
Code Review
CS 691 / SWE 699
Fall 2025

© Thomas LaToza

Logistics

• Reflection 4, Project Checkpoint, Lecture 10 reading questions due today

• Lecture 11 reading questions due today next week at 4:30pm

• Lecture 10 activity (in class today), due by 11/7 at 4:30pm

• Project presentations in 4 weeks

2

Today

• Discussion: Experiences from Lecture 9

• Discussion: Reading questions for Lecture 10

• Lecture

• Code Review

• In-Class Activity

3

Discussion: Experiences from Lecture 9 Activity

• How did you use LLM to help understand a codebase?

• How did you build trust in the answers?

• What was it good or bad it?

• How did experience of using LLM compare to not using an LLM?

4

Discussion: Reading questions for Lecture 10

• What questions did you have from readings for Lecture 10

• Discuss questions & possible answers in group of 3 or 4

• Come back with 1 question you want to discuss w/ whole
class

5

Code Review

Modern Code Review: Goals

• Ensure that code can be read by others

• Ensure consistency of style and design

• Ensure adequate tests

• Accident prevention: find defects & other quality issues

• Education: ensure that multiple developers are familiar with
code to be able to maintain

• Records code history, enabling future auditing of changes
when understanding how and why defects introduced

7
Caitlin Sadowski, Emma Söderberg, Luke Church, Michal Sipko, and Alberto Bacchelli. 2018. Modern code review: a case study at google. ICSE-SEIP.

Example

8

Practices

• Ownership

• Reviewers should have ownership of relevant part of the
code, ensuring consistency and awareness of priorities and
practices

• Readability

• Ensure knowledge in code style & best practices for
language

9
Caitlin Sadowski, Emma Söderberg, Luke Church, Michal Sipko, and Alberto Bacchelli. 2018. Modern code review: a case study at google. ICSE-SEIP.

Process

• Creation: create a change request

• Preview: review diff & results from automated quality checks

• Commenting: reviewers comments on change, create action
items to address by author

• Addressing feedback: author address comments

• Approval: reviewers mark change as good to go after action
items have been addressed

10
Caitlin Sadowski, Emma Söderberg, Luke Church, Michal Sipko, and Alberto Bacchelli. 2018. Modern code review: a case study at google. ICSE-SEIP.

Challenges in Code Review

• Distance: geographical & organizational, lead to delays &
misunderstandings

• Social interactions: tone & power dynamics can make
developers uncomfortable

• Design: should design be reviewed before or during code
review

• Context: need adequate understanding of motivation for
change

11
Caitlin Sadowski, Emma Söderberg, Luke Church, Michal Sipko, and Alberto Bacchelli. 2018. Modern code review: a case study at google. ICSE-SEIP.

Automated Code Review Tools
• Rather than rely on human reviewers to find all issues, long been emphasis on

using automated tooling

• Increased in popularity with rise of Continuous Integration / Continuous
Deployment workflows

•

12
Sahar Mehrpour and Thomas D. LaToza. 2022. Can static analysis tools find more defects? A qualitative study of design rule violations found by code review.
Empirical Softw. Engg.

Example: AST-based Rules

13
Sahar Mehrpour and Thomas D. LaToza. 2022. Can static analysis tools find more defects? A qualitative study of design rule violations found by code review.
Empirical Softw. Engg.

Types of defects

• Maintainability: impact quality of code

• Implementation: code does not satisfy its requirements

• Build config: may cause build & integration to break, through missing
scripts of config settings

• Test suite: incorrect & ineffective tests, such as incorrect assertions of
insufficient code coverage

• User Interface: visual appearance of software as displayed to the user

• Requirements: missing or misinterpretation of project requirements

• Performance: memory or runtime issues, such as unnecessary computation
or poorly optimized memory allocation (e.g., unnecessary database queries)

14
Sahar Mehrpour and Thomas D. LaToza. 2022. Can static analysis tools find more defects? A qualitative study of design rule violations found by code review.
Empirical Softw. Engg.

Potential use of
static analysis tools
to find defects

15

Sahar Mehrpour and Thomas D. LaToza. 2022. Can static analysis
tools find more defects? A qualitative study of design rule
violations found by code review. Empirical Softw. Engg.

Examples of defects

16
Sahar Mehrpour and Thomas D. LaToza. 2022. Can static analysis tools find more defects? A qualitative study of design rule violations
found by code review. Empirical Softw. Engg.

Automated Code Review Tooling with LLMs

• Interest in using LLMs to find defects

• Many ways to build it

• Run traditional tools (e.g., linter, spell
checker, defect detectors), use LLM to
explain or propose fixes

• Have LLM infer rules, which are then
checked

• Agentic workflows

17
https://ainativedev.io/landscape

https://ainativedev.io/landscape

Example: Agentic Code Review Workflow in Baz

18

19

https://www.youtube.com/watch?v=Skze4ATXUwM

Logical Bugs Agent in Baz

• Uses whole-repo retrieval: pulls call graphs, helper functions, and test
fixtures via similarity search to reconstruct the logical context for a
change.

• Combines AST-based program understanding with agentic reasoning to
propose concrete execution scenarios that violate invariants (for
example, inconsistent state transitions, missed early returns that lead
to surprising side effects, or incorrect assumptions about data shapes).

• Correlates dynamic evidence (if available) such as existing test traces
or recorded failing CI logs to strengthen hypotheses.

• Outputs Findings that include the reasoning trace, implicated files and
lines, and suggested repro steps or minimal code locations to inspect.

• Constraints: this agent is compute-heavy and tuned to reduce false
positives by requiring multi-source evidence (retrieval + AST +, where
possible, runtime traces).

20
https://docs.baz.co/agents/baz-reviewers

https://docs.baz.co/agents/baz-reviewers

Spec Review Agent

• Validate change meets issue requirements

• The agent is automatically initated when a pull request is linked to a Jira ticket
and optionally a live preview environment. If the ticket contains references to
a Figma design the agent will include it in its context.

• The agent builds a sandboxed browser session and delegates UI interactions
and visual checks to sub-agents. The agent runs test cases, compares
rendered UI to design artifacts, and verifies ticket requirements.

• Output: a single PR comment grouping unmet requirements first and met
requirements collapsed, as well as a GitHub check with pass/fail/neutral.

• Constraints: requires a reachable or credentialed preview environment. Inline
annotated screenshots are planned but not yet implemented. The agent is
designed to reduce noise by summarizing issues in one place rather than
producing many inline comments.

21
https://docs.baz.co/agents/baz-reviewers

https://docs.baz.co/agents/baz-reviewers

Baz Agent Architecture

22
https://baz.co/resources/engineering-intuition-at-scale-the-architecture-of-agentic-code-review

https://baz.co/resources/engineering-intuition-at-scale-the-architecture-of-agentic-code-review

Using Baz

• Integrated into GitHub / GitLab

• MCP Server

23

Key questions about Agentic Code Review

• What types of issues can it find

• Limited by available information

• e.g., may not have visibility into performance issues without
understanding of perf implications of a design decision

• How well does it know your codebase

• Like all agentic LLMs, still relies on having right context to surface
relevant idioms & practices

• If these are well documented, may work better

• May try to infer from past changes or pull requests comments, but may
be harder

24

10 min break

In-Class Activity

• In groups of 2, try out Baz on pull requests

• Clone a repo --- can be one of yours (e.g., your city simulator) or an existing project (ideally one
you are familiar with)

• Prepare small code changes (e.g., a few lines of code)

• Goal: build changes that have issues the tool can't find (e.g., violate coding style conventions
for project, put code in the wrong place, have unhelpful identifiers, etc.)

• Build pull requests for your changes, ask Baz to review, see what types of issues it is able to
catch

• Deliverables

• Screen recording through Kaltura

• Upload to OneDrive, turn on link sharing, share link in Lecture 10 activity submission on Canvas

• Submit answers to questions on your experiences on Canvas (next slide)

• Aim to finish by 7:10pm today; Due tomorrow at 4:30pm
26

Questions to answer

• What types of issues did you explore?

• How did you design the issue, and why did you think it would be hard to find?

• Which of the issues was the LLM able to find in code review? Which was it not able
to find?

• How helpful were the suggested fixes and explanations?

• What did you learn about using LLMs for code review?

• Deliverable: Submit through Canvas, at least a page

27

