerdt changeeventy 3. o - ? to select a question about program output from a set of why did choice of variable [2]. Querying tools require a person to write an
Pai : : 28 (3) why did getValue() return 0? (producer) et and why didn’t questions derived from the program’s code and executable expression about data [11]. As a result, all of these
+ a!ntOb!ect.java ' .) S execution. The tool then finds one or more possible explanations tools are subject to a ‘garbage-in garbage-out’ limitation: if a
+ PaintObjectConstructor java 29 objectConstructor.setColort _ for the output in question, using a combination of static and developer’s choice of code is irrelevant to the cause, the tool’s
PaintObjectConstructorListe 30 new Color(dynamic slicing, precise call graphs, and new algorithms for answer will be similarly irrelevant. Worse yet, none of today’s
= " :) : . . — determining potential sources of values and explanations for why tools allow developers to ask why not questions about things that
PaintWindow java 31 rstluer yecvatue(), : — ": : - a line of code was not reached. Evaluations of the tool on one task did not happen; such questions are often the majority of
PaintWindow$1.class 2 gSlider.getValue(), e .}howed that novice programm;rs with ’It'ﬁe Wliylline l:vere twich:e1 as developers’ questions [10]. Of course, lots of things do not happen
: " ')) ast as expert programmers without it. The tool has the potential to in a program, but developers tend only to ask about behaviors that
s; IntV::gOW 3(1)() 33 QS1 1der. ge tValue(J)); * simplify debugging in many software development contexts. a program is designed to do.
teC ged 34
+ PaintWindow$2.class £CY - . Categories and Subject Descriptors In this paper, we present a new kind of program understanding
PaintWindow$3.class P> SREATL T — . — | D.2.5 [Testing and Debugging]: Debugging aids, tracing ﬁl::lt;t:l;:sg gl”II‘lEe t?:ela cizll:gnglemrﬁgl’:’ t}‘;l:cxiq?l‘i,:irr:: n;z:)ptllel:c:z
PaintWi class %b) |, H.5.2 [User Interfaces]: User centered design, interaction styles late their questions to code queries, the Whyline allows
: T ¢ General Terms developers to choose a why did or why didnt question about
PencuIPalnt.lava , Reliability, Algorithms, Performance, Design, Human Factors program output and then the Whyline generates an answer to the
PencilPaint.class A8 ’ ’ en, ’ question using a variety of program analyses. This avoids the
PencilPaint() Q threads watch*® exp|ain show call 1. INTRODUCTION problems ngted above because de_veloperslikarethmuch better a;
. id color =7 . . reasoning about program output, since unlike the execution o
define() why did ¢ l & % T T Software developers have long struggled with understanding the code, it is observable. Furthermore, in many cases, developers
: ¢ - ~ihn | —=in «~in | —in ' colapse/| | show | —_ causes of software behavior. And yet, despite decades of knowin .
getBoundingBox() A N causes of sofware behavior. yel, desprie cecades 0 Anowing themselves define correctness in ferms of the output.
getEndX() These events were event |event| |method | method thread | thread ex threads ~ AWTEventQueue0-5 7) that program understanding and debugging are some of the most
i i t ' challenging and time consuming aspects of software development, This work follows earlier prototypes. The Alice Whyline [8]
getEndY() fesgons'me' PalntW| fld0W$1 ',Statecmnged(A little has changed in how people work: these tasks still represent supported a similar interaction technique, but for an extremely
getStartX() ’lﬂj why did this execute? + this = PaintWindow$1 #3,742 up to 70% of the time required to ship a software product [17]. simple language with little need for procedures and a rigid
getStartY() (1) why did getValue() return 0?7 (producer) ' F""m. Event = ChangeEvelltl A simple problem underlies this statistic: once a person sees an gg?:;ﬁlszg %i&;l tp?; t(i;:ea blab astl;gzio:heofwg)y lu};heforCAlsntc;el
Y v . , ' + JSlider : fireStateChanged!) inappropriate behavior, they must then translate their questions ggne - v U B
paint() (2) why did getValue() return 0? (producer) : . PPTop navior, They T . qd \ framework [14], which supported questions in end-user
: t | : , . 2 (+ ModelListener : Statecmnged“ about the bghawgr into a series of queries a_bout the program’s applications, applied the same ideas, but limited the scope mostly
o) !ava.aw b 'l3) why did getValue() return 0? (producer) + DefaultB dedR Model - fi code. In doing thl.S translatlpn, developqrs pas1cally have to guess to questions about commands and events that appear in an
elauilbounae angeiioael :Tire about what code is responsible [10]. This is worsened by the fact
+ Java.awt.event | + DefaultBoundedRanaeModel : set that b f 'fp h Ives i 4 yd' bl application’s undo stack (in lab studies of Crystal, participants
+ javax.swing | e e R TN e B o e were able to complete 30% more tasks, 20% fastr).
thr.ea% B AWTE thregd 00-5 ¢ o . o 0 #(1:8 g:n S .au) UGo algEeMocs! - 36 program behavior. Even for experienced developers, speculation These successes inspired us to extend these ideas to an
O . main- ventQueuel- ' JSIlder_ - setValuelsAdjusting() implementation for Java, which removes many of the limitations
/ + TrackListener : mouseReleased() Permiseion fo make digitl oc hard copics of al or pert of fhis wodk: fi of our carger worl‘;. Whe contrit;:tx_tc. () algorithms fcir derivi(rg
, § L . 158 ital) a) questions from code that are efficient and output-relevant,
| saarch code ’ m Component . Processmousesven personal or clgss%'oom use is granted w1thout.fee provided that copies are algorithms for answering questions that provide near immediate
|) start of program 5 - +_IComnonent * nrocessMouseF \lPl - ﬁ:t mggic ort(.hsmb:tg:i fgf]rrc_)tﬁtt.or comtrlr]lcrfczlalt advant;gc and th:}lt copies feedback, and (3) a visualization of answers that is compact and
\ y orarrepultil?s(t)) lctz a;ost oen ser:;rz 1;);1 tc:) nre deist;ri;ult):gtg li:tscofe{p?irezrwrlisg; simple to navigate. We achieve all of this with no limitations on
e specific pcm.lission and/or a fee. ’ P the target program, other than that it uses standard Java 1/O
I 1@ l ICSE’08, May 10-18, 2008, Leipzig, Germany. mechanisms and that the program does not run too long (given our
Ask why did color = g7 Copyright 2008 ACM 978-1-60558-079-1/08/05...$5.00. trace-based approach).

Most up-to-date version: 06/22/2021

52

Limitations of Slicing

 May not work well for
e Questions about what did not happen
* |nteractions involving API behavior

* |_ong running operations

Why didn t this happen? (3)
How do I debug this bug in this environment? (3)
In what circumstances does this bug occur? (3)

53

Debugging hypotheses

* a hypothesis is an educated guess about what might be causing a
particular bug.

Maybe | did

not parse
the data

Work to test the

\hypothesis

Read related code = °
Look at relevant online resources ‘A
Debug specific of line of code i

54

Hypothesis-Based Debugging: Hypothesizer

e N e _ N e . e _
000 Movies Search App m 000 Hypothesizer 000 Hypothesizer 000 Hypothesizer
- p 4 4 4
_ How would you describe the defect? We found 2 relevant hypotheses
W Searching For relevant hypotheses Choose multiple descriptions if needed
Movies Most Likely Descriptions H1: You are not using the proper callback
- Ve Ya N type.
(Program is not responding to my click) Description: S
< 7
Less Likely Descriptions Evidence Timeline:
\. /. AN Y 63% ———rT—— . -
~ > < = - (Animation is not working) Click CEEEEEEEEE—
(S) ?': e
. / e 7,
(S) :ypI:
-
J\ J\ AP
\ J
4 N N A —k
Show Hypotheses
H2:
L\ N\ VAN) \ | \
\. / \. / \ \.

Abdulaziz Alaboudi and Thomas D. Latoza. 2023. Hypothesizer: A Hypothesis-Based Debugger to Find and Test Debugging Hypotheses. In
Symposium on User Interface Software and Technology, 1-14. https://doi.org/10.1145/3586183.3606781

55

* Developers follow debugging
strategies to debug a defect.

Developing hypotheses about the cause of the
1. Hypothesis-test defect and testing these hypotheses by gather-
ing evidence in the code or runtime behavior.

Identify solutions or diagnoses by tracing the
error’s manifestations back through the code
execution path to uncover the underlying pos-
sible causes.

Starting with an initial state or known facts.
move forward logically from the initial state,
applying rules, operations, or statements to
generate new facts or states, systematically
examining each step towards the goal or the
discovery of a defect root.

2. Backward-reasoning

3. Forward-reasoning

Breaking down the problem into smaller,
more manageable parts, removing unneces-
sary details, and focusing on the core aspects
that are crucial for finding a solution.

4. Simplification

Understanding the content and meaning of
error messages, which often include error
codes, descriptions, and context about where
and why the error occurred. followed by read-
ing documentation, online resources, forums,
and knowledge bases to look up error.

5. Error-message

Repeatedly dividing the codebase or input
6. Binary-search space into smaller sections and testing each
section to isolate the problematic area.

Debugging strategies

* Developers choose different strategies

depending on context factors.

o Need to talk to j Is the root cause of defect clear? —
External Resources « stockholders or manager No L»Ves
v ' o v
Is there a clear error message associated with defect? <«——— Is the defect related to client-side?
Yes < |—> No No « I »Yes

0... O * 0.
< <«

Error-message Is the developer familiar with the codebase? « Hypothesis-test

e) v

» Does the developer access the codebase?

|
c . ol ’ Yes « I » No

Yes « | > No

g Hypothesis-test <«

Deprecated? s the codebase small? o :
\
l No <—|—> Yes Is the defect reproducible?
Q E ' ‘
Backward-
g reasoning < o Forward- Y?s < » No
& reasoning o v m L
a Binary-search < Is the defect user-specific? Is the defect sporadic?
O Q... |
Simplification <« « System-level Nr < | >Y§s
A

56

Explicit debugging strategies

ProgrammingStrategies

A repository of strategies for programming

A
v
b e

outputLines 35 57 73 <

e Can teach developers the best T =
strategy for a specific defect. 0.

Debug Roboto

f

HHOW

==2ﬂm Home Search Request Strategy New Strategy Roboto Tutorial About Us Report a problem

L Step 1. Find the value of the variable

Stu0k ona programming prOblem? using the variables pane on the right.

4L Step 2. Inspect the condition in the
statement. If the condition is true, click

We'll help you get unstuck. True. Gtherwise, cliek False.

; : : . The computer will go to the next
. ., °|1‘ the faulty output is graphical ou% ©® Step 3
When programming, you use a strategy. Maybe it’s not the best one. ' 9 . , statement.

HowTooDev helps you find better strategies. Graphical output includes things like colored lines and rectangles

If you've spent a lot of time debugging unfamiliar code, the way
that you probably debug is to first look at the failure, then look at
the code to understand how it's architected, and then look for
possible reasons for why the program failed. Once you have a
guess, you probably then check it with things like breakpoints and
logging. This strategy often works if you can have a lot of prior
experience with debugging and inspecting program state. But if you
don't have that experience, or you happen to guess wrong, this
approach can lead to a lot of dead ends.

i

The strategy you're about to use is different. Instead of guessing
and checking, this strategy involves systematically working
backwards from the code that directly caused the failed output to all
of the code that caused that failed output to occur. As you work
backwards, you'll check each statement for defects. If you work

backwards like this, following the chain of causality from failure to
Search for strategies to solve your problem cause, you will almost certainly find the bug.

Proceed Cancel

HowTooDev helps you find better strategies.

Access our community of world experienced developers, great
designers, data science geniuses and experts and use their best
strategies

localizeWrongValue

M. Arab, J. Liang, Y. Yoo, A. J. Ko and T. D. LaToza. (2021). "HowToo: A Platform for Sharing, Finding, and Using Programming Strategies," Symposium on
Visual Languages and Human-Centric Computing, 1-9, doi: 10.1109/VL/HCC51201.2021.9576337.

LaToza, T.D., Arab, M., Loksa, D. et al. Explicit programming strategies. Empir Software Eng 25, 2416-2449 (2020). https://doi.org/10.1007/s10664-020-09810-1 of

Debugging in the Age of LLMs

GitHub Copilot Chat

CHAT MORE Analyze the 'System.IndexOutOfRangeExcepti... » L

| LLMs can already help debug

GitHub Copilot

This error happens because the application is
trying to access an element at index 0 of the
args array, but the array is empty.

do you see an issue with @local_construction.rs ?

* Can help diagnose and fix code
iInvolving incorrect API interactions

Yes, | notice a potential issue in the method. When
deleting a file, it only removes the direct file node but doesn't handle
nested directories or files that might be children of the deleted node.

¢ If Some Of these are hard defeCtS, This could lead to orphaned entries in the BTreeMap.
COU Id al ready be a big Wi n ! Here's a fix that removes all child entries from the files map:

This might be happening because the application
is expecting command line arguments, but none
are being provided when the application is run.
Theargs array is populated with command line
arguments when the application starts. If no
arguments are provided, the array is empty. The
code then tries to parse the first argument (at
index 0) to an integer, but since the array is
empty, there is no element at index 0, hence the

IndexOutOfRangeException.

@ local_construction.rs S Ask D Apply

* More challenging for defects that

& self,
file_path: String,
) — Result<(), anyhow::Error> {

To fix this, you could check the length of theargs
array before trying to access its elements. Here's
an example of how you could modify your code:

* require collecting information scattered nainCstring[] a
across files or through debugging tools (args.Length > 0)

{

e |ess connected to API interactions

ie = Int32.Parse(arg

< > o —

* require dynamic execution information ST AU E
rather than static code text names =

names.A :("v.-,;;‘,‘ .

Supporting debugging with LLMs

» Slicing: interpret information along a slice

* Fault localization: generate explanation &
fix

 Hypothesis testing: generate hypothesis &
gather evidence and work together to test

o Strategies: script IDE interactions to
gather information

if (error) {
console.log("Error:" + error);
process.exit(1);

59

Supporting explicit debugging strategies

ROBIN

Conversation Orchestrator

0 conerate tepty(uessage Qs i .

 Programming strategies can help direct vevsorer | | == | | g meomte coment)
agents LLMs. = (eI
Offloads some of the boilerplate of § | CodeContext C@'Ag /
gathering info through strategies to LLM

..... Q.

Collaborative Agent Responder Agent

T @J

Follow-up Agent

-

Inner Messages

. y

Yasharth Bajpai, Bhavya Chopra, Param Biyani, Cagri Aslan, Sumit Gulwani, Dustin Coleman, Chris Parnin, Arjun Radhakrishna, Gustavo
Soares. Let’s Fix this Together: Conversational Debugging with GitHub Copilot. IEEE Symposium on Visual Languages and Human-
Centric Computing (VL/HCC) | August 2024 Best Research Paper Award

60

https://www.microsoft.com/en-us/research/people/ybajpai/
https://www.linkedin.com/in/param-biyani/
https://www.microsoft.com/en-us/research/people/sumitg/
https://www.microsoft.com/en-us/research/people/chrisparnin/
https://www.microsoft.com/en-us/research/people/arradha/
https://www.microsoft.com/en-us/research/people/gsoares/
https://www.microsoft.com/en-us/research/people/gsoares/
https://www.microsoft.com/en-us/research/publication/lets-fix-this-together-conversational-debugging-with-github-copilot/

Theories of Program Comprehension in the Age of LLMs

 How can developers still understand the code being generated?

= Theories of Information Needs in Programming

* [o what extent do developers really have to understand the code being
written?

= Theories of Information Hiding

 How do developers figure out what's wrong when it doesn't work”?

= Theories of Debugging

61

Where do you design your tool to intervene?

High-level task

Low level task

e LLM helps to

Translate a requirements doc into code
Generate a new design doc from code
FiX Issue In issue tracker

Diagnose & fix a defect

Answer a complex question

Execute strategy

Generate a few lines of code

Produce a simple fact about code

Spec-driven development

Auto coders

Agentic programming

VS Code

Freedom
& Control

Potential time
savings

Trust

62

Charting a future of LLMs & program comprehension w/ Theories

* Traditional cognitivist theories of developer behavior
* |nformation needs, strategies, schemas,

* Theories of why tools help

* Build more theories by explicitly state what we believe, where we learned this
* |dentify conflicting beliefs, use studies to test

* Create new tools informed by problems & activities from theories

63

Theories of Program Comprehension in the Age of LLMs

Theories of Information Needs in Programming

Developers ask questions What does this do when input is null?

What part of this is being done client side and what part server side?

Answering questions raises more questions.

Tool which successfully supports the questions
a developer asks increases their productivity

Theories of Abstraction in the Age of LLMs

* Small teams of expert software
engineers build the hard building blocks
that require deep system expertise,
exposed as framework and libraries

* Everyone else vibe codes with LLMs to
build small ephemeral apps on top of
the underlying capabilities of LLMs

Questions are task-specific debugging refactoring

testing

Wiy is an event being sued by forcing 3 cache updce?

How 1 BulerHandier wang 3 bufler fekd? Are there 3my other mutatons on <!

I Read mechods of Bulertander

Why 4 doDelapedUpdate() 2 member of BufferHander!

I Reads methods along pach. conchudes thac Buffertander tracks update delays

16

41

Benchmarking Program Comprehension with LLMs Powerful abstractions help build more quickly

SWE-bench % * Parnas' Key Words in Context Problem, used to illustrate 1972 paper on information hiding

Slide Subtitle

» Existing benchmarks examine full et
automation of SE (e.g., success in g
generating a patch) S

[6rwer J Ocose N 2 s Il davavi |

» Many tasks will still require
developer involvement.

@ swe-bench Verified

22 SWE-agent 10 is the open source SOTA on SWE-bench Lite!

* The KWIC index system accepts an ordered set of lines, each line is an ordered set of

words, and each word is an ordered set of characters. Any line may be "circularly shifted"
by repeatedly removing the first word and appending it at the end of the line. The KWXC
index system outputs a listing of all circular shifts of all lines in alphabetical order.

def kwic(lines):

° Want tO have benChmarkS that v"“d"b“'d shifts = [' '.join(line[i:] + line[:i]) f line in lines for i in ((Lir
measure benefit to program e = ==] return sorted(shifts)
comprehension of an LLM assistant L %o o emm . ¢ o Within a week or two.
e Can use hard to answer questions L — oo - ‘ 1972 2025
as benchmark e ed— 4
¥ Orcaloca + Agentless-15 « Claude-3.5 Sonnet (20241022) 4100 O
meff..sﬁff:f;iﬂmwom ::2 ‘: : D. L. Parnas. 1972. On the criteria to be used in decomposing systems into modules. Commun. ACM 15, 12 (Dec. 1972), 1053-1058. https://
30 doi.org/10.1145/361598.361623
Theories of Debugging Where do you design your tool to intervene?
Slide Subtitle Slide Subtitle
* LLM helps to Freedom
) _ & Control Trust
. . . . T . . 1-level task * Translate a requirements doc into code Spec-driven development
» Fault localization: debugging is the process of finding the line with the defect
» Generate a new design doc from code
 Slicing: navigate foryvargis or backwards across control & data dependencies . Fix issue in issue tracker
to locate the defective line Auto coders
* Diagnose & fix a defect
» Strategies: follow a strategy to investigate the code in a systematic way ,
* Answer a complex question
* Hypothesis testing: use intuition to form hypothesis and sytematically gather - Execute strategy Agentic programming
evidence to accept or reject ,
» Generate a few lines of code
VS Code
v level task * Produce a simple fact about code Potential time
47 savings

64

