Testing

CS 691 / SWE 699
Fall 2025

(G le GEORGE MASON
TM UNIVERSITY:

© Thomas LaToza

Logistics

* |ecture 11 reading questions due today at 4:30pm
« Lecture 11 activity (in class today), due by 11/13 at 4:30pm

* Project presentations in 3 weeks

Today

* Discussion: Experiences from Lecture 10
* Discussion: Reading questions for Lecture 11
* |ecture

* Jesting

* |In-Class Activity

Discussion: Experiences from Lecture 10 Activity

 How did you use LLM to review code?
* What types of issues did you try?
 What was it good or bad it?

 How did experience of using LLM compare to not using an LLM?

Discussion: Reading questions for Lecture 10

 What questions did you have from readings for Lecture 10
* Discuss questions & possible answers in group of 3 or 4

 Come back with 1 question you want to discuss w/ whole
class

Testing

* Techniques to increase confidence that code behaves as expected
 Requirements

* |nputs

* Expected outputs
 Some challenges

* Space of inputs is vast. How do you navigate it? How do you know when
you've written enough tests”?

* Oracle problem: how do you know if the output is correct?

* Underlying goal: build an (ideally compact) model of how code should
behave across all potential scenarios

Traditional unit testing

const sum = require('./sum');

test('adds 1 + 2 to equal 3', () => {
expect(sum(1, 2)).toBe(3);
r);

* Developers writes unit tests

* EXxercises part of the program relevant to behavior of
Interest

 Adds assertions on return values or other outputs to ensure
that code works as expected

Many ways to write assertions

Basic expectations Booleans Objects
expect(value) expect(value) expect(value)
.not .toBeFalsy() .toContain(item)
.toBe(value) .toBeNull() .toContainEqual(item)
.toEqual(value) .toBeTruthy() .toHavelLength(number)
.toBeTruthy() .toBeUndefined()

.toBeDefined()

Note that toEqual is a deep equality check. See:

expect() Strings
Numbers expect(value)
.toMatch(regexpOrString)
expect(value)
SnapShOts .toBeCloseTo(number, numDigits)
.toBeGreaterThan(number)
expect(value) .toBeGreaterThanOrEqual(number)
. toMatchSnapshot () .toBeLessThan(number) Others
.toMatchInlineSnapshot() .toBeLessThanOrEqual(number)

expect.extend(matchers)
expect.any(constructor)

Note that toMatchInlineSnapshot() requires o o
expect.addSnapshotSerializer(serializer)

Prettier to be set up for the project. See: Inline

snapshots Objects expect.assertions(1)

expect(value)
.toBeInstanceOf (Class)
.toMatchObject(object)
.toHaveProperty(keyPath, value)

Errors

expect(value)
.toThrow(error)
.toThrowErrorMatchingSnapshot()

https://devhints.io/jest

https://devhints.io/jest

Property-Based Testing

from hypothesis import given, strategies as st

@given(st.lists(st.integers() | st.floats()))
def test _sort_correctness_using properties(1lst):
result = my _sort(1lst)
assert set(lst) == set(result)
assert all(a <= b for a, b in zip(result, result[1:]))

https://hypothesis.readthedocs.io/en/latest/index.html

 Rather than manually select individual outputs, instead describe a property that
should always hold for all inputs

» output list is always sorted
e output list contains the same elements as the input list

* Jesting framework that explores input space to try to find counterexamples, using
property as oracle

10

https://hypothesis.readthedocs.io/en/latest/index.html

Related activities

 Debugging -- what happens if a test fails unexpectedly?

o Software documentation -- can generate information about
expected behavior of code

 Program comprehension -- may need to understand program to
understand what to test

 Maintenance -- may need to update tests when code changes

11

All files
78.12% Statements 25/32 42.85% Branches 3/7 81.81% Functions
Press n or J to go to the next uncovered block, b, p or k for the previous
Filter:
File «
App.js |
Calculator.js B |

Measuring how complete tests are with coverage

o Statement coverage: has each statement executed?

 Branch coverage: have both branches of statements with
branches (e.qg., if, while) executed?

 Path coverage: have all distinct paths through the program

been executed?

O O lal Code coverage report for A X

<« > C MM & file:///Users/aakanksha/Desktop/jest-calculator/coverage/lcov-report/index.html

index.js

-

bloc

l

|

9/11

K.

Statements

78.57% Lines

22/28

100%

82.75%

0%

1/1

24/29

0/2

Branches

100%

42.85%

100%

Y
Functions
0/0
3/7
0/0

100%

80%

100%

11

8/10

0/0

Lines

s O3 @
100% 11
84% 21/25

0% 0/2 12

Process
of testing

Matthew C. Davis, Sangheon Choi, Amy
Wei, Sam Estep, Brad A. Myers, and
Joshua Sunshine. 2025. TestLoop: A
Process Model Describing Human-in-the-
Loop Software Test Suite Generation. ACM
Trans. Softw. Eng. Methodol. Just
Accepted (September 2025). https://
doi.org/10.1145/3765754

S$1. Collect program information

Collect information about the PUT’s expected behavior

e Gather information to prepare for testing
e Seek sources of additional information about the program

S$2. Understand expected behaviort

Understand expected behavior from the PUT information

e Read program information or source code

e Move cursor between test suite and program code
e Run initial unmodified test suite & review results
e Ask questions regarding expected behavior

S3. Choose scenarios to test

Choose what expected behavior to test

e Specify cases to test (verbal or text)
e Specify boundaries/ranges/types to test

S4. Update test suiteT

Modify the test suite to test the chosen expected behavior

e Add/remove/edit test cases
e Edit input and output values

S5. Collect test results

Collect observations about the PUT’s actual behavior

e Execute tests, e.g., by pressing Test button)

$6. Understand test results¥

Understand actual behavior relative to expected behavior

e Read / scroll through test case results

S7. Choose interesting test results

Choose test results that may warrant further investigation

e Note an interesting or unexpected test case (e.g. test fails when

expected to pass), mark or save test
e Compare test case outputs to PUT description
e Use test case as a basis for the next test
e Change emotional state (e.g., verbal cues)

Discussion: How do you use testing?

14

Challenges with testing

Determining what to check

Find/create relevant inputs

s
_—

» May take from 25% or more of ity whichcodeorest | [N
englneenng t|me Calls that bring test into target -
I

Isolating unit under test

| | | | I

o Still most often a very manual o o s
process of writing tests

position1 Il position2 position3 position4 position5
Fig. 10. What 1s most difficult about writing unit tests?

* Not very exciting or popular
aCtiVity’ SO Often negleCted Test reflects outdated behaviour

Test is difficult to understand

Code is difficult to test

Test reflects unrealistic behaviour

restistay | [
|

I | | |

100 50 0 50 100
Count
position1 [l position2 position3 position4 position5

Fig. 11. What 1s most difficult about fixing unit tests?

E. Daka and G. Fraser, "A Survey on Unit Testing Practices and Problems," 2014 IEEE 25th International Symposium on Software Reliability Engineering, Naples, Italy, 2014, pp. 201-211, doi: 10.1109/ISSRE.2014.11. 15

Testing with LLMs

 |et's ask an LLM to generate unit tests for a function!
* What context should we give it?

e method deSCriptiOn def test_no_match(self):

"""Test the resolve function"""
[INSERT]

def test_no_match(self):

e gcenario descripti()n """Given that I resolve a URL
when that URL does not match

then an exception should be raised"""

url = urlresolvers.URLResolver (RegexPattern(r'2/"'), [
multiurl(
- url(r'*(\w+)/%$', x, name='x")
* detailed usage spec)

1)

url.resolve('/jane/")
gives:

ResolverMatch() object"""

Khalid El Haji, Carolin Brandt, and Andy Zaidman. 2024. Using GitHub Copilot for Test Generation in Python: An Empirical Study. In Proceedings of the 5th ACM/IEEE International
Conference on Automation of Software Test (AST 2024) (AST '24). Association for Computing Machinery, New York, NY, USA, 45-55. https://doi.org/10.1145/3644032.3644443 16

What can go wrong with LLM generated tests

Assert Mismatch

Contains an assertion that evaluates to false.

Empty Genera-
tion

Received an empty generation from GitHub Copilot.

Incorrect Parame-
ters

Uses keyword arguments (parameters) of a class or
method incorrectly. Either by passing down inap-
plicable objects or values, or by passing down an
incorrect number of arguments.

Syntax Error

The generated test contains a syntax error.

Non-existent At-
tribute

Uses an attribute of an object, but the attribute does
not exist or is not subscriptable.

Unresolved Refer-
ence

Contains a reference to an object which does not
exist in the namespace.

Failure to Catch
Exception

Raises an exception which is not captured, but
should be captured (as can be determined from the
original test).

Lookup Error

Uses a key of an object, but the key does not exist.

Unresolved Reference
Syntax Error

Lookup Error
Non-existent Attribute
Incorrect Parameters
ailure to Catch Exception
Empty Generation

Assert Mismatch

B Without-Context (RQ>)
- With-Context (RQ,)

Khalid El Haji, Carolin Brandt, and Andy Zaidman. 2024. Using GitHub Copilot for Test Generation in Python: An Empirical Study. In Proceedings of the 5th ACM/IEEE International
Conference on Automation of Software Test (AST 2024) (AST '24). Association for Computing Machinery, New York, NY, USA, 45-55. https://doi.org/10.1145/3644032.3644443

17

10 min break

In-Class Activity

* In groups of 2, try using Cursor to write tests to maximize branch coverage
« Start with one of your own repos (e.g., your city simulator)
* Work together with Cursor to create tests, focusing on maximizing branch coverage
» If using JS, can use built in Jest report on coverage
* Fix issues found by the tests as they arise
* Deliverables
* Screen recording through Kaltura

* Upload to OneDrive, turn on link sharing, share link in Lecture 10 activity
submission on Canvas

e Submit answers to questions on your experiences on Canvas (next slide)

 Aim to finish by 7:10pm today; Due tomorrow at 4:30pm

19

Questions to answer

 How did you work with Cursor to create unit tests?

 How effectively was Cursor able to test different behaviors??

 What, if anything, was Cursor not able to test?

* |In what ways did you provide guidance to Cursor to help in creating tests?

 What overall test coverage were you able to achieve?

* Deliverable: Submit through Canvas, at least a page

20

