
APIs and Agents Part 1
CS 691 / SWE 699
Fall 2025

© Thomas LaToza

Logistics

• Reflection 1 & Lecture 3 reading questions due today at 4:30pm

• Lecture 4 reading questions for next week due 9/18 at 4:30pm

• OPENHANDS: AN OPEN PLATFORM FOR AI SOFTWARE DEVELOPERS AS
GENERALIST AGENTS https://arxiv.org/pdf/2407.16741

• SWE-smith: Scaling Data for Software Engineering Agents https://arxiv.org/
pdf/2504.21798

• Lecture 4 activity (in class today), due by 9/12 at 4:30pm

• No HW assignment assigned today (next one will be assigned on 9/18)

2

https://arxiv.org/pdf/2407.16741
https://arxiv.org/pdf/2504.21798
https://arxiv.org/pdf/2504.21798
https://arxiv.org/pdf/2504.21798
https://arxiv.org/pdf/2504.21798

Today

• Discussion: Experiences from Lecture 3

• Discussion: Reading questions for Lecture 3

• Lecture

• Coding Agents

• Working with APIs

• In-Class Activity

3

Discussion: Experiences from Lecture 2 Activity

• In what ways was Cursor most successful in accelerating your
work?

• In what ways did Cursor not effectively support your work?

• How did you choose to use the rules.md file?

• How did you choose to use unit tests?

• Compared to your experience vibe coding with Replit, what were the
advantages and disadvantages of using Cursor?

4

Discussion: Reading questions for Lecture 3

• What questions did you have from readings from Lecture 3

• Discuss questions & possible answers in group of 3 or 4

• Come back with 1 question you want to discuss w/ whole
class

5

Coding Agents

Coding Agents

• Coding agents repeatedly take actions
on behalf of the developer

• May use arbitrary "tools" to take an
action in the environment

• Tools generate output as text

• Tools may run locally on developers's
computer (e.g., command line) or
remotely (e.g., HTTP request)

• Using a tool just requires generating the
write command to invoke it

• Just like generating text normally

7

Examples of agent use cases

• Debugging: feed screenshots, generate repro steps

• Codebase comprehension & onboarding: understand
architecture of a codebase

• Cross language code translation: translate code written in one
language to another

• Write documentation: document code & update with changes

• TDD: use agent to write tests for all new funcionality

8
https://www-cdn.anthropic.com/58284b19e702b49db9302d5b6f135ad8871e7658.pdf

https://www-cdn.anthropic.com/58284b19e702b49db9302d5b6f135ad8871e7658.pdf

Example Coding Agent Architecture

9
OPENHANDS: AN OPEN PLATFORM FOR AI SOFTWARE DEVELOPERS AS GENERALIST AGENTS https://arxiv.org/pdf/2407.16741

https://arxiv.org/pdf/2407.16741

Examples of actions

10Yang et al. SWE-agent: Agent-Computer Interfaces Enable Automated Software Engineering. NeurIPS 2024.

Coding Agent in ~100 lines of Python

11
https://mini-swe-agent.com/latest/

@dataclass

class AgentConfig:

 # The default settings are the bare minimum to run the agent. Take a look at the config files for improved settings.

 system_template: str = "You are a helpful assistant that can do anything."

 instance_template: str = (

 "Your task: {{task}}. Please reply with a single shell command in triple backticks. "

 "To finish, the first line of the output of the shell command must be 'COMPLETE_TASK_AND_SUBMIT_FINAL_OUTPUT'."

)

 timeout_template: str = (

 "The last command <command>{{action['action']}}</command> timed out and has been killed.\n"

 "The output of the command was:\n <output>\n{{output}}\n</output>\n"

 "Please try another command and make sure to avoid those requiring interactive input."

)

 format_error_template: str = "Please always provide EXACTLY ONE action in triple backticks."

 action_observation_template: str = "Observation: {{output}}"

 step_limit: int = 0

 cost_limit: float = 3.0

class NonTerminatingException(Exception):

 """Raised for conditions that can be handled by the agent."""

class FormatError(NonTerminatingException):

 """Raised when the LM's output is not in the expected format."""

class ExecutionTimeoutError(NonTerminatingException):

 """Raised when the action execution timed out."""

class TerminatingException(Exception):

 """Raised for conditions that terminate the agent."""

class Submitted(TerminatingException):

 """Raised when the LM declares that the agent has finished its task."""

class LimitsExceeded(TerminatingException):

 """Raised when the agent has reached its cost or step limit."""

class DefaultAgent:

 def __init__(self, model: Model, env: Environment, *, config_class: Callable = AgentConfig, **kwargs):

 self.config = config_class(**kwargs)

 self.messages: list[dict] = []

 self.model = model

 self.env = env

 self.extra_template_vars = {}

def render_template(self, template: str, **kwargs) -> str:

 template_vars = asdict(self.config) | self.env.get_template_vars() | self.model.get_template_vars()

 return Template(template, undefined=StrictUndefined).render(

 **kwargs, **template_vars, **self.extra_template_vars

)

 def add_message(self, role: str, content: str, **kwargs):

 self.messages.append({"role": role, "content": content, **kwargs})

 def run(self, task: str, **kwargs) -> tuple[str, str]:

 """Run step() until agent is finished. Return exit status & message"""

 self.extra_template_vars |= {"task": task, **kwargs}

 self.messages = []

 self.add_message("system", self.render_template(self.config.system_template))

 self.add_message("user", self.render_template(self.config.instance_template))

 while True:

 try:

 self.step()

 except NonTerminatingException as e:

 self.add_message("user", str(e))

 except TerminatingException as e:

 self.add_message("user", str(e))

 return type(e).__name__, str(e)

 def step(self) -> dict:

 """Query the LM, execute the action, return the observation."""

 return self.get_observation(self.query())

 def query(self) -> dict:

 """Query the model and return the response."""

 if 0 < self.config.step_limit <= self.model.n_calls or 0 < self.config.cost_limit <= self.model.cost:

 raise LimitsExceeded()

 response = self.model.query(self.messages)

 self.add_message("assistant", **response)

 return response

 def get_observation(self, response: dict) -> dict:

 """Execute the action and return the observation."""

 output = self.execute_action(self.parse_action(response))

 observation = self.render_template(self.config.action_observation_template, output=output)

 self.add_message("user", observation)

 return output

 def parse_action(self, response: dict) -> dict:

 """Parse the action from the message. Returns the action."""

 actions = re.findall(r"```bash\n(.*?)\n```", response["content"], re.DOTALL)

 if len(actions) == 1:

 return {"action": actions[0].strip(), **response}

 raise FormatError(self.render_template(self.config.format_error_template, actions=actions))

 def execute_action(self, action: dict) -> dict:

 try:

 output = self.env.execute(action["action"])

 except subprocess.TimeoutExpired as e:

 output = e.output.decode("utf-8", errors="replace") if e.output else ""

 raise ExecutionTimeoutError(

 self.render_template(self.config.timeout_template, action=action, output=output)

)

 except TimeoutError:

 raise ExecutionTimeoutError(self.render_template(self.config.timeout_template, action=action, output=""))

 self.has_finished(output)

 return output

 def has_finished(self, output: dict[str, str]):

 """Raises Submitted exception with final output if the agent has finished its task."""

 lines = output.get("output", "").lstrip().splitlines(keepends=True)

 if lines and lines[0].strip() in ["MINI_SWE_AGENT_FINAL_OUTPUT", "COMPLETE_TASK_AND_SUBMIT_FINAL_OUTPUT"]:

 raise Submitted("".join(lines[1:]))

https://mini-swe-agent.com/latest/

Coding Agent in 100 LOC

12

https://mini-swe-agent.com/latest/

https://mini-swe-agent.com/latest/

Tools

• Modern coding agents rely on general
purpose tools

• Tools through the the terminal

• grep, git, open file, find in file, edit
file, gdb, ...

• Tools through HTTP requests

• Slack, issue trackers, web
search, ...

13

Coding agents

• Conceptually very simple

• Complexity is in generating the right actions for the right
situations

• LLM makes use of all of its training data to guess the best
action

• Can supplement with additional examples of actions to take
or use reinforcement learning to improve

14

Plans

• Coding agents first formulate a
plan of steps.

• And then work to check off each
step one by one.

•

15

Managing Context

• Conversation history, files read, code generated, tool results
become part of context

• Sent back to LLM with every new prompt

• Coding agents will automatically compress (summarize) context
to reduce size

• Can also manually control

• Start a new chat / clear out context when moving to
something new

• Save a project plan and other context in an markdown file,
reference it on each step in plan

16

Hooks

• Some coding agents (Claude Code,
but not Cursor) support hooks

• Hooks offer user-defined commands
that deterministically & automatically
execute at specific points

• e.g., update documentation after
each file edit

• Invoke in Claude Code using /hoooks

17

• PreToolUse – Before Claude executes any tool (file edits, commands)
• PostToolUse – After a tool completes successfully
• Notification – When Claude sends notifications
• Stop – This runs when Claude finishes up a task
• Sub-agent Stop – This runs when a sub-agent finishes a task

Versioning

• Best practice to have commit for each new feature

• Makes it easy to roll back if needed

• Can ask coding agent to create and commit

• Can use branches to further isolate

• Makes it easy to return to main branch if needed

18

Orchestration & Sub-Agents

• Can have multiple coding agents running in
parallel

• Reduces time waiting for agents to finish long
tasks

• Cursor supports background / headless agents
in the command line

• Work on different branches using Git worktrees

• Subagents provide specific instruction / context
for agents to work on same feature in parallel

• Create specific prompt for each that encodes
specialized role (e.g., UI designer, architect,
etc.)

• Can work in parallel & share context through a
shared markdown file

19

Safety

• Agents run tools on your behalf, using your credentials

• What could go wrong?!

• LLM takes unintended actions

• Sends an email, breaks production server, commits
change that breaks the build ...

• Attack: LLM prompt injection

• Attacker embeds malicious instructions in content that
LLM ingests

20

Safety mitigation

• Limit actions with sandboxes

• Limits on what code can be executed

• Approving agent actions

• Approve each action individually

• Approve a specific command line tool (e.g., grep) once

• Approve all actions

• Rolling back

• Versioning with git can make it easy to rollback bad code changes

• Cannot help for other types of destructive actions

21

Evaluating Coding Agent Performance: SWE-bench

22
https://www.swebench.com/index.html

https://www.swebench.com/index.html

SWE Bench Limitations

• Narrow view of codebases from only 12 Python repos

• Solution for some issues already described in issue

• Only checks for tests passing

• Unit tests do not completely test for all needed required functionality

• No consideration of code quality (e.g., design & architecture)

• Dataset leakage

• LLMs may train on part of evaluation dataset

• Performance on novel tasks may be much worse

23

https://cacm.acm.org/blogcacm/benchmarks-for-ai-in-software-engineering/

https://cacm.acm.org/blogcacm/benchmarks-for-ai-in-software-engineering/

LMArena

24
https://lmarena.ai/leaderboard

https://lmarena.ai/leaderboard

LMArena limitations

• Small programming tasks,
decontextualized from larger
codebase

• Hard to assess agentic features
and usage of tools

25

Working w/ unfamiliar API

27https://survey.stackoverflow.co/2025/ai#developer-tools-currently-partially-ai

https://survey.stackoverflow.co/2025/ai#developer-tools-currently-partially-ai

28

Reuse of Uses

• Developers rely extensively on examples to understand how
to instantiate objects

29
Mary Beth Rosson and John M. Carroll. 1996. The reuse of uses in Smalltalk programming. ACM Trans. Comput.-Hum. Interact. 3, 3 (September 1996), 219-253.

Some possible reuse strategies

• Read the documentation

• Find tutorials

• Find StackOverflow snippets

• Find similar code in your own codebase

• Call API functions, see what they return

30

Opportunistic vs. systematic

• Opportunistic developers more likely to start with example code

• Systematic developers more likely to read the documentation
first

31

Example reuse process

B: read tutorials, articles, projects to understand domain

D: searched Google, often seeking descriptions in API of
specific classes & methods to use

E: looked for examples of how to use specific methods

32

J. Stylos and B. A. Myers, "Mica: A Web-Search Tool for Finding API Components and Examples," Visual Languages and Human-Centric
Computing (VL/HCC'06), Brighton, 2006, pp. 195-202.

Types of reuse

33

Joel Brandt, Philip J. Guo, Joel Lewenstein, Mira Dontcheva, and Scott R. Klemmer. 2009. Two studies of opportunistic programming: interleaving web
foraging, learning, and writing code. Conference on Human Factors in Computing Systems (CHI ’09), 1589-1598.

Types of reuse

• Learning—relies on selecting highest quality tutorials tutorials

• e.g., “update web page without reloading php”

• Clarification—learning syntax based on exiting understanding of the domain concepts

• e.g., reminding use of syntax of HTML forms

• Often search by analogy to domain concepts in other languages / frameworks

• e.g., Perl has a function to format dates as strings, what’s the one for PHP?

• Reminder—using web as external memory aid

• e.g., forgot a word in a long function name

• e.g., 6 lines of code necessary to connect and disconnect from MySQL database copied
hundreds of times by individual

34

Joel Brandt, Philip J. Guo, Joel Lewenstein, Mira Dontcheva, and Scott R. Klemmer. 2009. Two studies of opportunistic programming: interleaving
web foraging, learning, and writing code. Conference on Human Factors in Computing Systems (CHI ’09), 1589-1598.

Design implications

• Web tutorials used for just in time learning

• —> Tutorials should be tightly coupled to code, where developers can play in sandbox
then read tutorial content to understand problems when do not work

• Web search used as translator from intention to terminology & syntax

• —> tools could compare code from search results to users code to automatically locate
errors

• —> search should be integrated into autocomplete

• Developers delay testing, esp for routine functionality

• —> Tools should assist with adaption by highlighting variables and literals in reused
snippets & provide link back to original source

35

Joel Brandt, Philip J. Guo, Joel Lewenstein, Mira Dontcheva, and Scott R. Klemmer. 2009. Two studies of opportunistic programming:
interleaving web foraging, learning, and writing code. Conference on Human Factors in Computing Systems (CHI ’09), 1589-1598.

Challenges with reuse

• Mapping an abstract conceptual solution into the appropriate elements

• “How do I create a rectangle? Why is there no Rectangle tool?”

• Understanding control & data flow, hidden dependencies due to run-time binding or inheritance,
between classes in the API

• “I’m over-riding SelectionTool, and in particular mouseDown() so that when the figure is clicked the
box is drawn. This bit works, however when trying to drag the figure, if I do something similar the
rectangle flickers like mad.”

• Understanding how functionality works

• “How does ... work?”, “What does ... do?” or, “Where is ... defined/created/called?”

• Making changes consistent w/ architectural constrains of API

• Violating constraints of MVC architecture by passing references in prohibited ways

36

Douglas Kirk, Marc Roper, and Murray Wood. 2007. Identifying and addressing problems in object-oriented framework
reuse. Empirical Softw. Eng. 12, 3 (June 2007), 243-274.

Challenges with reuse
• Design barriers—inherent cognitive difficulties of the programming problem, separate from notation used

• I don’t know what I want the computer to do

• Selection barriers—finding programming interfaces available to achieve a particular behavior

• I don’t know what to use

• Coordination barriers—constraints governing how languages & libraries can be combined

• I don’t know how to make them work together

• Use barriers—determining how API how to use API

• I don’t know how to use it

• Understanding barriers—environment properties such as compile & runtime errors that prevent seeing behavior

• It didn’t do what I expected

• Information barriers—environment properties that prevent understanding runtime execution state

• I think I know why didn’t behave as expected, but don’t know how to check
37

Vocabulary problem

• Developers are familiar with concepts using one set of terminology.

• API, tutorials, or other resources use different terminology

• How do developers find the right concepts with alternative terms?

38

Challenges may vary by context

• Size of desired snippet

• Reusing a line of code? A whole algorithm?

• Alternatives

• How many alternatives are there? How important is it to find the best alternative?

• Integration

• What libraries or frameworks does a snippet require? How can they be
integrated?

39

Challenges working with API documentation

• Goal: Parse a Java source file w/ Eclipse

• Answer:

• Challenges

• Want to work with files and ASTNodes, but key class is JavaCore

• No connection from what you might know about ASTNode and IFile to
JavaCore

40

LaToza 41

Emad Aghajani, Csaba Nagy, Olga Lucero Vega-Márquez, Mario Linares-Vásquez, Laura Moreno, Gabriele Bavota, and Michele Lanza. 2019. Software documentation issues unveiled. In Proceedings of the 41st International Conference on Software Engineering (ICSE '19).
IEEE Press, Piscataway, NJ, USA, 1199-1210. DOI: https://doi.org/10.1109/ICSE.2019.00122

10 min break

In-Class Activity

• In groups of 1 or 2, build an MCP server

• Should support at least 8 different actions

• Build a simple client app that uses the MCP server

• Use Cursor coding agent

• Use Cursor to understand MCP API & MCP concepts

• Deliverables

• Screen recording through Kaltura

• Upload to OneDrive, turn on link sharing, share link in Lecture 4 activity submission on
Canvas

• Submit answers to questions on your experiences on Canvas (next slide)

• Aim to finish by 7:10pm today

• Due tomorrow at 4:30pm
43

Questions to answer

• What was your approach for tackling this problem?

• What did you learn about MCP?

• What was most surprising about your experience using the tool?

• In what ways was the tool helpful in supporting what you wanted to do?

• In what ways did the tool get in the way of what you were trying to accomplish?

• Deliverable: Submit through Canvas, at least half a page

44

