Code Review

CS 691 / SWE 699
Fall 2025

(G le GEORGE MASON
TM UNIVERSITY:

© Thomas LaToza

Logistics

* Reflection 4, Project Checkpoint, Lecture 10 reading questions due today
* | ecture 11 reading questions due today next week at 4:30pm
* Lecture 10 activity (in class today), due by 11/7 at 4:30pm

* Project presentations in 4 weeks

Today

* Discussion: Experiences from Lecture 9
* Discussion: Reading questions for Lecture 10
* |ecture

 Code Review

* In-Class Activity

Discussion: Experiences from Lecture 9 Activity

 How did you use LLM to help understand a codebase?
 How did you build trust in the answers?
 What was it good or bad it?

 How did experience of using LLM compare to not using an LLM?

Discussion: Reading questions for Lecture 10

 What questions did you have from readings for Lecture 10
* Discuss questions & possible answers in group of 3 or 4

 Come back with 1 question you want to discuss w/ whole
class

Code Review

Modern Code Review: Goals

* Ensure that code can be read by others

* Ensure consistency of style and design

 Ensure adequate tests

» Accident prevention: find defects & other quality issues

 Education: ensure that multiple developers are familiar with
code to be able to maintain

* Records code history, enabling future auditing of changes
when understanding how and why defects introduced

Caitlin Sadowski, Emma Soderberg, Luke Church, Michal Sipko, and Alberto Bacchelli. 2018. Modern code review: a case study at google. ICSE-SEIP.

Don't Crash When Reading Bad Defines #129

el GGl huderlem merged 3 commits into huderlem:master from garakmon:testing (5] on May 9, 2019

Q) Conversation 11 0- Commits 3 =) Checks 0 Files changed 6

‘* garakmon commented on May 5, 2019 « edited ~ Collaborator (2) ««-

but warn the user (give a file name and line number) about bad expressions.
Reading tilesets now doesn't give warnings about the secret base tileset pointers.

Added colorful log output for Linux and macOS users (and probably this applies to WSL). Windows | can't reliably
test and it would require a refactor that is probably not worth it.

E+ garakmon added 2 commits on May 5, 2019

O 1& improve tileset label reading to silence unnecessary warnings fc407b6

O * readCDefines() - don't crash on invalid expressions, add better debug.. = B 6303068

huderlem requested changes on May 5, 2019 View changes

—
i | 4

src/project.cpp

1628 - *definesToSet = definesInverse.values();

1629 - } else {

1630 - logError(QString(“Failed to read C defines file: '%1'").arg(filepath));

1597 4 void Project::readCDefinesSorted(QString filename, QStringlList prefixes, QStringLi:

(:> ces

huderlem on May 5, 2019 Owner

| feel like the readCDefines functions should live in parseUtil.cpp . Agree? m

s

* garakmon on May 5, 2019 Author Collaborator

lliil (:) ces

yes

81c937a

O 1} move source parsing functions from project to parseutil

readCDefines() - don't crash on invalid expressions, add better debug...

comi@n%a

‘% garakmon committed on May 5, 2019

v 272 mmmm - src/project.cpp [°)

1622 logError(QString("Failed to read C defines file: '%1'").arg(filepath));
void Project::readCDefinesSorted(QString filename, QStringList prefixes, QStringListx definesToSet) {
QString filepath = root + "/" + filename;

QMap<QString, int> defines = readCDefines(filename, prefixes);

// The defines should to be sorted by their underlying value, not alphabetically.

// Reverse the map and read out the resulting keys in order.

QMultiMap<int, QString> definesInverse;

for (QString defineName : defines.keys()) {
definesInverse.insert(defines[defineName], defineName);

r
+ + 4+ 4+ 4+ 4+ 4+ 4+ + +

}
+ xdefinesToSet = definesInverse.values();

move source parsing functions from project to parseutil

comm e o37ag

1597 void Project::readCDefinesSorted(QString filename, QStringList prefixes, QStringList* definesToSet) {
QString filepath = root + "/" + filename;

‘% garakmon committed on May 9, 2019

v 349 mmmm src/project.cpp [°)

1600 - QMap<QString, int> defines = readCDefines(filename, prefixes);

// The defines should to be sorted by their underlying value, not alphabetically.
1603 - // Reverse the map and read out the resulting keys in order.
QMultiMap<int, QString> definesInverse;
for (QString defineName : defines.keys()) {
definesInverse.insert(defines [defineName], defineName);
1607 - }

1608 - xdefinesToSet = definesInverse.values();

1£An0 h}

v 243 mmmm src/core/parseutil.cpp [°)

void ParseUtil::readCDefinesSorted(QString filename, QStringlList prefixes, QStringList* definesToSet)
QMap<QString, int> defines = readCDefines(filename, prefixes);

// The defines should to be sorted by their underlying value, not alphabetically.
// Reverse the map and read out the resulting keys in order.
QMultiMap<int, QString> definesInverse;
for (QString defineName : defines.keys()) {
definesInverse.insert(defines [defineName], defineName);
}

xdefinesToSet = definesInverse.values();

+ + + + + + + + + +

Practices

* Ownership

 Reviewers should have ownership of relevant part of the
code, ensuring consistency and awareness of priorities and
practices

Readability

* Ensure knowledge in code style & best practices for
language

Caitlin Sadowski, Emma Soderberg, Luke Church, Michal Sipko, and Alberto Bacchelli. 2018. Modern code review: a case study at google. ICSE-SEIP.

Process

» Creation: create a change request
* Preview: review diff & results from automated quality checks

« Commenting: reviewers comments on change, create action
items to address by author

* Addressing feedback: author address comments

* Approval: reviewers mark change as good to go after action
items have been addressed

Caitlin Sadowski, Emma Soderberg, Luke Church, Michal Sipko, and Alberto Bacchelli. 2018. Modern code review: a case study at google. ICSE-SEIP.

10

Challenges in Code Review

» Distance: geographical & organizational, lead to delays &
misunderstandings

* Social interactions: tone & power dynamics can make
developers uncomfortable

* Design: should design be reviewed before or during code
review

* Context: need adequate understanding of motivation for
change

Caitlin Sadowski, Emma Soderberg, Luke Church, Michal Sipko, and Alberto Bacchelli. 2018. Modern code review: a case study at google. ICSE-SEIP.

11

Automated Code Review Tools

* Rather than rely on human reviewers to find all issues, long been emphasis on
using automated tooling

* |Increased in popularity with rise of Continuous Integration / Continuous
Deployment workflows

What is the origin of the rules
° checked by the tool?

‘Programming Language ’ ‘ Specifications ’ ‘Best Practices ’

) 4)

What are the representations of What is the purpose of the tool? ’ — What is the purpose of the tool? ’
the rules checked by the tool? l *
/ \ : Checking Build Continuous Checking String String Literal
asT ‘ Code Executlon‘ and Config Files Integration Tools Literals in Source Files Checkers
y v : o | . Checking Codin Style
Checking the Quality Test Suite g g |, ty
Syntax and Memory Leak "l of Test Suites | Quality Checkers ” Style Conventions Checkers
Semantic Analyzers Detectors
| Checking String | | String Literal —»| Finding Dead Code —> Dead Code
Literals in Source Files Checkers Detectors
Checking Dependencies Architectural — Finding Code Clone — Code Clone
L —> Detectors
between Modules Style Checkers
e Code Smell
—| Checking Source Files ’ > Finding Code Smell —» Detectors
) , Static Execution
J —>‘ Checking Source Files % Simulators
[What are the representations of AST Pattern Checkers
the rules checked by the tool? ‘Code Execution ’—> Static Execution Simulators

Sahar Mehrpour and Thomas D. LaToza. 2022. Can static analysis tools find more defects? A qualitative study of design rule violations found by code review.
Empirical Softw. Engg.

Example: AST-based Rules

_Ahectrart Quntavy Treme .. AST

class)]

—> nNamne —»

o TG

All microtask commands must be handled by command subclasses.

—>{body] IF a method is a static method on Command
—(method] THEN it should implement its behavior by constructing a new
—~(specifier}—{static] Command subclass instance.
— return type—»
—> name —» class ACommand extends Command {
static ACommand create(...) {

—> parametcter —

t »
return}—|newj{CreateH(..) }

class Create extends ACommand ({

return new Create(...);

iclass| }

—»lname p—»|Create

—»lextends b—|Command

Sahar Mehrpour and Thomas D. LaToza. 2022. Can static analysis tools find more defects? A qualitative study of design rule violations found by code review.
Empirical Softw. Engg.

Types of defects

* Maintainability: impact quality of code
* Implementation: code does not satisfy its requirements

* Build config: may cause build & integration to break, through missing
scripts of config settings

e Test suite: incorrect & ineffective tests, such as incorrect assertions of
insufficient code coverage

* User Interface: visual appearance of software as displayed to the user
 Requirements: missing or misinterpretation of project requirements

 Performance: memory or runtime issues, such as unnecessary computation
or poorly optimized memory allocation (e.g., unnecessary database queries)

Sahar Mehrpour and Thomas D. LaToza. 2022. Can static analysis tools find more defects? A qualitative study of design rule violations found by code review.
Empirical Softw. Engg.

14

All Defects
SAT Type and Defect Type Count Overall %
- All SATs 1009 76.27 %
Potential use of
- - Maintainability 83
static analysis tools
Test Suite 8
- User Interface 33
to fl nd defeCtS Requirement 20
Performance 8
Style Checkers 339 25.62 %
Maintainability 339
Continuous Integration Tools 67 5.06 %
Build Config 67
Static Execution Simulators 65 4.91 %
Maintainability 16
Implementation 43
Requirement 1
Performance 5
Architectural Style Checkers 60 4.54 %
Maintainability o7
Test Suite 3
Test Suite Checkers 29 2.19 %
Test Suite 29
Code Clone Detectors 28 2.12 %
Maintainability 27
Test Suite 1
Dead Code Detectors 27 2.04 %
Maintainability 27
Syntax and Semantic Analyzers 20 1.51 %
Implementation 20
String Literal Checkers 20 1.51 %
Maintainability 10
Implementation 10
Code Smell Detectors 10 0.76 %
Sahar Mehrpour and Thomas D. LaToza. 2022. Can static analysis Maintainability 10
tools find more defects? A ql}alitati\(e.study of design rule Memory Leak Detectors 4 0.30 %
violations found by code review. Empirical Softw. Engg. .
Implementation 4

Examples of defects

Example 1. "we will want to emit the clicked signal no matter whether the
topic is sensitive or not."

If any instance of an object is created, then a specific method should be
called regardless of the object properties.

Example 3. "please add a target="_blank" and a descriptive title tag to all
the external links"
If an HTML tag contains an external link, then the tag should also include

a specific property and a proper title.

Example 4. "Why are we keeping these |persisted data| in memory at all? We
could just as well load them on demand when a new channeld gets started"

If persisted data is used, it should be loaded on demand rather than retained
IN-memory.

Example 5. "Do not use underscore in method naming. Read |document
on| java code convention. Method name should be getTaskStatus [instead of
get_task_status] "

If an identifier is for a method, then it should not include underscores.

Sahar Mehrpour and Thomas D. LaToza. 2022. Can static analysis tools find more defects? A qualitative study of design rule violations
found by code review. Empirical Softw. Engg.

Automated Code Review Tooling with LLMs

* |Interest in using LLMs to find defects Qoo

Pbaz @

 Many ways to build it

* Run traditional tools (e.g., linter, spell ciaud
checker, defect detectors), use LLM to DBito “
explain or propose fixes *

e Have LLM infer rules, which are then

Al

checked

* Agentic workflows

Ellipsis Entelligence Gepetto

https://ainativedev.io/landscape

17

https://ainativedev.io/landscape

Example: Agentic Code Review Workflow in Baz

’ m Changes Code Al a
Al agents maintained by Baz. % Reviewer Playground

These reviewers come with curated prompts and context we continuously update to cover general-purpose review needs.

Baz reviewers

00
00

¢ Recommended reviewers) 30% Overall Accepted, 398 Accepted Suggestions @

Custom reviewers .
a ﬂ Breaking Changes m Cl Errors

D)

Changes that alter or remove existing functionality,
potentially breaking dependent APIs or features.

Basic Security Patterns

Identifles basic security bad practices like unsanitized
Inputs, Pll exposure and SQL Injection.

20 Accepted) 28% Accepted

Code Hygiene

Ensuring code Is clean, well-organized, and follows
consistent style guidelines for maintainabillity.

13 Accepted /) 48% Accepted

Logical Bugs

Identifles loglcal Inconsistencles, flawed conditionals, and

edge cases that could lead to unexpected behavior.

61Accepted) 29% Accepted

REST API Best Practices

Ensure APIs are written according to today's standards and

follow REST best practices.

6 Accepted , 17% Accepted

Excluded Paths

Highlighting falled checks and Integration tests, and
provides detalled log errors.

Code Deduplication and Convention Enforcement

Detects duplicate code and ensures adherence to your
team's existing coding patterns.

25 Accepted) 23% Accepted

Concise Code

Writing clear, efficlent code that avolds unnecessary
complexity or redundancy while maintaining readabllity.

o0 Accepted 23% Accepted

Typos and Ambiguous Identifiers

Mistakes In variable names or unclear Identifiers that
reduce code clarity and readabllity.

83 Accepted) 44% Accepted

Type Correctness

Ensuring that variables and functions use the appropriate

data types to prevent type-related errors.

56 Accepted) 25% Accepted

https://www.youtube.com/watch?v=Skze4ATXUwM

Logical Bugs Agent In Baz

Uses whole-repo retrieval: pulls call graphs, helper functions, and test
fixtures via similarity search to reconstruct the logical context for a
change.

Combines AST-based program understanding with agentic reasoning to
propose concrete execution scenarios that violate invariants (for
example, inconsistent state transitions, missed early returns that lead
to surprising side effects, or incorrect assumptions about data shapes).

Correlates dynamic evidence (if available) such as existing test traces
or recorded failing Cl logs to strengthen hypotheses.

Outputs Findings that include the reasoning trace, implicated files and
lines, and suggested repro steps or minimal code locations to inspect.

Constraints: this agent is compute-heavy and tuned to reduce false
positives by requiring multi-source evidence (retrieval + AST +, where
possible, runtime traces).

https://docs.baz.co/agents/baz-reviewers

20

https://docs.baz.co/agents/baz-reviewers

Spec Review Agent

Validate change meets issue requirements

The agent is automatically initated when a pull request is linked to a Jira ticket
and optionally a live preview environment. If the ticket contains references to
a Figma design the agent will include it in its context.

The agent builds a sandboxed browser session and delegates Ul interactions
and visual checks to sub-agents. The agent runs test cases, compares
rendered Ul to design artifacts, and verifies ticket requirements.

Output: a single PR comment grouping unmet requirements first and met
requirements collapsed, as well as a GitHub check with pass/fail/neutral.

Constraints: requires a reachable or credentialed preview environment. Inline
annotated screenshots are planned but not yet implemented. The agent is
designed to reduce noise by summarizing issues in one place rather than
producing many inline comments.

https://docs.baz.co/agents/baz-reviewers

21

https://docs.baz.co/agents/baz-reviewers

Baz Agent Architecture

. Context Mapping
Locate where the PR introduces changes in the broader codebase. Identify touched systems,
functions, contracts, and consumers.

2. Intent Inference
Infer what the PR is trying to achieve from the title, description, commit messages, ticket - and the
code itself. Add input from integrated systems including Jira, Linear and Youtrack, with additional data

from Github and Gitlab.

3. Socratic Questioning

Generate probing validation questions that challenge assumptions and common pitfalls:
o "What happens if the list is empty?” Initial

o "This APl schema changed. Are all consumers updated?” Piscovery
o "Are we persisting all required fields to the database?”

4. Targeted Investigation (multi-agent)
Spawn independent sub-agents, each assigned to prove or disprove one risk. They traverse the repo,
read diffs and files, run searches, and manage their own task queues.

5. Reflection & Consolidation
Aggregate findings, filter false positives, and surface a concise report: evidence, rationale, and a
yes/no verdict for each risk.

https://baz.co/resources/engineering-intuition-at-scale-the-architecture-of-agentic-code-review

Deep Exploration #1

Deep Exploration #2

Reflection

Deep Exploration #X

https://baz.co/resources/engineering-intuition-at-scale-the-architecture-of-agentic-code-review

Using Baz

* Integrated into GitHub / GitLab
» MCP Server

23

Key questions about Agentic Code Review

* What types of issues can it find
* Limited by available information

* e.g., may not have visibility into performance issues without
understanding of perf implications of a design decision

 How well does it know your codebase

* Like all agentic LLMs, still relies on having right context to surface
relevant idioms & practices

* |f these are well documented, may work better

 May try to infer from past changes or pull requests comments, but may
be harder

24

10 min break

In-Class Activity

* |In groups of 2, try out Baz on pull requests

* Clone a repo --- can be one of yours (e.g., your city simulator) or an existing project (ideally one
you are familiar with)

* Prepare small code changes (e.g., a few lines of code)

* (Goal: build changes that have issues the tool can't find (e.g., violate coding style conventions
for project, put code in the wrong place, have unhelpful identifiers, etc.)

» Build pull requests for your changes, ask Baz to review, see what types of issues it is able to
catch

e Deliverables

* Screen recording through Kaltura

* Upload to OneDrive, turn on link sharing, share link in Lecture 10 activity submission on Canvas
 Submit answers to questions on your experiences on Canvas (next slide)

 Aim to finish by 7:10pm today; Due tomorrow at 4:30pm

260

Questions to answer

 What types of issues did you explore?
 How did you design the issue, and why did you think it would be hard to find?

e Which of the issues was the LLM able to find in code review? Which was it not able
to find?

 How helpful were the suggested fixes and explanations?

 What did you learn about using LLMs for code review?

* Deliverable: Submit through Canvas, at least a page

27

