
Overview & Vibe Coding
CS 691 / SWE 699
Fall 2025

© Thomas LaToza

In class exercise

• Have you used LLM tools in your programming work? How would you like to
use them?

2

3

Same prompt, 4 months later (8/28/2025)

4

5March 2025https://www.businessinsider.com/anthropic-ceo-ai-90-percent-code-3-to-6-months-2025-3

https://www.businessinsider.com/anthropic-ceo-ai-90-percent-code-3-to-6-months-2025-3

6August 2025https://www.nytimes.com/2025/08/10/technology/coding-ai-jobs-students.html

https://www.nytimes.com/2025/08/10/technology/coding-ai-jobs-students.html

7https://mlq.ai/media/quarterly_decks/v0.1_State_of_AI_in_Business_2025_Report.pdf

https://mlq.ai/media/quarterly_decks/v0.1_State_of_AI_in_Business_2025_Report.pdf

8

9
https://www.gartner.com/en/articles/hype-cycle-for-artificial-intelligence

https://www.gartner.com/en/articles/hype-cycle-for-artificial-intelligence

10https://www.itpro.com/software/development/aws-ceo-matt-garman-just-said-what-everyone-is-thinking-about-ai-replacing-software-developers

https://www.itpro.com/software/development/aws-ceo-matt-garman-just-said-what-everyone-is-thinking-about-ai-replacing-software-developers

What's really happening?

• Is AI replacing human software engineers?

• Or it is a worthless waste of time?

• What do we really know about the impact on developer
productivity?

11

12https://survey.stackoverflow.co/2025/ai/

https://survey.stackoverflow.co/2025/ai/

13https://github.blog/news-insights/research/research-quantifying-github-copilots-impact-on-developer-productivity-and-happiness/

"Today, more than a quarter of
all new code at Google is
generated by AI, then reviewed
and accepted by engineers.
This helps our engineers do
more and move faster."

Sundar Pichai
CEO, Google

10/30/2024

https://github.blog/news-insights/research/research-quantifying-github-copilots-impact-on-developer-productivity-and-happiness/

Grounded CoPilot
• Devs use code completion LLMs in two modes

• Acceleration: completing thought process

• Developers formulate detailed idea for code

• Long suggestions break flow

• Skim suggestions to find one that matches
expectations

• Exploration: novel tasks & unexpected behavior

• Generate many solutions, mix and match solutions

• Carefully validate by testing & reading docs

14Shraddha Barke, Michael B. James, and Nadia Polikarpova. 2023. Grounded Copilot: How Programmers Interact with Code-Generating Models. Proc. ACM
Program. Lang. 7, OOPSLA1, Article 78 (April 2023), 27 pages. https://doi.org/10.1145/3586030

Evaluating the Usability of Code Generation Tools Powered by LLMs

• Developers felt more productive, but not
significantly faster

• Replaced StackOverflow for API
interactions, but only one suggestion &
solutions often had defects

• Debugging sometimes harder without
knowledge of how the code should work

• Sometimes suggested approaches that led
participants in the direction of bad solutions

15

not significant (p = 0.53)

Priyan Vaithilingam, Tianyi Zhang, and Elena L. Glassman. 2022. Expectation vs. Experience: Evaluating the Usability of Code Generation Tools
Powered by Large Language Models. In CHI Extended Abstracts,, 1–7. https://doi.org/10.1145/3491101.3519665

Perceptions of Paradigms of Automation

• For complex tasks, developers value guiding LLM rather than full automation

16Anjali Khurana, Xiaotian Su, April Yi Wang, and Parmit K Chilana. 2025. Do It For Me vs. Do It With Me: Investigating User Perceptions of
Different Paradigms of Automation in Copilots for Feature-Rich Software. CHI 2025, 1–18.

METR Study

17

https://metr.org/blog/2025-07-10-early-2025-ai-experienced-os-dev-study/

https://metr.org/blog/2025-07-10-early-2025-ai-experienced-os-dev-study/

METR Study Results

18

Activity

• What is your experience with using LLMs for programming
so far?

• What are you hoping to get out of this course?

19

This Course

• Overview of state of the art of how LLMs are being used in industry to
support software engineering work

• NOT an introduction to LLMs (will briefly dig into how tools work)

• More focus on challenges software engineers experience and how
these tools may help

• Unlike traditional course, there are no definitive answers for many of the
topics we will examine

• We'll instead help you help create your own answers by looking
critically at what these tools are doing and how they are impacting
SE work

20

Course topics
• We'll look at these tools based on how they may support software engineering activity

1. Vibe Coding (1) (8/28)

2. Vibe Coding (2) (9/4)

3. Writing Code (1) (9/11)

4. Writing Code (2) (9/18)

5. Debugging (1) (9/25)

6. Debugging (2) (10/2)

7. Understanding a codebase (1) (10/9)

8. Understanding a codebase (2) (10/16)

9. Writing documentation (1) (10/23)

10. Writing documentation (2) (10/30)

11. Testing (1) (11/6)

12. Testing (2) (11/13)

13. Code Review (1) (11/20)

THANKSGIVING RECESS - NO CLASS (11/27)

14. Code Review (2) (12/4)
21

Readings / Podcasts

• Will be weekly readings / podcasts

• Introduction to key concepts & ideas, practitioner
perspectives on best practices on LLM tools

• Some research papers, more industry blogs / podcasts

• Share your impressions of readings by responding to reaction
prompts on Piazza

• Due next week (9/4) before class:

• Deep Dive into LLMs like ChatGPT (Andrej Karpathy)(3.5
hours)

22

https://www.youtube.com/watch?v=7xTGNNLPyMI

Lecture & In-Class Activities

• Each SE activity will be explored over two weeks

• Week 1

• Lecture - introduction to SE activity, developer challenges, LLM-powered tooling

• Tech talks - deep dive into 1 or 2 specific LLM-powered tools

• Try out tool - try out using an LLM powered tool

• Week 2

• Compare an LLM tool to traditional tool

• Will use each to complete 1 task for the weeks activity (e.g., debug a defect, review code
changes)

• Record your experience with screencast

• Write a report on your experiences with each tool (HW assignment)

• Will have option to share your anonymized data for research use (details to come)
23

Tech Talks & Posts

• Over the course of the semester, you'll work with 2 or 3 others
to become an expert about a specific LLM-powered
programming tool.

• Play with using the tool, read up on others experiences with
using the tool in industry

• Deliverables

• Tech Talk, sharing the basics of what the tool can do.

• Blog posts, focused on specific aspects of the tool

24

Grading

• In-Class Activities & HW Assignments: 60%

• Tool Reports: 20%

• Responses to Readings & Videos: 20%

25

AI Usage Policy

• Will use LLM-powered programming tools throughout the
semester to work on SE tasks

• All other work should be your own

26

Foundation models

• Tools are built on top of large language models (LLMs), sometimes referred to as
foundation models

• LLMs take a prompt (e.g., question in chat) + context (e.g., files in a codebase) and
use model to generate output (e.g., code + explanation)

• Top foundation models for web programming:

27https://lmarena.ai/leaderboard/webdev

https://bbycroft.net/llm

https://lmarena.ai/leaderboard/webdev
https://bbycroft.net/llm

History of LLM-Powered Programming Tools

28

Code Completion

29
https://code.visualstudio.com/docs/copilot/ai-powered-suggestions

https://code.visualstudio.com/docs/copilot/ai-powered-suggestions

Code Completions

30https://code.visualstudio.com/docs/copilot/ai-powered-suggestions

https://code.visualstudio.com/docs/copilot/ai-powered-suggestions

Chatting with an LLM

• Chat with an LLM (e.g., ChatGPT), ask it to create
code

• Avoids having to read docs / StackOverflow to figure
out how to use an API

• Can even debug or edit when it isn't quite what you
want

• But disconnected from your codebase

• Have to paste code back & integrate into your
codebase yourself

• Doesn't help in working with what's going on in
your codebase

31

Early IDE Integration

32

• Chat with an LLM inside your codebase

• Explicitly feed it context by referencing files or other
artifacts

• LLM directly edits / changes your code, giving you an
option to review or revise what it is doing

• But developer still responsible for explicit identifying
context, referencing files, documentation, or other
artifacts

33

Agents and Context Providers / Tools

• Rather than immediately
output text, LLM
repeatedly takes actions
to gather more context or
repeatedly update output

• Actions may help an
LLM understand
something (e.g. learn
about how to make a
change by reading
doc to identify relevant
files, reading the files,
and then identifying
where and how to
make change)

34https://ghuntley.com/agent/

https://cursor.com/

https://ghuntley.com/agent/
https://cursor.com/

Model Context Protocol (MCP)

35

• Can use Model Context
Protocol (MCP) to supply LLM
with new tools, which help it to
interact with other programming
tools (e.g., command line
debugger,

Spec-Driven Development

• Rather than provide all instructions
exclusively through prompt,
describe through dedicated text
files (e.g., claude.md)

• Enables tool to reference these files
all the time without constantly
having to include it again in the
prompt

• May lead to large contexts, which
may cause tool to sometimes forget
parts

• ==> Can use to generate tests
or assist with verification to
ensure generated code matches
intent

36
https://tessl.io/

https://tessl.io/

Specialized tools for specific programming tasks

• Rather than simply use
LLMs to write code,
use LLMs for other SE
activities (e.g., testing,
documentation, code
review)

37
https://ainativedev.io/landscape

https://ainativedev.io/landscape

Vibe Coding

Vibe Coding

39

https://x.com/karpathy/status/1886192184808149383?lang=en

https://x.com/karpathy/status/1886192184808149383?lang=en

Vibe coding

• Has become catchall term for using an LLM to build a
program with a prompt, with some, but minimal, oversight by
a developer in the form of follow up prompts rather than as
edits to code

• Used by non-programmers (or those with out of date technical
skills) to write apps

• Usually seen as a way to quickly build a prototype rather than
a deployment ready app

40

Programming Tools for Vibe Coding

41

https://replit.com/

https://replit.com/

Risks of Vibe Coding

• Developers has specified some intent through prompts

• LLM fills in the rest of the details

• Developer briefly looks at the output, not the code

• May be hard to see from just the output that it's doing what
is expected

• may have hidden security vulnerabilities, poor scalability,
unexpectedly large use of expensive resources

• Code often has very poor design / architecture - lots of code
duplication, inadequate code structure

42

Vibe Coding vs Agentic Coding

• Vibe coding sometimes contrasted with agentic coding

• Like vibe coding, both rely on agentic capabilities for an LLM to
iteratively take actions and use tools

• But agentic coding often has more of an emphasis on carefully
reviewing / guiding LLM outputs, whereas vibe coding relies only on
output

• Vibe coding often implies a prototyping scenario -- building a new
app from scratch that is not intended to be released

• Agentic coding usually refers to using agentic LLM features within an
existing codebase, where the challenge is successfully working with
existing code

43

In-Class Activity - Step 1
• Form groups of 1 or 2

• Use vibe coding to build a city simulation. Your city simulation should allow the users to zone land, create
infrastructure buildings, see how the city changes over time, and monitor the happiness of your city's residents.

• Step 1 - Use Replit

• Navigate to Replit.com and create a new project w/ free tier.

• Stop when your run out of credits on free tier

• Download code to your computer

• Step 2 - Continue work w/ Cursor

• Install Cursor (cursor.com)

• Create using the code you downloaded

• Continue work

• Step 3 - Complete questions about your experiences (upload to Canvas), upload screen recording (to MS
Forms)

• Step 4 - Discuss your experiences with class

44

http://cursor.com

Screen Recording

• Before starting your work

• Login to Canvas, select Kaltura from left tab,

• Add new, Select Kaltura Capture

• Disable camera / audio, enable screen

• Create a screen recording while you work on the tasks

• After finishing

• Find the mp4 of your screencast (default location: /Users/
[username]/Library/Preferences/Kaltura/Capture/Recordings/)

• Upload to MS Forms - https://forms.office.com/r/Fg37fk1knP

45

https://forms.office.com/r/Fg37fk1knP

Step 3: Question Prompts

• What was your approach for tackling this problem?

• What was most surprising about your experience using the tool?

• In what ways was the tool helpful in supporting what you wanted to do?

• In what ways did the tool get in the way of what you were trying to
accomplish?

• What was your approach to addressing issues when they arose?

• What recommendations would you have on how to use the tool
effectively?

• Deliverable: Submit through Canvas, at least 1 page

46

