
Debugging Part 1
CS 691 / SWE 699
Fall 2025

© Thomas LaToza

Logistics

• Reflection 2 & Lecture 5 reading questions due today at 4:30pm

• Lecture 6 reading questions for next week due 10/2 at 4:30pm

• Lecture 5 activity (in class today), due by 9/26 at 4:30pm

• No HW assignment assigned today (next one will be assigned on 10/2)

2

Today

• Discussion: Experiences from Lecture 4

• Discussion: Reading questions for Lecture 5

• Lecture

• Debugging

• In-Class Activity

3

Discussion: Experiences from Lecture 4 Activity

• How did your tool try to address code quality issues?

• How did it support the developer in trying to see these issues

• What types of issues was it able to find?

• What was hard about using Cursor to try to build this?

4

Discussion: Reading questions for Lecture 5

• What questions did you have from readings from Lecture 5

• Discuss questions & possible answers in group of 3 or 4

• Come back with 1 question you want to discuss w/ whole
class

5

Debugging

Overview

• How do human developers debug

• Wide variety of tools & techniques

• Challenges that impede progress, lead to necessity to choose
other strategies

• How do LLMs learn how to debug from seeing what humans do

• Example of LLM debugging

• Examples of data LLMs can learn from

7

8

Bug Investigation Example
1. SDE assigned bug through Product Studio
2. Reproduces error

– Browser hits error message (500 internal error)
3. Attach VS debugger

• Browse to page again, hit null reference exception
4. Hypothesize from call stack which function might be responsible
5. Switch to emacs to browse through code

• Ctags.exe works, VS code navigation broken
6. Switch back to debugger to change values & experiment
7. Make change, recompile, check, doesn’t work
8. Navigates slice, wrong values came from object1, from object2, from object3 w/ mutexes

• In complicated code doesn’t understand
9. Walks to developer2’s office and asks where data comes from

• Developer2 working on high profile feature in area
10. Tries to make change, still doesn’t work
11. Walks back to developer2, realize related to developer3 feature, developer3 at lunch
12. After lunch, developer1 and developer2 walk to developer3’s office, change design to work with

new feature
13. Bug passed from developer1 to developer3 to change feature

Thomas D. LaToza, Gina Venolia, and Robert DeLine. 2006. Maintaining mental models: a study of developer work habits. In Proceedings of the 28th international
conference on Software engineering (ICSE '06). Association for Computing Machinery, New York, NY, USA, 492–501. https://doi.org/10.1145/1134285.1134355

Debugging process

• Reproduce the problem
• Find cause of defect (fault localization)
• Investigate fix
• Implement fix
• Test fix

9
Diomidis Spinellis. 2018. Modern debugging: the art of finding a needle in a haystack. Commun. ACM 61, 11 (November 2018), 124–134.

https://doi.org/10.1145/3186278

Edit / Debug Cycle

10

Circle size: % of time

Edge thickness: % of transitions 	
 observed

Reproduce
Debug

Investigate

Test
6%

33%

28%

4%

11%

16% 5%Edit

Reuse

Compile
50%

50%
28%

40%

12%

20%

11%
86%

3%

22%

67%11%

14%

22%

20%

18%

29%

11%86%
3%

55%
32%

5%
6%

For tasks in code in your own codebase that you haven’t seen recently

LaToza and Myers. Developers ask reachability questions. ICSE 2010.

11
Alaboudi, A., LaToza, T.D. What constitutes debugging? An exploratory study of debugging episodes. Empir Software Eng 28, 117 (2023). https://doi.org/10.1007/s10664-023-10352-5

12Alaboudi, A., LaToza, T.D. What constitutes debugging? An exploratory study of debugging episodes. Empir Software Eng 28, 117 (2023). https://doi.org/10.1007/s10664-023-10352-5

13

Alaboudi, A., LaToza, T.D. What constitutes debugging? An exploratory study of debugging episodes. Empir Software Eng 28, 117 (2023). https://doi.org/10.1007/s10664-023-10352-5

14

Alaboudi, A., LaToza, T.D. What constitutes debugging? An exploratory study of debugging episodes. Empir Software Eng 28, 117 (2023). https://doi.org/10.1007/s10664-023-10352-5

Information needs in debugging

15

How did this runtime state occur? (12)
data, memory corruption, race conditions,
hangs, crashes, failed API calls, test
failures, null pointers

* Where was this variable
last changed? (1)*
Why didn’t this
happen? (3)*

LaToza and Myers. Hard-to-answer questions about code. PLATEAU 2010.

Which team’s component
caused this bug? (1)
Which team should I
assign this bug to?

✖

What runtime state changed
when this executed? (2) ✖

How is this object different
from that object? (1)✖

Activity

• What's the hardest debugging bug you've ever debugged?

• What made it hard?

16

What makes debugging hard?

• It may be unclear where
behavior is implemented in
code

• Fault may occur far away
from failure

• How to find connection?

• Understanding why failure
occurred may be challenging

• Concurrency

17L. Layman, M. Diep, M. Nagappan, J. Singer, R. Deline and G. Venolia, "Debugging Revisited: Toward Understanding the Debugging Needs of Contemporary Software Developers," 2013 ACM / IEEE International Symposium on Empirical Software Engineering and
Measurement, Baltimore, MD, 2013, pp. 383-392.

What makes hard bugs hard to debug?
• Cause / effect chasm - symptom far removed from the root cause (15 instances) 

 timing / synchronization problems 
 intermittent / inconsistent / infrequent bugs 
 materialize many iterations after root cause 
 uncertain connection to hardware / compiler / configuration

• Inapplicable tools (12 instances) 
 Heisenbugs - bug disappears when using debugging tool 
 long run to replicate - debugging tool slows down long run even more 
 stealth bug - bug consumes evidence to detect bug 
 context - configuration / memory makes it impossible to use tool

• What you see if probably illusory (7 instances) 
 misreads something in code or in runtime observations

• Faulty assumption (6)

• Spaghetti code (3)

18Eisenstadt, M. Tales of Debugging from the Front Lines. Proc. Empirical Studies of Programmers, Ablex Publishing, Norwood, NJ, 1993, 86-112.

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.49.6357

Model of Debugging Scenario

19

Repro Steps 
Step 1 
Step 2 
Step 3

... 
Step n

inputs
function 1

function 2

function k

function 3

Program Path

User Event

Defect

Symptom: incorrect output

Framework Function

Traditional debugging tools
• Stepping in debugger
• Logging - insert print statements or wrap particular

suspect functions
• Dump & diff - use diff tool to compare logging data

between executions
• Conditional breakpoints
• Profiling tool - detect memory leaks, illegal memory

references

20

Eisenstadt, M. Tales of Debugging from the Front Lines. Proc. Empirical Studies of Programmers, Ablex Publishing, Norwood, NJ, 1993, 86-112.

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.49.6357

Debugging Strategies

• Forwards & backwards debugging
• Minimizing repro steps
• Black box debugging
• Hypothesis testing

21

Repro Steps 
Step 1 
Step 2 
Step 3

... 
Step n

inputs
function 1

function 2

function k

function 3

Program Path

User Event

Defect

Symptom: incorrect output

Framework Function

Information foraging

• Developers navigate call graph to find the defect.
• How? Information foraging
• Mathematical model describing navigation
• Analogy: animals foraging for food

• Can forage in different patches (locations)
• Goal is to maximize chances of finding prey while minimizing time spent in hunt (time debugging)

• Information foraging: navigating through an information space (patches) in order to maximize
chances of finding prey (information) in minimal time

22

Repro Steps 
Step 1 
Step 2 
Step 3

... 
Step n

inputs
function 1

function 2

function k

function 3

Program Path

User Event

Defect

Symptom: incorrect output

Framework Function

Information environment
• Information environment represented as topology

• Information patches connected by traversable
links

• For SE, usually modeled as call graphs
• methods are nodes and function invocations are

edges

23

Traversing links

• Links - connection between patch offered by the
information environment (function call)

• Cues - information features associated with
outgoing links from patch (function identifier)

• User must choose which, of all possible links to
traverse, has best chance of reaching prey

24

Repro Steps 
Step 1 
Step 2 
Step 3

... 
Step n

inputs
function 1

function 2

function k

function 3

Program Path

User Event

Defect

Symptom: incorrect output

Framework Function

Scent

• User interprets cues on links by likelihood they will
reach prey

• e.g., do I think that the “invoke” method is likely to
implement the functionality I’m looking for?

25

Repro Steps 
Step 1 
Step 2 
Step 3

... 
Step n

inputs
function 1

function 2

function k

function 3

Program Path

User Event

Defect

Symptom: incorrect output

Framework Function

Debugging backwards

• What strategies might be used to more effectively navigate?
• Backwards slicing: start at output, systematically trace path backwards by asking what caused this

• Why is x.color blue? Because it was set to blue by this assignment statement...
• Can be hard

• where is the statement that generated the output?
• easier with an error, stack trace, breakpoint....
• what happens if the output didn't get generated?

• can't go backwards step by step in debugger
• may have to guess at path, add print statements
• or rerun program in debugger.... 26

Repro Steps 
Step 1 
Step 2 
Step 3

... 
Step n

inputs
function 1

function 2

function k

function 3

Program Path

User Event

Defect

Symptom: incorrect output

Framework Function

Find part of the program that caused incorrect output

• Slice

• Subset of the program that is responsible for computing the value of a
variable at a program point

• Backwards slice

• Transitive closure of all statements that have a control or data dependency

• Originally formulated as subset of program

27

Early evidence for slicing

• BEGIN 
READ(X, Y) 
TOTAL := 0.0 
SUM := 0.0 
IF X <= 1 
 THEN SUM := Y 
 ELSE BEGIN 
 READ(Z) 
 TOTAL := X * Y 
 END 
WRITE(TOTAL, SUM) 
END

• (Static) slice - subset of the program that produces the same variable values at a program point

• Slice on variable Z at 12

28

Participants performed 3 debugging tasks on
short code snippets

Asked to recognize code snippets afterwards

Mark Weiser. 1982. Programmers use slices when debugging. Commun. ACM 25, 7 (July 1982), 446-452.

http://portal.acm.org/citation.cfm?id=358577

Slicers debug faster

• Students debugging 100 LOC C++ programs

• Students given 
 Programming environment 
 Hardcopy input, wrong output, correct output 
 Files with program & input

• Compared students instructed to slice against everyone else 
 Excluding students who naturally use slicing strategy

• Slicers debug significantly faster (65.29 minutes vs. 30.16 minutes)

29Francel M. A. and S. Rugaber (2001). The Value of Slicing While Debugging, Science of Computer Programming, 40(2‐3), 151‐169.

http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6V17-434442G-2&_user=525223&_coverDate=07/31/2001&_rdoc=1&_fmt=high&_orig=search&_origin=search&_sort=d&_docanchor=&view=c&_searchStrId=1592955686&_rerunOrigin=google&_acct=C000026389&_version=1&_urlVersion=0&_userid=525223&md5=fc3d24a54e88a14f5439d75ad19e91cf&searchtype=a

Associating incorrect output with responsible code

30Amy J. Ko and Brad A. Myers. 2008. Debugging reinvented: asking and answering why and why not questions about program behavior. In Proceedings of the 30th international conference on Software engineering (ICSE '08).
Association for Computing Machinery, New York, NY, USA, 301–310. https://doi.org/10.1145/1368088.1368130

https://www.youtube.com/watch?v=pbElN8nfe3k

Debugging forwards

• Forwards debugging: start at function before the defect, keep tracing
forwards until find the defect

• Can be hard
• have to guess which statement will lead to defect

• if guess wrong and miss the defect, have to start over

31

Repro Steps 
Step 1 
Step 2 
Step 3

... 
Step n

inputs
function 1

function 2

function k

function 3

Program Path

User Event

Defect

Symptom: incorrect output

Framework Function

Minimizing repro steps: delta debugging

• Maybe the path is longer and more complex than it needs to be, making
navigation hard.

• Is there a shorter and simpler path that still surfaces the defect?
• Need to find a simpler set of repro steps that still generates incorrect output
• Idea: delta debugging

• Try each half of the repro steps, if neither fails, try cutting something smaller

32

Repro Steps 
Step 1 
Step 2 
Step 3

... 
Step n

inputs
function 1

function 2

function k

function 3

Program Path

User Event

Defect

Symptom: incorrect output

Framework Function

Zeller, Andreas (1999). "Yesterday, my program worked. Today, it does not. Why?". Software Engineering — ESEC/FSE '99. Lecture Notes in Computer Science. Vol. 1687. Springer. pp. 253–
267. doi:10.1007/3-540-48166-4_16. ISBN 978-3-540-66538-0.

https://en.wikipedia.org/wiki/Doi_(identifier)
https://doi.org/10.1007%2F3-540-48166-4_16
https://en.wikipedia.org/wiki/ISBN_(identifier)
https://en.wikipedia.org/wiki/Special:BookSources/978-3-540-66538-0

Black box debugging

• What if the issue has already been localized, but it involves a framework
function behaving unexpectedly

• Don't really want to use backwards / forwards debugging to trace paths
through a framework

• Framework is a black box, can only be understood through its interface
• Rather than trace through framework code, instead need to find strategies

to reason about inputs/outputs with the framework
33

Repro Steps 
Step 1 
Step 2 
Step 3

... 
Step n

inputs
function 1

function 2

function k

function 3

Program Path

User Event

Defect

Symptom: incorrect output

Framework Function

Black box debugging

• StackOverflow
• Maybe someone else used the framework incorrectly in the same way, and

got a similar error message
• Hard to use when

• Not a unique error message
• Unclear which (of many) framework interactions are relevant

34

Repro Steps 
Step 1 
Step 2 
Step 3

... 
Step n

inputs
function 1

function 2

function k

function 3

Program Path

User Event

Defect

Symptom: incorrect output

Framework Function

Black box debugging

• Simplify framework interactions
• Maybe the framework interactions are all wrong
• Try with a simpler framework interaction that is correct (e.g., an example

app) and see if that works

35

Repro Steps 
Step 1 
Step 2 
Step 3

... 
Step n

inputs
function 1

function 2

function k

function 3

Program Path

User Event

Defect

Symptom: incorrect output

Framework Function

Hypothesis testing

• StackOverflow
• Maybe someone else used the framework incorrectly in the same way, and

got a similar error message
• Hard to use when

• Not a unique error message
• Unclear which (of many) framework interactions are relevant

36

Repro Steps 
Step 1 
Step 2 
Step 3

... 
Step n

inputs
function 1

function 2

function k

function 3

Program Path

User Event

Defect

Symptom: incorrect output

Framework Function

Hypothesis testing

37

Formulate & test hypotheses

• Use knowledge & data so far to formulate hypothesis about why bug happened with

• cogitation, meditation, observation, inspection, contemplation, hand-simulation,
gestation, rumination, dedication, inspiration, articulation

• Recognize cliche 
 seen a similar bug before

• Controlled experiments - test hypotheses by gathering data

38Eisenstadt, M. Tales of Debugging from the Front Lines. Proc. Empirical Studies of Programmers, Ablex Publishing, Norwood, NJ, 1993, 86-112.

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.49.6357

Resources for testing hypotheses

39L. Layman, M. Diep, M. Nagappan, J. Singer, R. Deline and G. Venolia, "Debugging Revisited: Toward Understanding the Debugging Needs of Contemporary Software Developers," 2013 ACM / IEEE International Symposium on Empirical
Software Engineering and Measurement, Baltimore, MD, 2013, pp. 383-392.

Resources used in debugging

40L. Layman, M. Diep, M. Nagappan, J. Singer, R. Deline and G. Venolia, "Debugging Revisited: Toward Understanding the Debugging Needs of Contemporary Software Developers," 2013 ACM / IEEE International
Symposium on Empirical Software Engineering and Measurement, Baltimore, MD, 2013, pp. 383-392.

Debugging hypotheses matter
• Developers with a correct hypothesis early in the

debugging process

• Spent 30% less time fixing the fault

• >5x more likely to succeed

• No evidence industrial programming experience
or more knowledge of related technologies
associated with better hypotheses performance.

• No evidence that providing potential fault
locations helps debugging.

• Providing generalized debugging hypotheses

• > 16x more likely to successfully fix a fault

41
A. Alaboudi and T. D. LaToza, "Using Hypotheses as a Debugging Aid," 2020 IEEE Symposium on Visual Languages and Human-Centric Computing (VL/HCC), Dunedin, New Zealand, 2020, pp. 1-9, doi: 10.1109/
VL/HCC50065.2020.9127273.

Factors impacting strategy choice

42

Fixing defects

• Fault localization is only part
of the debugging process

• After finding the defect, need
to design a fix that addresses
it

• Many design choices about
how to do this effectively

• LLMs traditionally use test
passing as way to evaluate
fix, may not effectively
address design
considerations

43

Emerson Murphy-Hill, Thomas Zimmermann, Christian Bird, and Nachiappan Nagappan. 2015. The Design Space of Bug Fixes and How Developers
Navigate It. IEEE Trans. Softw. Eng. 41, 1 (Jan. 2015), 65–81. https://doi.org/10.1109/TSE.2014.2357438

Factors that influence engineers' bug fix design

44

Emerson Murphy-Hill, Thomas Zimmermann, Christian Bird, and Nachiappan Nagappan. 2015. The Design Space of Bug Fixes and How Developers
Navigate It. IEEE Trans. Softw. Eng. 41, 1 (Jan. 2015), 65–81. https://doi.org/10.1109/TSE.2014.2357438

Debugging & LLMs

Debugging & LLMs

• Agentic LLMs can use ReACT
loop to gather evidence to
generate hypotheses and
systematically test them

• Pushes key debugging work
back to foundation model,
responsible for interpreting
evidence & generating good
hypotheses

46

Blackbox debugging with an LLM

• LLM has access to
StackOverflow data, blog
posts, API documentation

• Can use this to interpret error
messages or non-working
behavior when interacting with
a framework

47

Backwards & forward debugging

• LLM can control debugger via command line

• Can use this to trace forwards

• Harder to trace backwards -- needs to repeatedly
rerun the program

48

Hypothesis testing

• Generate a hypothesis, use tools to test

• Use grep to find relevant code and
then read it

• Add print statements to generate
runtime data

• Edit the code, make changes, see if
that works

49

Challenges with LLM debugging

• Finding a starting point: in a bigger codebase, where to start? May lack developers' model
and understanding of codebase

• Dated API knowledge: foundation model trained on specific version of API, which may no
longer be current

• Dated codebase knowledge: LLM can read design doc, but what if design doc is
outdated?

• Tool usage steps: LLM may not understand the right command line args necessary to run
tools in codebase

• Can try to address by pointing LLM to specific info to add better context

50

10 min break

In-Class Activity
• In groups of 1 or 2, try to stump an Agentic Debugger (Cursor or Claude Code)

• Seed bugs in your Code Quality Tool (or another codebase)

• Goal: insert a defect that breaks something in your City Simulator that agent cannot fix

• Start with simple defects, try making them more complicated if necessary

• May need to clear context or reload project so that it can't just debug by looking at recent changes

• Want to hear about what types of defects you tried and why, what worked, and what didn't

• Ok if can't stump the debugger for all types of defects

• Deliverables

• Screen recording through Kaltura

• Upload to OneDrive, turn on link sharing, share link in Lecture 5 activity submission on Canvas

• Submit answers to questions on your experiences on Canvas (next slide)

• Aim to finish by 7:10pm today; Due tomorrow at 4:30pm
52

Types of defects to explore

1. Long cause / effect chain

1. Can you hide how the output and defect are connected by
having lots of code execute in the middle?

2. Black box debugging

1. Can it debug issues with unpopular framework?

2. Can it debug issues specific to a recent framework version?

3. Silent failures

1. Can it figure out where to start when something doesn't
happen?

53

Questions to answer

• What types of defects did you try?

• Describe how you designed the defect and why you thought it might be hard

• Which of these was the LLM able to debug? Which was it not?

• How did the LLM design fixes to defects?

• What did you learn about when and how LLMs can successfully debug defects?

• Deliverable: Submit through Canvas, at least a page

54

