Debugging Part 1

CS 691 / SWE 699
Fall 2025

(G le GEORGE MASON
TM UNIVERSITY:

aaaaaaaaaaaaa

Logistics

* Reflection 2 & Lecture 5 reading questions due today at 4:30pm
* |Lecture 6 reading questions for next week due 10/2 at 4:30pm
* |ecture 5 activity (in class today), due by 9/26 at 4:30pm

* No HW assignment assigned today (next one will be assigned on 10/2)

Today

* Discussion: Experiences from Lecture 4
* Discussion: Reading questions for Lecture 5
e Lecture

* Debugging

* |In-Class Activity

Discussion: Experiences from Lecture 4 Activity

 How did your tool try to address code quality issues?
 How did it support the developer Iin trying to see these issues
 What types of issues was it able to find?

 What was hard about using Cursor to try to build this?

Discussion: Reading questions for Lecture 5

 What questions did you have from readings from Lecture 5
* Discuss questions & possible answers in group of 3 or 4

 Come back with 1 question you want to discuss w/ whole
class

Debugging

Overview

« How do human developers debug
* Wide variety of tools & techniques

* Challenges that impede progress, lead to necessity to choose
other strategies

« How do LLMs learn how to debug from seeing what humans do
 Example of LLM debugging

 Examples of data LLMs can learn from

1.

oA

N

o0

9.

10.
11.
12.

13.

Bug Investigation Example

SDE assigned bug through Product Studio
Reproduces error
Browser hits error message (500 internal error)

Attach VS debugger
Browse to page again, hit null reference exception

Hypothesize from call stack which function might be responsible
Switch to emacs to browse through code
Ctags.exe works, VS code navigation broken

Switch back to debugger to change values & experiment
Make change, recompile, check, doesn’t work

Navigates slice, wrong values came from object1, from object2, from object3 w/ mutexes
In complicated code doesn’t understand

Walks to developer2’s office and asks where data comes from
Developer2 working on high profile feature in area

Tries to make change, still doesn't work

Walks back to developer2, realize related to developer3 feature, developer3 at lunch

After lunch, developer1 and developer2 walk to developer3’s office, change design to work with
new feature

Bug passed from developer1 to developer3 to change feature

Thomas D. LaToza, Gina Venolia, and Robert DelLine. 2006. Maintaining mental models: a study of developer work habits. In Proceedings of the 28th international
conference on Software engineering (ICSE '06). Association for Computing Machinery, New York, NY, USA, 492-501. https://doi.org/10.1145/1134285.1134355

Debugging process

Figure 1. A process for systematic debugging.

 Reproduce the problem

Find cause of defect (fault localization)
* |[nvestigate fix

e |mplement fix

e Jest fix

[predictions not satisfied]

[predictions satisfied]

[refinement possible]

Hypothesis is failure's diagnosisT

[no refinement possible] "'

/
’
-
@ .

Diomidis Spinellis. 2018. Modern debugging: the art of finding a needle in a haystack. Commun. ACM 61, 11 (November 2018), 124-134.
https://doi.org/10.1145/3186278

Edit / Debug Cycle For tasks in code in your own codebase that you haven’t seen recently

1 4%
28%
50% W
Rep |
400/0 U m|5"'e\~~..@ est

O %

/%

92 5%
/\/W

Circle size: % of time

Edge thickness: % of transitions
observed

LaToza and Myers. Developers ask reachability questions. ICSE 2010. 10

20, 25% 75%

| l
I l
| l
| |
5 1001 1% of debugging time ! 20% of debugging time ! 79% of debugging time
b median = 30 sec . median = 4 min : median = 19 min
= IQR = (18-42) sec | IQR = (2-6) min | 1QR = (15-33) min
= 80- | |
= : :
e : |
N ' '
S 60 | |
Q] |
e | |
V) | |
) I |
T 40 I |
@) l |
W) [
3 | |
LLJ] I
20- | !
| l
I I
| |
| |
| |
O- ' |

2 5 8 11 14 17 20 23 26 29 32 35 38 41 44 47 50 53 56 59 62 65 68 71 74 77 80 83 86 89
Episodes

Fig. 2 Debugging episode length, from shortest to longest

Alaboudi, A., LaToza, T.D. What constitutes debugging? An exploratory study of debugging episodes. Empir Software Eng 28, 117 (2023). https://doi.org/10.1007/s10664-023-10352-5

11

1 Long 1 Short

Edit -

Test -

Navigate -

Inspect -

Consult -

Misc - ‘

0 20 40 60 80 100 120 140
Activity Length Per Instance (seconds)

Fig. 3 The distribution of the time developers spent on each activity instance in long and short debugging

episodes

Alaboudi, A., LaToza, T.D. What constitutes debugging? An exploratory study of debugging episodes. Empir Software Eng 28, 117 (2023). https://doi.org/10.1007/s10664-023-10352-5

12

Table 7 The distribution of debugging activities per episode. % of episode time is the fraction of time of the
episodes that the activity occupied

Activities Instances Per Episode % ot Episode Time

Median (IQR) Min Max Median (IQR) Min Max
Edit 3 (1-9) 0 67 41% (26-54%) 7% 7%
Test 3 (2-7) 0 32 29% (18-43%) 2% 100%
Navigate 3 (0-6) 0 109 15% (9-22%) 1% 50%
Inspect 0 (0-1) 0 26 14% (8-29%) 1% 58%
Consult 0 (0-1) 0 16 9% (4-18%) 0.4% 59%
Miscellaneous 0 (0-1) 0 35 4% (2-9%) 1% 26%

Alaboudi, A., LaToza, T.D. What constitutes debugging? An exploratory study of debugging episodes. Empir Software Eng 28, 117 (2023). https://doi.org/10.1007/s10664-023-10352-5

13

Table 8 The distribution of frequency (count) of activities throughout the debugging episodes

Activities Distribution of Frequency Across Episodes Time

Edit 0% 20% 40% 60% 80% 100%
Test 0% 20% 40% 60% 80% 100%
Navigate 0% 20% 40% 60% 80% 100%
Inspect 0% 20% 40% 60% 80% 100%
Consult 0% 20% 40% 60% 80% 100%
Miscellaneous 0% 20% 40% 60% 80% 100%

Alaboudi, A., LaToza, T.D. What constitutes debugging? An exploratory study of debugging episodes. Empir Software Eng 28, 117 (2023). https://doi.org/10.1007/s10664-023-10352-5

Information needs In debugging

% How did this runtime state occur? (12) o Where was this variable
data, memory corruption, race conditions, last changed? (1)
hangs, crashes, failed API calls, test o Why didn’t this
failures, null pointers happen? (3)

x

X

How is this object different
from that object? (1)

Which team’s component

caused this bug? (1)
Which team should I

assign this bug to?
What runtime state changed

when this executed? (2)

LaToza and Myers. Hard-to-answer questions about code. PLATEAU 2010.

15

Activity

 What's the hardest debugging bug you've ever debugged?
 What made it hard?

16

What makes debugging hard?

* |t may be unclear where
behavior is implemented in
code

* Fault may occur far away
from failure

e How to find connection?

 Understanding why failure
occurred may be challenging

» Concurrency

L. Layman, M. Diep, M. Nagappan, J. Singer, R. Deline and G. Venolia, "Debugging Revisited: Toward Understanding the Debugging Needs of Contemporary Software Developers," 2013 ACM / IEEE International Symposium on Empirical Software Engineering and

Measurement, Baltimore, MD, 2013, pp. 383-392.

subjects

Debugging challenges

I

| Environmental challenges

7

- Multithreaded/multicore

_ Information quality

Communication challenges

| Unable to reproduce failures consistently

S E*al E*al k=

Debugging process challenges

subjects

Debugging challenges

Capture and replay of production events

More contextual information 1in runtime Iogs/stack traces

Integrating data from different sources

Bi-directional debugger

Debugging tool training

Multithreaded support

Automatic breakpoints upon entry into a class

Automated log analysis

Program context

PP W W W WO

Visually showing the execution trace

17

What makes hard bugs hard to debug?

 Cause / effect chasm - symptom far removed from the root cause (15 instances)
timing / synchronization problems
intermittent / inconsistent / infrequent bugs
materialize many iterations after root cause
uncertain connection to hardware / compiler / configuration

* |napplicable tools (12 instances)
Heisenbugs - bug disappears when using debugging tool
long run to replicate - debugging tool slows down long run even more
stealth bug - bug consumes evidence to detect bug
context - configuration / memory makes it impossible to use tool

 What you see if probably illusory (7 instances)
misreads something in code or in runtime observations

e Faulty assumption (6)

e Spaghetti code (3)

Eisenstadt, M. Tales of Debugging from the Front Lines. Proc. Empirical Studies of Programmers, Ablex Publishing, Norwood, NJ, 1993, 86-112.

18

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.49.6357

Model of Debugging Scenario

Program Path Defect

Framework Function

Repro Steps
Step 1
Step 2
Step 3

é.tep n Symptom: incorrect output

19

Traditional debugging tools

o Stepping in debugger

* Logging - insert print statements or wrap particular
suspect functions

 Dump & diff - use diff tool to compare logging data
between executions

o Conditional breakpoints

* Profiling tool - detect memory leaks, illegal memory
references

Eisenstadt, M. Tales of Debugging from the Front Lines. Proc. Empirical Studies of Programmers, Ablex Publishing, Norwood, NJ, 1993, 86-112.

20

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.49.6357

Debugging Strategies

Program Path Defect

Framework Function

Repro Steps
Step 1
Step 2
Step 3

é.tep n Symptom: incorrect output

 Forwards & backwards debugging
 Minimizing repro steps

* Black box debugging

* Hypothesis testing

21

Information foraging

Program Path Defect

Framework Function

Repro Steps
Step 1
Step 2
Step 3

g’(ep n Symptom: incorrect output

Developers navigate call graph to find the defect.

How? Information foraging
Mathematical model describing navigation
Analogy: animals foraging for food

* (Can forage in different patches (locations)
* (Goal is to maximize chances of finding prey while minimizing time spent in hunt (time debugging)

Information foraging: navigating through an information space (patches) in order to maximize
chances of finding prey (information) in minimal time

Information environment

e |[nformation environment represented as topology

e |[nformation patches connected by traversable
links

* For SE, usually modeled as call graphs

e methods are nodes and function invocations are
edges

23

Traversing links

Program Path Defect

Framework Function

Repro Steps
Step 1
Step 2
Step 3

é.tep n Symptom: incorrect output

* Links - connection between patch offered by the
information environment (function call)

e (Cues - information features associated with
outgoing links from patch (function identifier)

e User must choose which, of all possible links to
traverse, has best chance of reaching prey

24

Scent

Program Path Defect

Framework Function

Repro Steps
Step 1
Step 2
Step 3

gtep n Symptom: incorrect output

o User interprets cues on links by likelihood they will
reach prey

* e.g., do | think that the “Invoke™ method is likely to
implement the functionality I'm looking for”

25

Debugging backwards

Program Path Defect

Framework Function

Repro Steps
Step 1
Step 2
Step 3

gtep n Symptom: incorrect output

* \What strategies might be used to more effectively navigate”?
 Backwards slicing: start at output, systematically trace path backwards by asking what caused this

 Why is x.color blue” Because it was set to blue by this assignment statement...
 (Can be hard
* where Is the statement that generated the output?
e easler with an error, stack trace, breakpoint....
* what happens it the output didn't get generated?
e can't go backwards step by step in debugger
* may have to guess at path, add print statements
e Or rerun program in debugger....

26

Find part of the program that caused incorrect output

e Slice

 Subset of the program that is responsible for computing the value of a
variable at a program point

e Backwards slice

* [ransitive closure of all statements that have a control or data dependency

* Originally formulated as subset of program

27

Early evidence for slicing

Participants performed 3 debugging tasks on
short code snippets

. BEGIN Asked to recognize code snippets afterwards
READ(X, Y)
TOTAL :=0.0 é 100
SUM :=0.0 §
IF X <=1 3
THEN SUM := Y e S0F
ELSE BEGIN €
READ(Z) N ‘ l D []
TOTAL :=X*Y * €E8 €8 €8 €8 2
END 2P 33 323 8o E
WRITE(TOTAL, SUM) K o ‘cc; L ‘g ‘g 7
END ©c "o -

Type of Algorithm
e (Static) slice - subset of the program that produces tne same variapie vaiues at a program point

 Slice on variable Z at 12

Mark Weiser. 1982. Programmers use slices when debugging. Commun. ACM 25, 7 (July 1982), 446-452. 28

http://portal.acm.org/citation.cfm?id=358577

Slicers debug faster

o Students debugging 100 LOC C++ programs

o Students given
Programming environment
Hardcopy input, wrong output, correct output
Files with program & input

 Compared students instructed to slice against everyone else
Excluding students who naturally use slicing strategy

o Slicers debug significantly faster (65.29 minutes vs. 30.16 minutes)

Francel M. A. and S. Rugaber (2001). The Value of Slicing While Debugging. Science of Computer Programming, 40(2-3), 151-169.

29

http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6V17-434442G-2&_user=525223&_coverDate=07/31/2001&_rdoc=1&_fmt=high&_orig=search&_origin=search&_sort=d&_docanchor=&view=c&_searchStrId=1592955686&_rerunOrigin=google&_acct=C000026389&_version=1&_urlVersion=0&_userid=525223&md5=fc3d24a54e88a14f5439d75ad19e91cf&searchtype=a

Associating incorrect output with responsible code

£HH00O Ahyive focive o fawe

STRphICe | text wxceptions

k. r"u.'.‘
Lraame
| -
< r-: |

COAT 128 2ANNaAS

Ua00 mYy il 1troke

“n-n—o—-.:

.-P

8N N IS

L i 'o‘ a8 el B e

Amy J. Ko and Brad A. Myers. 2008. Debugging reinvented: asking and answering why and why not questions about program behavior. In Proceedings of the 30th international conference on Software engineering (ICSE '08).
Association for Computing Machinery, New York, NY, USA, 301-310. https://doi.org/10.1145/1368088.1368130

https://www.youtube.com/watch?v=pbElN8nfe3k

Debugging forwards

Program Path Defect

Framework Function

Repro Steps
Step 1
Step 2
Step 3

gtep n Symptom: incorrect output

* Forwards debugging: start at function before the defect, keep tracing
forwards until find the defect

* (Can be hard
* have to guess which statement will lead to defect

* |f guess wrong and miss the defect, have to start over

31

Minimizing repro steps: delta debugging

Program Path Defect

Framework Function

Repro Steps
Step 1
Step 2
Step 3

gtep n Symptom: incorrect output

Maybe the path Is longer and more complex than it needs to be, making
navigation hard.

s there a shorter and simpler path that still surfaces the defect?
Need to find a simpler set of repro steps that still generates incorrect output
|dea: delta debugging

e [ry each half of the repro steps, if neither tails, try cutting something smaller

Zeller, Andreas (1999). "Yesterday, my program worked. Today, it does not. Why?". Software Engineering — ESEC/FSE '99. Lecture Notes in Computer Science. Vol. 1687. Springer. pp. 253—
267. doi:10.1007/3-540-48166-4_16. ISBN 978-3-540-66538-0.

32

https://en.wikipedia.org/wiki/Doi_(identifier)
https://doi.org/10.1007%2F3-540-48166-4_16
https://en.wikipedia.org/wiki/ISBN_(identifier)
https://en.wikipedia.org/wiki/Special:BookSources/978-3-540-66538-0

Black box debugging

Program Path Defect

Framework Function

Repro Steps
Step 1
Step 2
Step 3

gtep n Symptom: incorrect output

 \What if the issue has already been localized, but it involves a framework
function behaving unexpectedly

 Don't really want to use backwards / forwards debugging to trace paths
through a framework

 Framework is a black box, can only be understood through its interface

 Rather than trace through framework code, instead need to find strategies
to reason about inputs/outputs with the framework

33

Black box debugging

Program Path Defect

Framework Function

Repro Steps
Step 1
Step 2
Step 3

gtep n Symptom: incorrect output

StackOverflow

 Maybe someone else used the framework incorrectly in the same way, and
got a similar error message

e Hard to use when

 Not a unique error message
* Unclear which (of many) framework interactions are relevant

34

Black box debugging

Program Path Defect

Framework Function

Repro Steps
Step 1
Step 2
Step 3

gtep n Symptom: incorrect output

e Simplify framework interactions
 Maybe the framework interactions are all wrong

o [ry with a simpler framework interaction that is correct (e.g., an example
app) and see it that works

35

Hypothesis testing

Program Path Defect

Framework Function

Repro Steps
Step 1
Step 2
Step 3

gtep n Symptom: incorrect output

StackOverflow

 Maybe someone else used the framework incorrectly in the same way, and
got a similar error message

e Hard to use when

 Not a unique error message
* Unclear which (of many) framework interactions are relevant

36

Hypothesis testing

* a hypothesis is an educated guess about what might be causing a
particular bug.

Maybe | did
not parse

the data

Work to test the

\hypothesis

Read related code " *
Look at relevant online resources ‘A
Debug specific of line of code &

37

Formulate & test hypotheses

 Use knowledge & data so far to formulate hypothesis about why bug happened with

e cogitation, meditation, observation, inspection, contemplation, hand-simulation,
gestation, rumination, dedication, inspiration, articulation

 Recognize cliche
seen a similar bug before

* Controlled experiments - test hypotheses by gathering data

Eisenstadt, M. Tales of Debugging from the Front Lines. Proc. Empirical Studies of Programmers, Ablex Publishing, Norwood, NJ, 1993, 86-112.

38

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.49.6357

Resources for testing hypotheses

subjects Hypothesis instrumentation methods
7 Inserting breakpoints and watch variables
4 Inserting log statements

2 Removing irrelevant code

2 Tweaking - modifying existing code

subjects | Hypothesis testing and comparison methods
7 Stepping in the debugger

4 Comparing against examples

2 Comparing against an oracle
1

1

1

Analyzing network packets
Backtracking
Printing out hard copies of code

L. Layman, M. Diep, M. Nagappan, J. Singer, R. Deline and G. Venolia, "Debugging Revisited: Toward Understanding the Debugging Needs of Contemporary Software Developers," 2013 ACM / IEEE International Symposium on Empirical
Software Engineering and Measurement, Baltimore, MD, 2013, pp. 383-392.

Resources used Iin debugging

subjects

Resources used in debugging

15

Debugger tools

14

Bug information

(S

Communication with others

Internet resources

Custom code/manual debugging data

System state information (variables, packets)

Searching the source repository

Code browsers

Printed publications

Production health/status/monitoring systems

Build information

Personal library of technical tidbits

Shared internal development team resources

bt |t | et [PO [N |NI DN DO |

Product documentation

L. Layman, M. Diep, M. Nagappan, J. Singer, R. Deline and G. Venolia, "Debugging Revisited: Toward Understanding the Debugging Needs of Contemporary Software Developers," 2013 ACM / IEEE International

Symposium on Empirical Software Engineering and Measurement, Baltimore, MD, 2013, pp. 383-392.

40

Debugging hypotheses matter

 Developers with a correct hypothesis early in the

debugging process Variables Oddsratio SEB Wald __ Sig. (p)
Correct hypothesis 5.28 0.67 2.45 0.01
° Spent 300/0 |ess time f|X|ng the fault Years of Experience [.08 0.06 .36 0.17
Technology knowledge 2.08 0.43 .66 0.09
_ Debugging task 2 243 0.87 .02 0.30
¢ >5X more I|ke|y tO Succeed Debugging task 3 8.43 0.98 2.15 0.03
Fault locations .37 0.75 0.42 0.67
: : : : : Years of Experience [.12 0.06 [.68 0.09
* No evidence industrial programming experience Fechnology knowledge 208 046 e o
or more knowledge of related technologies Debugging task 2 2.93 0.98 109 027
associated with better hypotheses performance. Debuggingtask3 1235 105 238 0.01
Generalized hypotheses 16.33 .21 2.29 0.02
_ o i Years of Experience .32 0.12 2.20 0.02
* No evidence that providing potential fault Technology knowledge 125 058 038 0.69
locations helps debugging_ Debugging task 2 0.15 1.32 -1.42 0.15
Debugging task 3 11.28 .36 .78 0.07

* Providing generalized debugging hypotheses

> 16x more likely to successfully fix a fault

A. Alaboudi and T. D. LaToza, "Using Hypotheses as a Debugging Aid," 2020 IEEE Symposium on Visual Languages and Human-Centric Computing (VL/HCC), Dunedin, New Zealand, 2020, pp. 1-9, doi: 10.1109/

VL/HCC50065.2020.9127273.

41

Factors impacting strategy choice

Strategy

Works When ...

Doesn’t Work When ...

Hypothesis

Familiarity: Know the codebase and can form
plausible hypotheses about the fault.

Clarity: Clear error messages guide reasoning
vs. blind guessing.

Unfamiliarity: Lack of prior knowledge makes
hypothesis generation random or incorrect.
Reproducibility: Sporadic, inconsistent Sporadic
errors prevent testing or refining hypotheses.

Backward-
reasoning

Nature: Works well when the defect is server-
side or functionality-related. Client-side or asyn-
chronous timing issues break trace paths.
Clarity: A clear error message offers a concrete
starting point to trace back execution.
Maintenance: Deprecated code needs careful
tracing to avoid unintended errors.

Reproducibility: Sporadic or non-reproducible er-
rors prevent systematic tracing.

Maintenance: Large, deprecated systems make
tracing complex and error-prone.

Accessibility: Large, fragile, or restricted systems
complicate tracing (e.g.,production environments
without test cases)

Froward

Complexity: Modular structure supports sys-
tematic exploration.

Complexity: Non-modular or excessively large
codebases overwhelm forward tracing.

Error-
messaging

Clarity: Clear error messages or exceptions di-
rectly indicate the location of failure.
Testability: Existing test cases help map errors
to specific modules.

Nature: Ul/client bugs lack actionable messages..
Maintenance: Poor upkeep or missing tests reduce
reliability.

Accessibility: Production environments without
test cases limit error validation.

Simplification

Familiarity: Familiarity allows developers to
safely remove or isolate code.
Reproducibility: Works well when the error is
consistent and can be repeatedly triggered.
Accessibility: Version control/tests support
safe reduction of failing components.
Performance: Effective for identifying high
memory or CPU bottlenecks.

Nature: Server-side or asynchronous timing bugs
may be disrupted by code removal.
Reproducibility: Sporadic issues cannot be iso-
lated by binary search.

Accessibility: Limited permissions prevent editing
or reducing code.

Maintenance: Deprecated or fragile code risks in-
troducing new failures during simplification.

42

Fixing defects

* Fault localization is only part
of the debugging process

» After finding the defect, need
to design a fix that addresses
it

 Many design choices about
how to do this effectively

| |Ms traditionally use test
passing as way to evaluate
fix, may not effectively
address design
considerations

data propagation (across components):

how far is information allowed to propagate? atsource @way from source

error surface:

how much information is revealed to users? led detail8d error

behavioral alternatives:

is a fix perceptible to the user? must®hange behavior

change

functionality removal:

how much of a feature is removed during a bug fix? thing everything

refactoring:

degree to which code is restructured. tructuring sighificant

internal vs. external:

how much internal/external code is changed? ly internal only external

accuracy:

degree to which the fix utilizes accurate information. | adBurate heuristics

hardcoding:
degree to which a fix hardcodes data. data génerated

same bug: @fix A Ofix B

data specified

Emerson Murphy-Hill, Thomas Zimmermann, Christian Bird, and Nachiappan Nagappan. 2015. The Design Space of Bug Fixes and How Developers

Navigate It. IEEE Trans. Softw. Eng. 41, 1 (Jan. 2015), 65-81. https://doi.org/10.1109/TSE.2014.2357438

43

Factors that influence engineers' bug fix design

Phase of the release cycle

Changes few lines of code

(A) - .
Requires little testing effort
Takes little time to implement
(B) Doesn't change interfaces or
break backwards compatibility
(C) Maintains the integrity of
the original design
(D) Frequency in practice

1%

2%

Rarely

6%

10%
12%
10%

2%

5%

17%

Microsoft

O

£ >

o =

= 3

3 -
17% 35%
32% 38%
31% 37%
43% 30%
8% 36%
16% @ 50%
39% 33%

Always

37%
17%
16%
13%

53%

28%

8%

Never

14%
5%
5%
3%

0%

0%

3%

Other Developers

Rarely

11%

3%
24%
14%

0%

5%

27%

Sometimes

27%
27%
30%
35%

14%

24%

43%

Usually

22%
54%
30%
30%

32%

32%

22%

Emerson Murphy-Hill, Thomas Zimmermann, Christian Bird, and Nachiappan Nagappan. 2015. The Design Space of Bug Fixes and How Developers
Navigate It. IEEE Trans. Softw. Eng. 41, 1 (Jan. 2015), 65-81. https://doi.org/10.1109/TSE.2014.2357438

Always

16%
11%
11%
19%

54%

35%

5%

44

Debugging & LLMs

Debugging & LLMs

 Agentic LLMs can use ReACT g runtask: st A
loop to gather evidence to ostes))
generate hypotheses and ([qen0)-{pilmitsexcecded)-i- |-

L parse,.action() J
-

systematically test them | oot obeeratiorO)

 Pushes key debugging work oot ootn()
back to foundation model, L o0 - ol St e -
responsible for interpreting \=)) T ’
evidence & generating good
hypotheses - /

Blackbox debugging with an LLM

« LLM has access to
StackOverflow data, blog
posts, APl documentation

e Can use this to interpret error
messages or non-working
behavior when interacting with
a framework

Why does jQuery or a DOM method such as getElementByld not find

the element?

Asked 12 years ago Modified 1 month ago Viewed 205k times

What are the possible reasons for document.getElementById, $("#id") or

P
any other DOM method / jQuery selector not finding the elements?
1 .
615 Example problems include:
v

* jQuery silently failing to bind an event handler

e jQuery "getter" methods (.val() , .html(), .text()) returning
undefined

¢ A standard DOM method returning null resulting in any of several errors:

Uncaught TypeError: Cannot set property '..." of null

Uncaught TypeError: Cannot set properties of null (setting '...")
Uncaught TypeError: Cannot read property "..." of null

Uncaught TypeError: Cannot read properties of null (reading '...")

The most common forms are:

Uncaught TypeError: Cannot set property 'onclick' of null
Uncaught TypeError: Cannot read property 'addEventListener' of null
Uncaught TypeError: Cannot read property 'style' of null

The Overflow Blog

/" WBIT #2: Memories of persistence and
the state of state

/" Failing fast at scale: Rapid prototyping

Featured on Meta

L) The December 2024 Community Asks
Sprint has been moved to March 2025

S Voting experiment to encourage people
who rarely vote to upvote

at Intuit

(and...

Linked

Uncaught TypeError: Cannot read
property 'value' of null

Uncaught TypeError: Cannot read
property 'appendChild' of null

getElementByld() returns null even
though the element exists

Ask Question

Uncaught TypeError: Cannot set property

lamalialll

PR

47

Backwards & forward debugging

LM can control debugger via command line
* Can use this to trace forwards

 Harder to trace backwards -- needs to repeatedly
rerun the program

48

Hypothesis testing

 (Generate a hypothesis, use tools to test

 Use grep to find relevant code and
then read it

* Add print statements to generate
runtime data

 Edit the code, make changes, see if
that works

subjects

Resources used in debugging

S

Debugger tools

4

Bug information

2

Communication with others

Internet resources

Custom code/manual debugging data

System state information (variables, packets)

Searching the source repository

Code browsers

Printed publications

Production health/status/monitoring systems

R | WE WO 2|0

Build information

Personal library of technical tidbits

Shared internal development team resources

Product documentation

49

Challenges with LLM debugging

* Finding a starting point: in a bigger codebase, where to start”? May lack developers' model
and understanding of codebase

 Dated API knowledge: foundation model trained on specific version of API, which may no
longer be current

 Dated codebase knowledge: LLM can read design doc, but what if design doc is
outdated?

* Jool usage steps: LLM may not understand the right command line args necessary to run
tools in codebase

* Can try to address by pointing LLM to specific info to add better context

50

10 min break

In-Class Activity

* In groups of 1 or 2, try to stump an Agentic Debugger (Cursor or Claude Code)

* Seed bugs in your Code Quality Tool (or another codebase)

* Goal: insert a defect that breaks something in your City Simulator that agent cannot fix

e Start with simple defects, try making them more complicated if necessary

* May need to clear context or reload project so that it can't just debug by looking at recent changes

 Want to hear about what types of defects you tried and why, what worked, and what didn't

* Ok if can't stump the debugger for all types of defects

* Deliverables

* Screen recording through Kaltura
* Upload to OneDrive, turn on link sharing, share link in Lecture 5 activity submission on Canvas
 Submit answers to questions on your experiences on Canvas (next slide)

* Aim to finish by 7:10pm today; Due tomorrow at 4:30pm

Types of defects to explore

1. Long cause / effect chain

1. Can you hide how the output and defect are connected by
having lots of code execute in the middle?

2. Black box debugging

1. Can it debug issues with unpopular framework?

2. Can it debug issues specific to a recent framework version?
3. Silent failures

1. Can it figure out where to start when something doesn't
happen?

53

Questions to answer

 What types of defects did you try?

* Describe how you designed the defect and why you thought it might be hard
* Which of these was the LLM able to debug? Which was it not?
 How did the LLM design fixes to defects?

 What did you learn about when and how LLMs can successfully debug defects?

* Deliverable: Submit through Canvas, at least a page

54

