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Logistics

• Reflection 1 & Lecture 3 reading questions due today at 4:30pm


• Lecture 4 reading questions for next week due 9/18 at 4:30pm


• OPENHANDS: AN OPEN PLATFORM FOR AI SOFTWARE DEVELOPERS AS 
GENERALIST AGENTS                 https://arxiv.org/pdf/2407.16741 


• SWE-smith: Scaling Data for Software Engineering Agents     https://arxiv.org/
pdf/2504.21798 


• Lecture 4 activity (in class today), due by 9/12 at 4:30pm


• No HW assignment assigned today (next one will be assigned on 9/18)
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Today

• Discussion: Experiences from Lecture 3


• Discussion: Reading questions for Lecture 3


• Lecture


• Coding Agents


• Working with APIs


• In-Class Activity
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Discussion: Experiences from Lecture 2 Activity

• In what ways was Cursor most successful in accelerating your 
work?


• In what ways did Cursor not effectively support your work?


• How did you choose to use the rules.md file?


• How did you choose to use unit tests?


• Compared to your experience vibe coding with Replit, what were the 
advantages and disadvantages of using Cursor? 
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Discussion: Reading questions for Lecture 3

• What questions did you have from readings from Lecture 3


• Discuss questions & possible answers in group of 3 or 4


• Come back with 1 question you want to discuss w/ whole 
class
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Coding Agents



Coding Agents

• Coding agents repeatedly take actions 
on behalf of the developer


• May use arbitrary "tools" to take an 
action in the environment


• Tools generate output as text


• Tools may run locally on developers's 
computer (e.g., command line) or 
remotely (e.g., HTTP request)


• Using a tool just requires generating the 
write command to invoke it


• Just like generating text normally
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Examples of agent use cases

• Debugging: feed screenshots, generate repro steps


• Codebase comprehension & onboarding: understand 
architecture of a codebase


• Cross language code translation: translate code written in one 
language to another


• Write documentation: document code & update with changes


• TDD: use agent to write tests for all new funcionality
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Example Coding Agent Architecture
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Examples of actions

10Yang et al. SWE-agent: Agent-Computer Interfaces Enable Automated Software Engineering. NeurIPS 2024. 



Coding Agent in ~100 lines of Python
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@dataclass

class AgentConfig:

    # The default settings are the bare minimum to run the agent. Take a look at the config files for improved settings.

    system_template: str = "You are a helpful assistant that can do anything."

    instance_template: str = (

        "Your task: {{task}}. Please reply with a single shell command in triple backticks. "

        "To finish, the first line of the output of the shell command must be 'COMPLETE_TASK_AND_SUBMIT_FINAL_OUTPUT'."

    )

    timeout_template: str = (

        "The last command <command>{{action['action']}}</command> timed out and has been killed.\n"

        "The output of the command was:\n <output>\n{{output}}\n</output>\n"

        "Please try another command and make sure to avoid those requiring interactive input."

    )

    format_error_template: str = "Please always provide EXACTLY ONE action in triple backticks."

    action_observation_template: str = "Observation: {{output}}"

    step_limit: int = 0

    cost_limit: float = 3.0


class NonTerminatingException(Exception):

    """Raised for conditions that can be handled by the agent."""


class FormatError(NonTerminatingException):

    """Raised when the LM's output is not in the expected format."""


class ExecutionTimeoutError(NonTerminatingException):

    """Raised when the action execution timed out."""


class TerminatingException(Exception):

    """Raised for conditions that terminate the agent."""


class Submitted(TerminatingException):

    """Raised when the LM declares that the agent has finished its task."""


class LimitsExceeded(TerminatingException):

    """Raised when the agent has reached its cost or step limit."""


class DefaultAgent:

    def __init__(self, model: Model, env: Environment, *, config_class: Callable = AgentConfig, **kwargs):

        self.config = config_class(**kwargs)

        self.messages: list[dict] = []

        self.model = model

        self.env = env

        self.extra_template_vars = {}


def render_template(self, template: str, **kwargs) -> str:

        template_vars = asdict(self.config) | self.env.get_template_vars() | self.model.get_template_vars()

        return Template(template, undefined=StrictUndefined).render(

            **kwargs, **template_vars, **self.extra_template_vars

        )


    def add_message(self, role: str, content: str, **kwargs):

        self.messages.append({"role": role, "content": content, **kwargs})


    def run(self, task: str, **kwargs) -> tuple[str, str]:

        """Run step() until agent is finished. Return exit status & message"""

        self.extra_template_vars |= {"task": task, **kwargs}

        self.messages = []

        self.add_message("system", self.render_template(self.config.system_template))

        self.add_message("user", self.render_template(self.config.instance_template))

        while True:

            try:

                self.step()

            except NonTerminatingException as e:

                self.add_message("user", str(e))

            except TerminatingException as e:

                self.add_message("user", str(e))

                return type(e).__name__, str(e)


    def step(self) -> dict:

        """Query the LM, execute the action, return the observation."""

        return self.get_observation(self.query())


    def query(self) -> dict:

        """Query the model and return the response."""

        if 0 < self.config.step_limit <= self.model.n_calls or 0 < self.config.cost_limit <= self.model.cost:

            raise LimitsExceeded()

        response = self.model.query(self.messages)

        self.add_message("assistant", **response)

        return response


    def get_observation(self, response: dict) -> dict:

        """Execute the action and return the observation."""

        output = self.execute_action(self.parse_action(response))

        observation = self.render_template(self.config.action_observation_template, output=output)

        self.add_message("user", observation)

        return output


    def parse_action(self, response: dict) -> dict:

        """Parse the action from the message. Returns the action."""

        actions = re.findall(r"```bash\n(.*?)\n```", response["content"], re.DOTALL)

        if len(actions) == 1:

            return {"action": actions[0].strip(), **response}

        raise FormatError(self.render_template(self.config.format_error_template, actions=actions))


    def execute_action(self, action: dict) -> dict:

        try:

            output = self.env.execute(action["action"])

        except subprocess.TimeoutExpired as e:

            output = e.output.decode("utf-8", errors="replace") if e.output else ""

            raise ExecutionTimeoutError(

                self.render_template(self.config.timeout_template, action=action, output=output)

            )

        except TimeoutError:

            raise ExecutionTimeoutError(self.render_template(self.config.timeout_template, action=action, output=""))

        self.has_finished(output)

        return output


    def has_finished(self, output: dict[str, str]):

        """Raises Submitted exception with final output if the agent has finished its task."""

        lines = output.get("output", "").lstrip().splitlines(keepends=True)

        if lines and lines[0].strip() in ["MINI_SWE_AGENT_FINAL_OUTPUT", "COMPLETE_TASK_AND_SUBMIT_FINAL_OUTPUT"]:

            raise Submitted("".join(lines[1:]))

https://mini-swe-agent.com/latest/


Coding Agent in 100 LOC
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Tools

• Modern coding agents rely on general 
purpose tools


• Tools through the the terminal


• grep, git, open file, find in file, edit 
file, gdb, ...


• Tools through HTTP requests


• Slack, issue trackers, web 
search, ...
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Coding agents

• Conceptually very simple


• Complexity is in generating the right actions for the right 
situations


• LLM makes use of all of its training data to guess the best 
action


• Can supplement with additional examples of actions to take 
or use reinforcement learning to improve
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Plans

• Coding agents first formulate a 
plan of steps.


• And then work to check off each 
step one by one.


•
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Managing Context

• Conversation history, files read, code generated, tool results 
become part of context


• Sent back to LLM with every new prompt


• Coding agents will automatically compress (summarize) context 
to reduce size


• Can also manually control


• Start a new chat / clear out context when moving to 
something new


• Save a project plan and other context in an markdown file, 
reference it on each step in plan
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Hooks

• Some coding agents (Claude Code, 
but not Cursor) support hooks


• Hooks offer user-defined commands 
that deterministically & automatically 
execute at specific points


• e.g., update documentation after 
each file edit


• Invoke in Claude Code using /hoooks
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• PreToolUse – Before Claude executes any tool (file edits, commands) 
• PostToolUse – After a tool completes successfully 
• Notification – When Claude sends notifications 
• Stop – This runs when Claude finishes up a task 
• Sub-agent Stop – This runs when a sub-agent finishes a task



Versioning

• Best practice to have commit for each new feature


• Makes it easy to roll back if needed


• Can ask coding agent to create and commit


• Can use branches to further isolate 


• Makes it easy to return to main branch if needed
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Orchestration & Sub-Agents

• Can have multiple coding agents running in 
parallel


• Reduces time waiting for agents to finish long 
tasks


• Cursor supports background / headless agents 
in the command line


• Work on different branches using Git worktrees


• Subagents provide specific instruction / context 
for agents to work on same feature in parallel


• Create specific prompt for each that encodes 
specialized role (e.g., UI designer, architect, 
etc.)


• Can work in parallel & share context through a 
shared markdown file
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Safety

• Agents run tools on your behalf, using your credentials


• What could go wrong?!


• LLM takes unintended actions


• Sends an email, breaks production server, commits 
change that breaks the build ...


• Attack: LLM prompt injection


• Attacker embeds malicious instructions in content that 
LLM ingests  
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Safety mitigation

• Limit actions with sandboxes


• Limits on what code can be executed


• Approving agent actions


• Approve each action individually


• Approve a specific command line tool (e.g., grep) once


• Approve all actions


• Rolling back


• Versioning with git can make it easy to rollback bad code changes


• Cannot help for other types of destructive actions
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Evaluating Coding Agent Performance: SWE-bench
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SWE Bench Limitations

• Narrow view of codebases from only 12 Python repos


• Solution for some issues already described in issue


• Only checks for tests passing


• Unit tests do not completely test for all needed required functionality


• No consideration of code quality (e.g., design & architecture)


• Dataset leakage


• LLMs may train on part of evaluation dataset


• Performance on novel tasks may be much worse
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LMArena
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LMArena limitations

• Small programming tasks, 
decontextualized from larger 
codebase


• Hard to assess agentic features 
and usage of tools
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Working w/ unfamiliar API



27https://survey.stackoverflow.co/2025/ai#developer-tools-currently-partially-ai
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Reuse of Uses

• Developers rely extensively on examples to understand how 
to instantiate objects

29
Mary Beth Rosson and John M. Carroll. 1996. The reuse of uses in Smalltalk programming. ACM Trans. Comput.-Hum. Interact. 3, 3 (September 1996), 219-253. 



Some possible reuse strategies

• Read the documentation


• Find tutorials


• Find StackOverflow snippets


• Find similar code in your own codebase


• Call API functions, see what they return
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Opportunistic vs. systematic

• Opportunistic developers more likely to start with example code


• Systematic developers more likely to read the documentation 
first

31



Example reuse process

B: read tutorials, articles, projects to understand domain


D: searched Google, often seeking descriptions in API of 
specific classes & methods to use


E: looked for examples of how to use specific methods
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J. Stylos and B. A. Myers, "Mica: A Web-Search Tool for Finding API Components and Examples," Visual Languages and Human-Centric 
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Types of reuse
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Joel Brandt, Philip J. Guo, Joel Lewenstein, Mira Dontcheva, and Scott R. Klemmer. 2009. Two studies of opportunistic programming: interleaving web 
foraging, learning, and writing code. Conference on Human Factors in Computing Systems (CHI ’09), 1589-1598.



Types of reuse

• Learning—relies on selecting highest quality tutorials tutorials


• e.g., “update web page without reloading php”


• Clarification—learning syntax based on exiting understanding of the domain concepts


• e.g., reminding use of syntax of HTML forms


• Often search by analogy to domain concepts in other languages / frameworks 


• e.g., Perl has a function to format dates as strings, what’s the one for PHP?


• Reminder—using web as external memory aid


• e.g., forgot a word in a long function name


• e.g., 6 lines of code necessary to connect and disconnect from MySQL database copied 
hundreds of times by individual
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Design implications

• Web tutorials used for just in time learning


• —> Tutorials should be tightly coupled to code, where developers can play in sandbox 
then read tutorial content to understand problems when do not work


• Web search used as translator from intention to terminology & syntax


• —> tools could compare code from search results to users code to automatically locate 
errors


• —> search should be integrated into autocomplete


• Developers delay testing, esp for routine functionality


• —> Tools should assist with adaption by highlighting variables and literals in reused 
snippets & provide link back to original source
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Challenges with reuse

• Mapping an abstract conceptual solution into the appropriate elements


• “How do I create a rectangle? Why is there no Rectangle tool?” 

• Understanding control & data flow, hidden dependencies due to run-time binding or inheritance, 
between classes in the API


• “I’m over-riding SelectionTool, and in particular mouseDown() so that when the figure is clicked the 
box is drawn. This bit works, however when trying to drag the figure, if I do something similar the 
rectangle flickers like mad.” 

• Understanding how functionality works


• “How does ... work?”, “What does ... do?” or, “Where is ... defined/created/called?” 

• Making changes consistent w/ architectural constrains of API


• Violating constraints of MVC architecture by passing references in prohibited ways
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Challenges with reuse
• Design barriers—inherent cognitive difficulties of the programming problem, separate from notation used


• I don’t know what I want the computer to do


• Selection barriers—finding programming interfaces available to achieve a particular behavior


• I don’t know what to use


• Coordination barriers—constraints governing how languages & libraries can be combined


• I don’t know how to make them work together


• Use barriers—determining how API how to use API


• I don’t know how to use it


• Understanding barriers—environment properties such as compile & runtime errors that prevent seeing behavior 


• It didn’t do what I expected


• Information barriers—environment properties that prevent understanding runtime execution state


• I think I know why didn’t behave as expected, but don’t know how to check
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Vocabulary problem

• Developers are familiar with concepts using one set of terminology.


• API, tutorials, or other resources use different terminology


• How do developers find the right concepts with alternative terms?
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Challenges may vary by context

• Size of desired snippet


• Reusing a line of code? A whole algorithm?


• Alternatives


• How many alternatives are there? How important is it to find the best alternative?


• Integration


• What libraries or frameworks does a snippet require? How can they be 
integrated?
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Challenges working with API documentation

• Goal: Parse a Java source file w/ Eclipse


• Answer: 


• Challenges


• Want to work with files and ASTNodes, but key class is JavaCore


• No connection from what you might know about ASTNode and IFile to 
JavaCore
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LaToza 41

Emad Aghajani, Csaba Nagy, Olga Lucero Vega-Márquez, Mario Linares-Vásquez, Laura Moreno, Gabriele Bavota, and Michele Lanza. 2019. Software documentation issues unveiled. In Proceedings of the 41st International Conference on Software Engineering (ICSE '19). 
IEEE Press, Piscataway, NJ, USA, 1199-1210. DOI: https://doi.org/10.1109/ICSE.2019.00122



10 min break



In-Class Activity

• In groups of 1 or 2, build an MCP server


• Should support at least 8 different actions


• Build a simple client app that uses the MCP server


• Use Cursor coding agent


• Use Cursor to understand MCP API & MCP concepts


• Deliverables


• Screen recording through Kaltura 


• Upload to OneDrive, turn on link sharing, share link in Lecture 4 activity submission on 
Canvas


• Submit answers to questions on your experiences on Canvas (next slide)


• Aim to finish by 7:10pm today


• Due tomorrow at 4:30pm
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Questions to answer

• What was your approach for tackling this problem?


• What did you learn about MCP?


• What was most surprising about your experience using the tool?


• In what ways was the tool helpful in supporting what you wanted to do?


• In what ways did the tool get in the way of what you were trying to accomplish?


• Deliverable: Submit through Canvas, at least half a page
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