
Understanding Code
Part 1
CS 691 / SWE 699
Fall 2025

© Thomas LaToza

Logistics

• Project Proposal, Reflection 3, & Lecture 7 Reading questions due today at
4:30pm

• Lecture 8 reading questions due next week at 4:30pm

• Lecture 8 activity (in class today), due by 10/17 at 4:30pm

• Updates to course schedule

2

Course Project

• Will give feedback on project proposal

• Next step: Project Checkpoint, due 11/6

• Talk about the progress you've made on the project

3

Today

• Discussion: Experiences from Lecture 6

• Discussion: Reading questions for Lecture 7

• Lecture

• Understanding Code

• In-Class Activity

4

Discussion: Experiences from Lecture 6 Activity

• Do you feel that you were faster with or without Cursor?

• Where was Cursor helpful?

• Where was it not helpful?

• To what extent did it increase your confidence in debugging?

• What did you learn about how to use Cursor effectively in debugging
tasks?

5

Discussion: Reading questions for Lecture 7

• What questions did you have from readings for Lecture 7

• Discuss questions & possible answers in group of 3 or 4

• Come back with 1 question you want to discuss w/ whole
class

6

Reading Code

Demo: Remember this code (10 seconds)

var express = require('express');
var app = express();
const fetch = require('node-fetch');

const body = { 'a': 1 };

fetch('http://localhost:3000/book/23', {
 method: 'post',
 body: JSON.stringify(body),
 headers: { 'Content-Type': 'application/json' },
})
 .then(res => res.json())
 .then(json => console.log(json));

8

Demo: Remember this code (10 seconds)

Set<Integer> numbers = new HashSet<>();	
 	
numbers.add(100);	
numbers.add(35);	
numbers.add(89);	
numbers.add(71);	
 	
Iterator<Integer> iterator = numbers.iterator();	
 	
while (iterator.hasNext()) {	
 Integer aNumber = iterator.next();	
 System.out.println(aNumber);	
}

9

Memory and comprehension

• When stimuli are received by human, encoded into
memory as they are processed.

• How they are encoded depends on what
knowledge structures already exist

• Depending on knowledge structures, how this
information is represented may be very different

10

What makes a grand master a chess
expert?

• Memory for random chess boards: same for
experts and novices

• Memory for position from actual game: much better
for experts than novices

• [deGroot 1946; Chase & Simon 1973]

11

What makes an expert?
• Experts are more intelligent?

• IQ doesn’t distinguish best chess players or most
successful artists or scientists (Doll & Mayr 1987)
(Taylor 1975)

• Experts think faster or have larger memory?
• World class chess experts don’t differ from experts

• Experts have schemas!

12

Experts create schemas by chunking
world

• Schema: a template (struct) describing a set of slots
while (x > 0)
{

invokeAction(actions[x]);
x—;

}

• Experts perceive the world through schemas
• “Chunk” and interpret visual stimuli to determine which

schemas are present
• Form concepts that help developers think in abstractions

13

Program comprehension as text
comprehension

• Developers recognize specific “beacons” (a.k.a.
features) in code that activate schemas

• e.g., for (elem in elements)

• Developers mentally represent programs in terms of
schemas

• Reason about behavior of program using
schemas

• Recall what code is or is not present using
schemas

14

Implications of text comprehension

• Distortions of form in recall
• Developers more likely to recall prototypical

schema values rather than actual.

• Distortions of content
• Developers more likely to recall values inferred

from schemas that were not present in code.

15

Developers perceive programming plan,
control flow, data flow representations

• Build and possess different abstractions of code

• Programming plan
• Hierarchic decomposition of goals in program

• Control flow
• Control flow in a method

• Data flow
• Data flow in a method

16

Another code example

17

Experienced developers learn facts at a
higher level of abstraction

18

EXPERTS
“Well, this is just updating a cache” (1 min)

NOVICES
“What it did was it…computes the new line
number and fires an event. But I didn’t see it
change any state.” (38 mins, 10 mins reading
getFoldLevel)

“So what it does, it starts off from this line, it
has this firstInvalidFoldLevel, it goes through
all these lines, it checks whether this fold
information is correct or not, which is this
newFoldLevel, this is supposed to be the
correct fold level. If that is not the case in the
data structure, it needs to change the state of
the buffer. It creates this, it does this change,
it sets the fold level of that line to the new
fold level.” (51 mins, 12 mins reading getFoldLevel)

Thomas D. LaToza, David Garlan, James D. Herbsleb, and Brad A. Myers. 2007. Program comprehension as fact finding. In Proceedings of the the 6th joint meeting of the European
software engineering conference and the ACM SIGSOFT symposium on The foundations of software engineering (ESEC-FSE '07). ACM, New York, NY, USA, 361-370. DOI: https://
doi.org/10.1145/1287624.1287675

Developers constantly switch the level of
abstraction with which they consider code

19

Anneliese von Mayrhauser and A. Marie Vans. 1997. Program understanding behavior during debugging of large scale software. In Papers presented at the seventh workshop on Empirical
studies of programmers (ESP '97), Susan Wiedenbeck and Jean Scholtz (Eds.). ACM, New York, NY, USA, 157-179. DOI=http://dx.doi.org/10.1145/266399.266414

Reading code
• Can use eye gaze data to track moment to moment

the line of code a developer is reading.

20

Katja Kevic, Braden M. Walters, Timothy R. Shaffer, Bonita Sharif, David C. Shepherd, and Thomas Fritz. 2015. Tracing software developers' eyes and interactions for change tasks.
In Proceedings of the 2015 10th Joint Meeting on Foundations of Software Engineering (ESEC/FSE 2015). ACM, New York, NY, USA, 202-213. DOI: https://doi.org/10.1145/2786805.2786864

Reading code: Some findings
• Developers only look at a few lines within methods,

on average 32%.
• Developers constantly switch lines.
• Developers spend most of their time looking at

method invocations and variable declaration
statements.

• Developers follow data flows within a method (58%
of navigations are within slice).

21

Katja Kevic, Braden M. Walters, Timothy R. Shaffer, Bonita Sharif, David C. Shepherd, and Thomas Fritz. 2015. Tracing software developers' eyes and interactions for change tasks.
In Proceedings of the 2015 10th Joint Meeting on Foundations of Software Engineering (ESEC/FSE 2015). ACM, New York, NY, USA, 202-213. DOI: https://doi.org/10.1145/2786805.2786864

Information Needs

Theories of Information Needs in Programming

• Developers ask questions

• Questions are task-specific

• Answering questions raises more questions.

• Tool which successfully supports the questions
a developer asks increases their productivity

23

What does this do when input is null?
What part of this is being done client side and what part server side?

debugging refactoring testing testing

T. D. LaToza, "Information Needs: Lessons for Programming Tools," in IEEE Software, vol. 37, no. 6, pp. 52-57, Nov.-Dec. 2020, doi: 10.1109/MS.2020.3014343.

Problem solving

24Newell, A.; Shaw, J.C.; Simon, H.A. (1959). Report on a general problem-solving program. Proceedings of the International Conference on Information Processing. pp. 256–264.

Goal: where am I trying to go?
Operators: what actions can I take
to get closer to the goal?

Apply operator, look at new state,
apply another operator

http://bitsavers.informatik.uni-stuttgart.de/pdf/rand/ipl/P-1584_Report_On_A_General_Problem-Solving_Program_Feb59.pdf

Problem solving is recursive

25
LaToza and Myers. Designing useful tools for developers. PLATEAU 2011.

Investigate and fix a design problem

How is BufferHandler using its buffer field? Are there any other mutations on it?

Read methods of BufferHandler

Why is there a buffer member variable that is never used?

Investigate references to BufferHandler.buffer

Why is doDelayedUpdate() a member of BufferHandler?

Reads methods along path, concludes that BufferHandler tracks update delays

Why wouldn’t isFoldStart() call getFoldLevel()

Reads isFoldStart(), getFoldAtLine()
Concludes isFoldStart() doesn’t call because of short circuit evaluation

Implement fix

Why is an event being issued by forcing a cache update?

Assure correctness

Set conditional break point
Check that jEdit still appears to work correctly
Repro original bug by reinserting

task

IDE

question

action

Problem solving is recursive

26

Goal

Subgoal

Subgoal

Subgoal

Subgoal

Subgoal

Subgoal

Subgoal

Subgoal

Subgoal

Problem solving involves answering questions

27

Goal:
Fix issue

Where is the
defect?

Subgoal

Subgoal

Subgoal

Which function
generated the

incorrect output?

Where is this
function
invoked?

Subgoal

Subgoal

Subgoal

Problem solving involves strategies

28

Goal:
Fix issue

Where is the
defect?

Subgoal

Subgoal

Subgoal

Trace output
backwards

Subgoal

Subgoal

Subgoal

Which function
generated the

incorrect output?

Problem solving involves taking actions to answer questions and
follow strategies

29

Goal:
Fix issue

Where is the
defect?

Trace output
backwards

Which function
generated the

incorrect output?

Problem solving involves formulating hypotheses

30

Goal:
Fix issue

Where is the
defect?

Is the
registration code

executing
correctly?

Maybe it's in the
registration code I just

wrote

Studies of questions developers ask

31

Developers ask different types of questions

32J. Sillito, G. C. Murphy and K. De Volder, "Asking and Answering Questions during a Programming Change Task," in IEEE Transactions on Software Engineering, vol. 34, no. 4, pp. 434-451, July-Aug. 2008, doi: 10.1109/TSE.2008.26.

Finding Focus Points

33J. Sillito, G. C. Murphy and K. De Volder, "Asking and Answering Questions during a Programming Change Task," in IEEE Transactions on Software Engineering, vol. 34, no. 4, pp. 434-451, July-Aug. 2008, doi: 10.1109/TSE.2008.26.

Expanding focus points

34

Understadning a Subgraph

35

Questions over groups of subgraphs

36

Developers use a variety of techniques for obtaining information
and answering questions

37

Thomas D. LaToza, Gina Venolia, and Robert DeLine. 2006. Maintaining mental models: a study of developer work habits. In Proceedings of
the 28th international conference on Software engineering (ICSE '06), Experience Report, 492–501. https://doi.org/10.1145/1134285.1134355

What makes understanding code hard?

• Questions developers ask about code
that are hard to answer.

• May require substantial time and effort
to answer.

• May lead to many other questions to
answer

38

Time
(mins)

How is this data structure being mutated in this code? 83

“Where [is] the code assuming that the tables are
already there?” 53

How [does] application state change when m is called
denoting startup completion? 50

What decisions might be incompatible with reuse in
new context? 24

“Is [there] another reason why status could be non-
zero?” 11

Longest investigation activities

Thomas D. LaToza and Brad A. Myers. 2010. Developers ask reachability questions. In International Conference on Software Engineering,
185–194. https://doi.org/10.1145/1806799.1806829

Failure in information needs
• Developers guess and make assumptions about answers to questions, and

sometimes are wrong, leading to defects.

39

False belief held by developer Correct fact about control flow

Method a need not call method b, as all
calls to be are redundant.

m is called in several additional
situations in which n has not been
called.

c

…
b✖

Thomas D. LaToza and Brad A. Myers. 2010. Developers ask reachability questions. In International Conference on Software Engineering,
185–194. https://doi.org/10.1145/1806799.1806829

How did this runtime state occur? (12) [15]
What runtime state changed when this executed? (2)
Where was this variable last changed? (1)
How is this object different from that object? (1)
Why didn’t this happen? (3)
How do I debug this bug in this environment? (3)
In what circumstances does this bug occur? (3) [15]
Which team’s component caused this bug? (1)

Debugging (26)
How do I implement this (8), given this constraint (2)? (10)
Which function or object should I pick? (2)
What’s the best design for implementing this? (7)

Implementing (19)

What is the policy for doing this? (10) [24]
Is this the correct policy for doing this? (2) [15]
How is the allocation lifetime of this object maintained? (3)

Policies (15)

Why was it done this way? (14) [15][7]
Why wasn’t it done this other way? (15)
Was this intentional, accidental, or a hack? (9)[15]
How did this ever work? (4)

Rationale (42)

When, how, by whom, and why was this code changed or
inserted? (13)[7]
What else changed when this code was changed or inserted? (2)
How has it changed over time? (4)[7]
Has this code always been this way? (2)
What recent changes have been made? (1)[15][7]
Have changes in another branch been integrated into this
branch? (1)

History (23)

What are the implications of this change for (5) API clients
(5), security (3), concurrency (3), performance (2), platforms
(1), tests (1), or obfuscation (1)? (21) [15][24]

Implications (21)

Is there functionality or code that could be refactored? (4)
Is the existing design a good design? (2)
Is it possible to refactor this? (9)
How can I refactor this (2) without breaking existing users(7)? (9)
Should I refactor this? (1)
Are the benefits of this refactoring worth the time investment? (3)

Refactoring (25)

Is this code correct? (6) [15]
How can I test this code or functionality? (9)
Is this tested? (3)
Is the test or code responsible for this test failure? (1)
Is the documentation wrong, or is the code wrong? (1)

Testing (20)

Should I branch or code against the main branch? (1)
How can I move this code to this branch? (1)
What do I need to include to build this? (3)
What includes are unnecessary? (2)
How do I build this without doing a full build? (1)
Why did the build break? (2)[59]
Which preprocessor definitions were active when this was built? (1)

Building and branching (11)

Who is the owner or expert for this code? (3)[7]
How do I convince my teammates to do this the “right way”? (12)
Did my teammates do this? (1)

Teammates (16)

What is the intent of this code? (12) [15]
What does this do (6) in this case (10)? (16) [24]
How does it implement this behavior? (4) [24]

Intent and Implementation (32)

How big is this code? (1)
How overloaded are the parameters to this function? (1)

Method properties (2)

Where is this functionality implemented? (5) [24]
Is this functionality already implemented? (5) [15]
Where is this defined? (3)

Location (13)

What is the performance of this code (5) on a large, real dataset (3)? (8)
Which part of this code takes the most time? (4)
Can this method have high stack consumption from recursion? (1)
How big is this in memory? (2)
How many of these objects get created? (1)

Performance (16)

What threads reach this code (4) or data structure (2)? (6)
Is this class or method thread-safe? (2)
What members of this class does this lock protect? (1)

Concurrency (9)

What assumptions about preconditions does this code make? (5)
What assumptions about pre(3)/post(2)conditions can be made?
What exceptions or errors can this method generate? (2)
What are the constraints on or normal values of this variable? (2)
What is the correct order for calling these methods or initializing
these objects? (2)
What is responsible for updating this field? (1)

Contracts (17)

In what situations or user scenarios is this called? (3) [15][24]
What parameter values does each situation pass to this method? (1)
What parameter values could lead to this case? (1)
What are the possible actual methods called by dynamic dispatch
here? (6)
How do calls flow across process boundaries? (1)
How many recursive calls happen during this operation? (1)
Is this method or code path called frequently, or is it dead? (4)
What throws this exception? (1)
What is catching this exception? (1)

Control flow (19)

What depends on this code or design decision? (4)[7]
What does this code depend on? (1)

Dependencies (5)

What is the original source of this data? (2) [15]
What code directly or indirectly uses this data? (5)
Where is the data referenced by this variable modified? (2)
Where can this global variable be changed? (1)
Where is this data structure used (1) for this purpose (1)? (2) [24]
What parts of this data structure are modified by this code? (1) [24]
What resources is this code using? (1)

Data flow (14)

What are the composition, ownership, or usage relationships of this type? (5) [24]
What is this type’s type hierarchy? (4) [24]
What implements this interface? (4) [24]
Where is this method overridden? (2)

Type relationships (15)

How does this code interact with libraries? (4)
What is the architecture of the code base? (3)
How is this functionality organized into layers? (1)
Is our API understandable and flexible? (3)

Architecture (11)

40

41

What does this do?
What does these functions do?

What does this do in this case?
What happens if an exception is thrown?

What happens if this operation times out?

What happens if the remote service is slow?

What is the intent of the code?
What is it trying to accomplish?

How does it implement this behavior?
How is this data aggregated and how is it translated from one place to another.

How does this class (or collection of classes) fulfill the functional feature of the application?

Thomas D. LaToza and Brad A. Myers. 2010. Hard-to-answer questions about code. In Evaluation and Usability of Programming Languages and
Tools (PLATEAU '10), 1–6. https://doi.org/10.1145/1937117.1937125

42

What depends on this code or design decision?
What else depends on this code? 	
Who else uses this code / function. (i.e. If we change this, what will break simply because
someone else has found a way to use this and we don't even know they are doing so...)	

What are the implications of this change for API clients, security, concurrency,
performance, platforms, tests, or obfuscation?
What is the implication of these changes in terms of the backward compatibility? 	
Across components with a code base the size of complete applications, what are the implications
of a functional change in base storage to all accessors in the system (including clients of
applications built on top of the place where the change is occurring)	

How can I refactor this without breaking existing users?
How can I refactor this piece w/o causing an avalanche of new places to refactor?	

Thomas D. LaToza and Brad A. Myers. 2010. Hard-to-answer questions about code. In Evaluation and Usability of Programming Languages and
Tools (PLATEAU '10), 1–6. https://doi.org/10.1145/1937117.1937125

43

Why was it done this way?
Why was this code structured in this way?

Why was this done this way? Is there some reason for this ancient code doing what it
does that I'm missing?

Why wasn't it done this other way?
Why didn't they use this method/object/interface as it appears to have been designed?

Why did the original developer not use library function X? (was there a good reason or just
ignorance)

Was this intentional, accidental, or a hack?
Is the lack of parameter validation (most often lack of null checks) intentional or
incidental?

Is the lack of ''sealed'' on the class intentional or incidental? If intentional, why?
(assuming no virtual methods are present).

Thomas D. LaToza and Brad A. Myers. 2010. Hard-to-answer questions about code. In Evaluation and Usability of Programming Languages and
Tools (PLATEAU '10), 1–6. https://doi.org/10.1145/1937117.1937125

Understanding Code &
LLMs

Examples of answering questions with an LLM
Chatting with agent

• Agentic LLMs can answer
questions about code

• Uses tools (grep) to find
relevant context

• Summarizes and
synthesizes context

• Decides what else it
should read

45

Challenges answering questions about code

• If identifiers are poor, code is poorly organized, grep may not be effective in
finding focus points

• Missing docs or out of date design docs that are misleading

• Need access to tools to access code history, slack, design docs, other
non-code resources

• Connecting quality attributes to code: may or may not effectively
understand what quality attributes motivated code to be written as it is

• Out of distribution: design that is inconsistent with standard practices

46

10 min break

In-Class Activity

• In groups of 1 or 2, try to find questions your tool (Cursor or Claude Code) can't answer

• Start with the codebase you used for last time (Lecture 6)

• Goal: find questions the tool doesn't seem to create good answers for

• Start with simpler questions, works towards more complex questions

• Free to use example of questions from slides today or make up your own

• Want to hear about each of the types of questions you tried, what you expected, what worked, and
what didn't

• Deliverables

• Screen recording through Kaltura

• Upload to OneDrive, turn on link sharing, share link in Lecture 7 activity submission on Canvas

• Submit answers to questions on your experiences on Canvas (next slide)

• Aim to finish by 7:10pm today; Due tomorrow at 4:30pm
48

Questions to answer

• List all of the different questions you tried

• Which did the LLM seem to answer correctly? Which did the answer seem to be
wrong? Were there answers where you didn't know what was right or wrong?

• What were the types of questions where the LLM was most helpful?

• What were the types of questions where the LLM was least helpful?

• To what extent was the LLM able to tell you when it didn't know an answer?

• Deliverable: Submit through Canvas, at least a page

49

