Understanding Code
Part 1

CS 691 / SWE 699
Fall 2025

(G le GEORGE MASON
TM UNIVERSITY:

aaaaaaaaaaaaa

Logistics

* Project Proposal, Reflection 3, & Lecture 7 Reading questions due today at
4:30pm

* | ecture 8 reading questions due next week at 4:30pm
» Lecture 8 activity (in class today), due by 10/17 at 4:30pm

 Updates to course schedule

Course Project

* Will give feedback on project proposal
* Next step: Project Checkpoint, due 11/6

* Jalk about the progress you've made on the project

Today

* Discussion: Experiences from Lecture 6
* Discussion: Reading questions for Lecture 7
* |ecture

* Understanding Code

* |In-Class Activity

Discussion: Experiences from Lecture 6 Activity

* Do you feel that you were faster with or without Cursor?
 Where was Cursor helpful?

 Where was it not helpful?

* To what extent did it increase your confidence in debugging?

 What did you learn about how to use Cursor effectively in debugging
tasks?

Discussion: Reading questions for Lecture 7

 What questions did you have from readings for Lecture 7
* Discuss questions & possible answers in group of 3 or 4

 Come back with 1 question you want to discuss w/ whole
class

Reading Code

Demo: Remember this code (10 seconds)

var express = require('express');
var app = express();
const fetch = require('node-fetch');

const body = { 'a': 1 };

fetch('http://localhost:3000/book/23"', {
method: 'post’,

body: JSON.stringify(body),

headers: { 'Content-Type': 'application/json' },
)

.then(res => res.json())

.then(json => console.log(json));

Demo: Remember this code (10 seconds)

Set<Integer> numbers = new HashSet<>();

numbers.add(100);
numbers.add(35);
numbers.add(89);
numbers.add(71);

Iterator<Integer> iterator = numbers.iterator();

while (iterator.hasNext()) {
Integer aNumber = iterator.next();
System.out.println(aNumber);

Memory and comprehension

 \When stimuli are received by human, encoded Into
memory as they are processed.

 Howthey are encoded depends on what
knowledge structures already exist

 Depending on knowledge structures, how this
iInformation iIs represented may be very different

10

What makes a grand master a chess
expert?

Wy

E A & ¢
d 2 2444
d 444
&Y

&\ AR
&5 165 AP
E 2 =g

a b ¢ d e f g h

- N W A g O =~ X

 Memory for random chess boards: same for
experts and novices

 Memory for position from actual game: much better
for experts than novices

e [deGroot 1946; Chase & Simon 1973]

What makes an expert?

o EXxperts are more intelligent?

e |Q doesn’t distinguish best chess players or most
successftul artists or scientists (Doll & Mayr 1987)
(Taylor 1975)

o EXxperts think faster or have larger memory?
 World class chess experts don't differ from experts

e EXperts have schemas!

12

Experts create schemas by chunking
world

e Schema: a template (struct) describing a set of slots

while (x > 0)

{

invokeAction(actions|x]);
X—,

j

* EXxperts perceive the world through schemas

* "Chunk” and interpret visual stimuli to determine which
schemas are present

 Form concepts that help developers think in abstractions

13

Program comprehension as text
comprehension

* Developers recognize specific “beacons” (a.k.a.
features) in code that activate schemas

* e.g., for (elem in elements)

 Developers mentally represent programs in terms of
schemas

* Reason about behavior of program using
schemas

 Recall what code Is or Is not present using
schemas

14

Implications of text comprehension

e Distortions of form In recall

 Developers more likely to recall prototypical
schema values rather than actual.

e Distortions of content

 Developers more likely to recall values inferred
fromm schemas that were not present in code.

15

Developers perceive programming plan,
control flow, data flow representations

Build and possess different abstractions of code

Programming plan
* Hierarchic decomposition of goals in program

Control flow
e Control flow in a method

Data flow
e Data flow In a method

16

Another code example

public int getFoldLeveli{int line) {
if (line < 0 || line *>= lineMgr.getLineCount())
throw new ArrayIndexOutOfBoundsExceptioniline);

if (foldHandler instanceof DunnyFoldHandler)
return 0;

int firstInvalidFoldLewvel = lineMgr.getFirstInvalidFoldLewvel();

if (firstInvalidFoldLewvel == -1 || line < firstInvalidFoldLewvel) {
return lineMgr.getFoldLewvel(line);
} else {

if (Debug.FDLQ_DEBUG)
Log. log(Log.DEBUG, this, "Invalid fold levels from "
+ firstInvalidFoldLevel + " to " 4+ line);

int newFoldLevel = 0;
boolean changed = false;

for (int i = firstInvalidFoldLewvel; i <= line; i++) {
newFoldLevel = foldHandler.getFoldLevel(this, i, sedqg);
if (newFoldLewvel != lineMgr.getFoldLewvel(i)) {
if (Debug. FOLD DEBUG)
Log. log(Log.DEBUG, this, 1 + " fold lewvel changed");
changed = true;
}
lineMgr.setFoldLevel (i, newFoldLewvel);

if (line == lineMgr.getLineCount() - 1)
lineMgr. setFirstInvalidFoldLeveli(-1);

else
lineMgr.setFirstInvalidFoldLevel(line + 1);

if {(changed) {
if (Debug. FOLD DEBUG)
Log. log(Log.DEBUG, this, "fold level changed: "
+ firstInvalidFoldLevel + "," + line);
fireFoldLevelChanged{firstInvalidFoldLevel, line);

return newFoldLewvel;

Experienced developers learn facts at a
higher level of abstraction

EXPERTS
“Well, this is just updating a cache” (1 min)

NOVICES

“What it did was it...computes the new line
number and fires an event. But | didn’t see it
change any state.” (38 mins, 10 mins reading
getFoldLevel)

“So what it does, it starts off from this line, it
has this firstinvalidFoldLevel, it goes through
all these lines, it checks whether this fold
information is correct or not, which is this
newFoldLevel, this is supposed to be the
correct fold level. If that is not the case in the
data structure, it needs to change the state of
the buffer. It creates this, it does this change,
it sets the fold level of that line to the new
fold level.” (51 mins, 12 mins reading getFoldLevel)

public int getFoldLeveli{int line) {

if (line < 0 || line *>= lineMgr.getLineCount())
throw new ArrayIndexOutOfBoundsExceptioniline);

if (foldHandler instanceof DunnyFoldHandler)
return 0O;

int firstInvalidFoldLevel = lineMgr.getFirstInvalidFoldLewvel();

if (firstInvalidFoldLevel == -1 || line < firstInvalidFoldLewvel)
return lineMgr.getFoldLewvel(line);
} else {

if (Debug. FOLD DEEUG)
Log.log(Log.DEEUG, this, "Inwvalid fold levels from "
+ firstInvalidFoldLewvel + " to " + line);

int newFoldLevel = 0;
boolean changed = false;

for {(int i1 = firstInvalidFoldLewvel; i <= line; 1i++) {
newFoldLevel = foldHandler. getFoldLevel(this, i, seq);
if (newFoldLevel != lineMgr.getFoldLevel(i)) {
if (Debug. FOLD DEBUG)
Log.log(Log. DEEUG, thais, 1 + " fold level changed");
changed = true;
}

lineMgr.setFoldLevel (i, newFoldLewvel);

}

if {(line == lineMgr.getLineCount () - 1)
lineMgr.setFirstInvalidFoldLewvel(-1);

else
lineMgr.setFirstInvalidFoldLevel(line + 1)/

if (changed) {
if (Debug. FOLD DEEBUG)
Log.log(Log. DEEUG, this, "fold level changed: "
+ firstInvalidFoldLewvel + "," + line);
fireFoldLevelChanged(firstInvalidFoldLewvel, line);

}

return newFoldLevel;

}

Thomas D. LaToza, David Garlan, James D. Herbsleb, and Brad A. Myers. 2007. Program comprehension as fact finding. In Proceedings of the the 6th joint meeting of the European
software engineering conference and the ACM SIGSOFT symposium on The foundations of software engineering (ESEC-FSE '07). ACM, New York, NY, USA, 361-370. DOI: https://

doi.org/10.1145/1287624.1287675

18

Developers constantly switch the level of
abstraction with which they consider code

Program Action Soquence: C1

Shtuation

Top~-Down

o 150 200 250 3
Time Step Q0 350 400

Anneliese von Mayrhauser and A. Marie Vans. 1997. Program understanding behavior during debugging of large scale software. In Papers presented at the seventh workshop on Empirical
studies of programmers (ESP '97), Susan Wiedenbeck and Jean Scholtz (Eds.). ACM, New York, NY, USA, 157-179. DOI=http://dx.doi.org/10.1145/266399.266414

19

531 private String parseTextToken() throws I0Exception

532
533
534
535
536
537
538
539
540
541
542
543
544
545
5406
547
548
549
550
551
552
553
554
55%
556
557
558
559
560

(

\
f

Reading code

 (Can use eye gaze data to track moment to moment
the line of code a developer is reading.

StringBuffer token = new StringBuffer(20);

while (true)
|
int = read();
//OtiLpr(".. " +);
if{ ==-1)

eo! = true;

return token.toString();

if (Character.isLetterOrDigit((char))|
((=="")I()
[N IR NI
[ALK \")

token.append((char));

plse

unread();

[/OtiLpr("Pasted text token:+token.toString());

return token.toString();
\
/

\
!

SR

)

40

Gaze Events in Time

Professional

mn
b

5 -) ’
. » ’ L A J
. + .
[: .
. . »
1 B tD ’ .
. [*al 3 N
t — .)
- =
0 & 190

’ LS e s

Student

»
LR B =
L o ’ . o .
’ A . . (&
A B [o) AL t
> PP e » M [R254+] AR B 1L N1 e
P IR 2 B AP PR Y, far* (M oy 00
o ’ ¢ L™
" . " »
150 M1 %0 A1) &)

Gaze Events in Time

Katja Kevic, Braden M. Walters, Timothy R. Shaffer, Bonita Sharif, David C. Shepherd, and Thomas Fritz. 2015. Tracing software developers' eyes and interactions for change tasks.
In Proceedings of the 2015 10th Joint Meeting on Foundations of Software Engineering (ESEC/FSE 2015). ACM, New York, NY, USA, 202-213. DOI: https://doi.org/10.1145/2786805.2786864

20

Reading code: Some findings

* Developers only look at a few lines within methods,
on average 32%.

 Developers constantly switch lines.

* Developers spend most of their time looking at
method invocations and variable declaration
statements.

* Developers follow data flows within a method (58%
of navigations are within slice).

Katja Kevic, Braden M. Walters, Timothy R. Shaffer, Bonita Sharif, David C. Shepherd, and Thomas Fritz. 2015. Tracing software developers' eyes and interactions for change tasks.
In Proceedings of the 2015 10th Joint Meeting on Foundations of Software Engineering (ESEC/FSE 2015). ACM, New York, NY, USA, 202-213. DOI: https://doi.org/10.1145/2786805.2786864

21

Information Needs

Theories of Information Needs in Programming

° DevelOperS aSk queStionS What does this do when input is null?

What part of this is being done client side and what part server side?

¢ QueStIOHS dle taSk-SpeCifiC debugging refactoring testing testing

Why is an event being issued by forcing a cache update?

How is BufferHandler using its buffer field? Are there any other mutations on it?

Read methods of BufferHandler

Why is there a buffer member variable that is never used?

 Answering questions raises more questions.

Why is doDelayedUpdate() a member of BufferHandler?

Reads methods along path, concludes that BufferHandler tracks update delays

Why wouldn’t isFoldStart() call getFoldLevel()

Reads isFoldStart(), getFoldAtLine()
Concludes isFoldStart() doesn’t call because of short circuit evaluation

Implement fix

Assure correctness

* Tool which successfully supports the questions
a developer asks increases their productivity

T. D. LaToza, "Information Needs: Lessons for Programming Tools," in IEEE Software, vol. 37, no. 6, pp. 52-57, Nov.-Dec. 2020, doi: 10.1109/MS.2020.3014343. 23

Problem solving

_ 1
Goal: where am | trying to go? Is L | I
Operators: what actions can | take 1 d [
to get closer to the goal? 1 I L | HbE |:|_
[L IT_ L] — I:I _
Apply operator, look at new state, — — l_
apply another operator 1 — _I_IT_I B
| :_I I—] L _
|] —
L [N N
N I—‘ — 'L 1

Newell, A.; Shaw, J.C.; Simon, H.A. (1959). Report on a general problem-solving program. Proceedings of the International Conference on Information Processing. pp. 256—264.

http://bitsavers.informatik.uni-stuttgart.de/pdf/rand/ipl/P-1584_Report_On_A_General_Problem-Solving_Program_Feb59.pdf

Problem solving is recursive

task Investigate and fix a design problem

question Why is an event being issued by forcing a cache update?

How is BufferHandler using its buffer field? Are there any other mutations on it?

action Read methods of BufferHandler

Why is there a buffer member variable that is never used?

Investigate references to BufferHandler.buffer

Why is doDelayedUpdate() a member of BufferHandler?

.....

Reads methods along path, concludes that BufferHandler tracks update delays

Why wouldn’t isFoldStart() call getFoldLevel()

Reads isFoldStart(), getFoldAtLine()
Concludes isFoldStart() doesn’t call because of short circuit evaluation

Implement fix

Assure correctness

Set conditional break point
Check that jEdit still appears to work correctly

Repro original bug by reinserting

LaToza and Myers. Designing useful tools for developers. PLATEAU 2011.

Fatresh

25

Problem solving is recursive

26

Problem solving involves answering questions

27

Problem solving involves strategies

28

Problem solving involves taking actions to answer questions and

follow strategies
-/-\-

29

Problem solving involves formulating hypotheses

- -\

30

Studies of questions developers ask

Information Needs in Collocated Software Development Teams

Amy J. Ko
Human-Computer Interaction Institute
Carnegie Mellon University
5000 Forbes Ave, Pittsburgh PA 15213
ajko@cs.cmu.edu

Abstract

Previous research has documented the fragmented na-
ture of software development work. To explain this in
more detail, we analyzed software developers’ day-to-day
information needs. We observed seventeen developers at
a large software company and transcribed their activities
in 9o-minute sessions. We analyzed these logs for the
information that developers sought, the sources that they
used, and the situations that prevented information from
being acquired. We identified twenty-one information
types and cataloged the outcome and source when each
type of information was sought. The most frequently
sought information included awareness about artifacts
and coworkers. The most often deferred searches in-
cluded knowledge about design and program behavior,
such as why code was written a particular way, what a
program was supposed to do, and the cause of a program
state. Developers often had to defer tasks because the
only source of knowledge was unavailable coworkers.

1. Introduction

Software development is an expensive and time-intensive
endeavor. Projects ship late and buggy, despite develop-
ers’ best efforts, and what seem like simple projects be-
come difficult and intractable [2]. Given the complex
work involved, this should not be surprising. Designing
software with a consistent vision requires the consensus
of many people, developers exert great efforts at under-
standing a system’s dependencies and behaviors [11],and
bugs can arise from large chasms between the cause and
the symptom, often making tools inapplicable [6].

One approach to understanding why these activities
are so difficult is to understand them from an informa-
tion perspective. Some studies have investigated informa-
tion sources, such as people [13], code repositories [5],
and bug reports [16]. Others have studied means of ac-
quiring information, such as email, instant messages
(1m), and informal conversations [16]. Studies have even
characterized developers’ strategies [9], for example, how
they decide whom to ask for help.

Robert DeLine and Gina Venolia
Microsoft Research
One Microsoft Way
Redmond, WA 98052
{rdeline, ginav}@microsoft.com

While these studies provide several concrete insights
about aspects of software development work, we still
know little about what information developers look for
and why they look for it. For example, what information
do developers use to triage bugs? What knowledge do
developers seek from their coworkers? What are develop-
ers looking for when they search source code or use a
debugger? By identifying the types of information that
developers seek, we might better understand what tools,
processes and practices could help them more easily find
such information.

To understand these information needs in more de-
tail, we performed a two-month field study of software
developers at Microsoft. We took a broad look, observing
17 groups across the corporation, focusing on three
specific questions:

What information do software developers’ seek?

- Where do developers seek this information?

What prevents them from finding information?

In our observations, we found several information needs.
The most difficult to satisfy were design questions: for
example, developers needed to know the intent behind
existing code and code yet to be written. Other informa-
tion seeking was deferred because the coworkers who had
the knowledge were unavailable. Some information was
nearly impossible to find, like bug reproduction steps
and the root causes of failures.

In this paper, we discuss prior field studies of software
development, and then describe our study’s methodol-
ogy. We then discuss the information needs that weiden-
tified in both qualitative and quantitative terms. We then
discuss our findings’ implications on software design and
engineering.

2. Related Work

Several previous studies have documented the social na-
ture of development work. Perry, Staudenmayer and
Votta reported that over half of developers’ time was
spent interacting with coworkers [15]. Much of this
communication is to maintain awareness. De Souza,
Redmiles, Penix and Sierhuis found that developers send
emails before check-ins to allow their peers to prepare for

434 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 34, NO. 4, JULY/AUGUST 2008

Asking and Answering Questions
during a Programming Change Task

Jonathan Sillito, Member, IEEE,
Gail C. Murphy, Member, IEEE, and Kris De Volder

Abstract—Little is known about the specific kinds of questions programmers ask when evolving a code base and how well existing
tools support those questions. To better support the activity of programming, answers are needed to three broad research questions:
1) What does a programmer need to know about a code base when evolving a software system? 2) How does a programmer go about
finding that information? 3) How well do existing tools support programmers in answering those questions? We undertook two
qualitative studies of programmers performing change tasks to provide answers to these questions. In this paper, we report on an
analysis of the data from these two user studies. This paper makes three key contributions. The first contribution is a catalog of
44 types of questions programmers ask during software evolution tasks. The second contribution is a description of the observed
behavior around answering those questions. The third contribution is a description of how existing deployed and proposed tools do,

and do not, support answering programmers’ questions.

Index Terms—Change tasks, software evolution, empirical study, development environments, programming tools, program

comprehension.

1 INTRODUCTION

ITTLE is known about the specific kinds of questions
programmers ask when evolving a code base and how
well existing and proposed tools support those questions.
Some previous work has focused on developing models of
program comprehension, which are descriptions of the
cognitive processes a programmer uses to build an under-
standing of a software system (e.g., [50], [34]). Other work
has focused on how programmers perform change tasks,
including how programmers use tools in that context (e.g.,
[13], [54]). These previous efforts do not consider in detail
what a programmer needs to know about a code base when
performing a change task, how the programmer finds that
information, nor how well tools support those activities.
To address this gap, we undertook two qualitative
studies. In each of these studies, we observed programmers
making source changes to medium (20 KLOC) to large-
sized (over 1 million LOC) code bases. To structure our
data collection and the analysis of our data, we used a
grounded theory approach [16], [63]. Based on our analysis of
the data from these user studies, as well as an analysis of
the support that current programming tools provide for
these activities, this research makes three key contributions.
The first contribution is a catalog of 44 types of questions

e |. Sillito is with the Department of Computer Science, University of
Calgary, 2500 University Dr. NW, Calgary, AB, T2N 1N4 Canada.
E-mail: sillito@ucalgary.ca.

e G.C. Murphy and K. De Volder are with the Department of Computer
Science, University of British Columbia, ICICS/CS Building, 201-2366
Main Mall, Vancouver, BC, V6T 174 Canada.

E-mail: {murphy, kdvolder)@cs.ubc.ca.

Manuscript received 11 May 2007; revised 24 Nov. 2007; accepted 27 Mar.
2008; published online 21 Apr. 2008.
Recommended for acceptance by M. Young and P. Devanbu.

Pas seokrsusenboncs nes nlhiadcsdet s oisssomssle Al 8kin nobinte ecalanns nsesd = csened das

programmers ask, organized into four categories based on
the kind and scope of information needed to answer a
question. The second contribution is a description of the
behavior we observed around answering those questions.
The third contribution is a description of how well tools
support a programmer in answering questions. Based on
these results, we discuss the support that is missing from
existing programming tools.

Section 2 of this paper compares the work presented in
this paper to previous efforts in the area of program
comprehension and empirical studies of how programmers
manage change tasks. Section 3 describes the two studies
we performed. Section 4 presents the 44 types of questions
organized around four top-level categories and a descrip-
tion of the behavior we observed around answering
questions. Section 5 considers the support existing research
and industry tools provide for those activities. In Section 6,
we discuss gaps in tool support. In Section 7, we discuss the
limits of our results. We conclude with a summary in
Section 8.

2 RELATED WORK

In this section, we discuss three categories of related work.
The first is the area of program comprehension, in
particular efforts to use theories about program compre-
hension to inform tool design (see Section 2.1). The second
covers work involving the analysis of programmers’
questions (see Section 2.2). The third category includes
empirical studies that have looked at how programmers
use tools and generally how they carry out change tasks
and other programming activities (see Section 2.3). Our
review of these studies includes a discussion of studies that

Asking and Answering Questions during a
Programming Change Task in Pharo Language

Juraj Kubelka

Alexandre Bergel

Romain Robbes

PLEIAD Laboratory, Department of Computer Science (DCC)
University of Chile, Santiago, Chile

{jkubelka,abergel,rrobbes}@dcc.uchile.cl

Abstract

Previous studies focus on the specific questions software en-
gineers ask when evolving a codebase. Though these studies
observe developers using statically typed languages, little
is known about the developer questions using dynamically
typed languages. Dynamically typed languages present new
challenges to understanding and navigating in a codebase
and could affect results reported by previous studies.

This paper replicates a previous study and presents the
analysis of six programming sessions made in Pharo, a dy-
namically typed language. We found a similar result when
comparing sessions on an unfamiliar codebase with the pre-
vious work. Our result on the familiar code greatly deviates
from the replicated study, likely caused by different tasks
and development strategies. Both missing type information
and test driven development affected participant behavior
and prudence on codebase understanding, where some par-
ticipants made changes based on assumptions.

We provide a set of questions that are useful in charac-
terizing activity related to the use of a dynamically typed
language and test-driven development — questions not ex-
plicitly considered in previous research. We also present
a number of issues that we would like to discuss during the
PLATEAU workshop.

1. Introduction

Programming environments have tremendously improved
over the last decade. What were previously simple text edi-
tors are now fully fledged studios for code production. Nav-
igating between source code elements is now supported in
many different ways by most programming environments.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

PLATEAU 2014, October 21, 2014, Portland, Oregon, United States.

Copyright © 2014 ACM 978-1-nnnn-nnnn-n/yy/mm. .. $15.00.
http://dx.doi.org/10.1145/nnnnnnn.nnnnnnn

Sillito et al. [9] (herein designated as Sillito) made a num-
ber of observations on developer navigation. They identify
four question categories and levels of tool support for get-
ting answers. They conducted two studies observing soft-
ware programmers of statically typed languages C++, C,
C#, and Java. In their first study, the participants worked
on a change task for one unique open source project, Ar-
goUML!, of which they were not familiar. The second study
was conducted in an industrial setting including software
engineers working on a change task of familiar codebase.
The context setting used by Sillito in their experiment does
not cover some commonly found software engineering prac-
tices. For example, they only consider statically typed lan-
guages, one industrial codebase, and one open source code-
base.

Research question. Our work replicates the experiment by
Sillito et al. and validates it in a new scenario. The partic-
ipants worked on tasks in Pharo, a dynamically typed pro-
gramming language, and in distinct open source software
systems. The dynamically typed languages present new chal-
lenges to understanding and navigating in a codebase. Both
aspects — dynamically typed language and different code-
bases could affect results reported by Sillito. In summary,
our research question is:

Are findings presented by Sillito applicable to pro-
gramming change tasks using the Pharo programming
language?

Pharo. The Pharo? environment (Pharo IDE) illustrated in
Figure 1 is largely different from the ones considered in the
Sillito experiment. The Pharo programming environment of-
fers a set of expressive and flexible programming tools. The
System Browser (2) is the main tool for writing and reading
source code. Navigation within the source code is essentially
based on the SendersOf (4), ImplementorOf, and UsersOf
tools; whenever a user asks to where a particular method is
called, or asks for method definition, field reference, or class

'http://argouml.tigris.org, verified September 2014
Zhttp://pharo.org, verified September 2014

31

Developers ask different types of questions

Finding focus points
®, 5 kinds of questions.

For example: Which type represents this
domain concept?

Expanding focus points
15 kinds of questions.

For example: Which types is this type a part
of?

Understanding a subgraph
13 kinds of questions.

For example: What is the behavior these types
provide together?

Questions over groups of subgraphs
11 kinds of questions.

For example: What is the mapping between
these Ul types and these model types?

J. Sillito, G. C. Murphy and K. De Volder, "Asking and Answering Questions during a Programming Change Task," in IEEE Transactions on Software Engineering, vol. 34, no. 4, pp. 434-451, July-Aug. 2008, doi: 10.1109/TSE.2008.26.

32

Finding Focus Points

1. Which type represents this domain concept or this Ul
element or action? (1.1,1.2,1.3,1.5,1.6,1.7,1.8,1.9)

2. Where in the code is the text in this error message or
UI element? (1.1, 1.5, 1.9)

3. Where is there any code involved in the implemen-
tation of this behavior? (1.1, 1.2, 1.3, 1.5, 1.6, 1.10,
1.11, 2.11, 2.13)

4. Is there a precedent or exemplar for this? (1.1, 1.10,
1.12, 2.4, 2.6, 2.14, 2.15)

5. Is there an entity named something like this in that
unit (project, package, or class, say)? (1.1, 1.2, 14,
1.5, 1.6, 1.10, 2.9)

J. Sillito, G. C. Murphy and K. De Volder, "Asking and Answering Questions during a Programming Change Task," in IEEE Transactions on Software Engineering, vol. 34, no. 4, pp. 434-451, July-Aug. 2008, doi: 10.1109/TSE.2008.26. 33

Expanding focus points

12.
13.
14.
15.

16.

Where is this method called or type referenced? (1.1,
1.2,13,14,15,1.6,1.7, 18, 1.10, 1.11, 1.12, 2.1, 2.4)
When during the execution is this method called?
(1.2, 1.4, 1.5, 2.15)

Where are instances of this class created? (1.2, 1.3,
1.5,1.7, 1.8, 1.10)

Where is this variable or data structure being
accessed? (1.4, 1.5,1.6,1.7,1.12, 2.1, 2.8, 2.14)

What data can we access from this object? (1.8, 2.15)

17.

18.

19.

20.

What does the declaration or definition of this look
like? (1.2,15,1.8, 1.10, 1.11, 2.1, 2.2, 2.11, 2.13, 2.15)
What are the arguments to this function? (1.3, 1.4,
1.5,1.7, 1.8, 1.10, 1.11, 1.12)

What are the values of these arguments at runtime?
(14, 1.9,1.12, 2.15)

What data is being modified in this code? (1.6, 1.11)

34

Understadning a Subgraph

21.

22.

23.

24.

25.

26.

27.

How are instances of these types created and
assembled? (1.1, 1.2, 1.4, 1.7, 1.9, 1.10, 1.11, 1.12)
How are these types or objects related? (whole-part)
(1.2, 1.10)

How is this feature or concern (object ownership, Ul
control, etc.) implemented? (1.1, 1.2, 1.4, 1.7, 1.11,
1.12, 2.1, 2.13)

What in this structure distinguishes these cases?
(1.2, 1.12, 2.8)

What is the behavior that these types provide
together and how is it distributed over the types?
(1.1,12,1.3,1.4, 1.6, 1.11, 2.11)

What is the “correct” way to use or access this data
structure? (1.8, 2.3, 2.15)

How does this data structure look at runtime? (1.5,
1.9, 1.10, 2.15)

28.

29.
30.

31.

32.

33.

How can data be passed to (or accessed at) this point
in the code? (1.5, 1.6, 1.8, 1.12, 2.14)

How is control getting (from here to) here? (1.3, 1.4)
Why is not control reaching this point in the code?
(14,19, 1.10, 1.12, 2.1, 2.10)

Which execution path is being taken in this case?
(1.2,13,1.7,19,1.12, 2.2, 2.9)

Under what circumstances is this method called or
exception thrown? (1.3, 1.4, 1.5, 1.9)

What parts of this data structure are accessed in this
code? (1.6, 1.8, 1.12)

35

Questions over groups of subgraphs

34.
35.

36.

37.

How does the system behavior vary over these types
or cases? (1.3, 1.4, 2.14)

What are the differences between these files or
types? (1.2, 2.1, 2.2, 2.13, 2.15)

What is the difference between these similar parts of
the code (e.g., between sets of methods)? (1.7, 1.8,
1.11, 2.6, 2.11, 2.14, 2.15)

What is the mapping between these Ul types and
these model types? (1.1, 1.2, 1.5, 1.7)

38.

39.

40.

41].

42.

43.

44,

Where should this branch be inserted or how should
this case be handled? (1.4, 1.5, 1.6, 1.8, 1.9, 2.11, 2.15)
Where in the Ul should this functionality be added?
(1.1, 15, 1.7, 2.1, 2.6)

To move this feature into this code, what else needs
to be moved? (2.7, 2.13)

How can we know that this object has been created
and initialized correctly? (1.10, 1.12)

What will be (or has been) the direct impact of this
change? (1.5,1.7, 1.8, 1.10, 1.11, 1.12, 2.1, 2.2, 2.4, 2.6,
27,28, 212, 2.15)

What will the total impact of this change be? (2.1,
22,23,24,25,29,2.10, 2.11)

Will this completely solve the problem or provide
the enhancement? (1.1, 1.9, 1.11, 2.12, 2.14)

36

Developers use a variety of techniques for obtaining information

and answering questions

1
7-
.:,',: Unplanned meetings
®
™ 57 Planned meetings
g External docs o Eies
N 4 Webe * Igtemal docs
= IM® Bug database
9 Phone e
@ ..
g 3 Ot?\er
©
V)
g 2
1] 1 1 1 L I 1
0 5 10 15 20 25 30

% communicating about code time

(o))
1

Low, 7=High)
i

Effectiveness (1
s e

N
1

Debtigger Reading code
®

Trace statements .
° eCheckin messages

'|gh .Evel Views R.unn’ng cwe

°
Other

10 20 30 40
% understanding code time

Thomas D. LaToza, Gina Venolia, and Robert DelLine. 2006. Maintaining mental models: a study of developer work habits. In Proceedings of
the 28th international conference on Software engineering (ICSE '06), Experience Report, 492-501. https://doi.org/10.1145/1134285.1134355

37

What makes understanding code hard?

Longest investigation activities

* Questions developers ask about code

that are hard tO answer How is this data structure being mutated in this code?
* May require substantial time and effort aroaty oot g it ihe (bles are

to dNSWEI. How [does] application state change when m is called

denoting startup completion?

 May lead to many other questions to S |
What decisions might be incompatible with reuse in
aﬂ SWGF new context?

“Is [there] another reason why status could be non-
zero?”

Thomas D. LaToza and Brad A. Myers. 2010. Developers ask reachability questions. In International Conference on Software Engineering,
185-194. https://doi.org/10.1145/1806799.1806829

Time
(mins)

83

53

50

24

11

38

Failure in information needs

* Developers guess and make assumptions about answers to questions, and
sometimes are wrong, leading to defects.

False belief held by developer Correct fact about control flow

m 1S called in several additional
situations in which n has not been
called.

~ X

Method a need not call method b, as all
calls to be are redundant.

Thomas D. LaToza and Brad A. Myers. 2010. Developers ask reachability questions. In International Conference on Software Engineering,
185-194. https://doi.org/10.1145/1806799.1806829

39

Rationale (42)

Why was it done this way? (14) [15][7]

Why wasn t it done this other way? (15)

Was this intentional, accidental, or a hack? (9)[15]
How did this ever work? (4)

Debugging (26)

How did this runtime state occur? (12) [15]

What runtime state changed when this executed? (2)
Where was this variable last changed? (1)

How is this object different from that object? (1)
Why didn t this happen? (3)

How do I debug this bug in this environment? (3)

In what circumstances does this bug occur? (3) [15]
Which team's component caused this bug? (1)

Intent and Implementation (32)

What is the intent of this code? (12) [15]
What does this do (6) in this case (10)? (16) [24]
How does it implement this behavior? (4) [24]

Refactoring (25)

Is there functionality or code that could be refactored? (4)

Is the existing design a good design? (2)

Is it possible to refactor this? (9)

How can I refactor this (2) without breaking existing users(7)? (9)
Should I refactor this? (1)

Are the benefits of this refactoring worth the time investment? (3)

History (23)

When, how, by whom, and why was this code changed or
inserted? (13)[7]

What else changed when this code was changed or inserted? (2)
How has it changed over time? (4)[7]

Has this code always been this way? (2)

What recent changes have been made? (1)[15][7]

Have changes in another branch been integrated into this

branch? (1)

Implications (21)
What are the implications of this change for (5) API clients

(5), security (3), concurrency (3), performance (2), platforms
(1), tests (1), or obfuscation (1)? (21) [15][24]

Testing (20)

Is this code correct? (6) [15]

How can [test this code or functionality? (9)

Is this tested? (3)

Is the test or code responsible for this test failure? (1)
Is the documentation wrong, or is the code wrong? (1)

Implementing (19)

How do I implement this (8), given this constraint (2)? (10)
Which function or object should I pick? (2)

What s the best design for implementing this? (7)

Control flow (19)

In what situations or user scenarios is this called? (3) [15][24]
What parameter values does each situation pass to this method? (1)
What parameter values could lead to this case? (1)

What are the possible actual methods called by dynamic dispatch
here? (6)

How do calls flow across process boundaries? (1)

How many recursive calls happen during this operation? (1)

Is this method or code path called frequently, or is it dead? (4)
What throws this exception? (1)

What is catching this exception? (1)

Contracts (17)

What assumptions about preconditions does this code make? (35)
What assumptions about pre(3)/post(2)conditions can be made?
What exceptions or errors can this method generate? (2)

What are the constraints on or normal values of this variable? (2)
What is the correct order for calling these methods or initializing
these objects? (2)

What is responsible for updating this field? (1)

Performance (16)

What is the performance of this code (5) on a large, real dataset (3)? (8)

Which part of this code takes the most time? (4)

Can this method have high stack consumption from recursion? (1)
How big is this in memory? (2)

How many of these objects get created? (1)

Teammates (16)

Who is the owner or expert for this code? (3)[7]
How do I convince my teammates to do this the “right way”’? (12)
Did my teammates do this? (1)

Policies (15)

What is the policy for doing this? (10) [24]

Is this the correct policy for doing this? (2) [15]

How is the allocation lifetime of this object maintained? (3)

Type relationships (15)

What are the composition, ownership, or usage relationships of this type? (5) [24]
What is this type s type hierarchy? (4) [24]

What implements this interface? (4) [24]

Where is this method overridden? (2)

Data flow (14)

What is the original source of this data? (2) [15]

What code directly or indirectly uses this data? (5)

Where is the data referenced by this variable modified? (2)

Where can this global variable be changed? (1)

Where is this data structure used (1) for this purpose (1)? (2) [24]
What parts of this data structure are modified by this code? (1) [24]
What resources is this code using? (1)

Location (13)

Where is this functionality implemented? (5) [24]
Is this functionality already implemented? (5) [15]
Where is this defined? (3)

Building and branching (11)

Should I branch or code against the main branch? (1)
How can I move this code to this branch? (1)

What do I need to include to build this? (3)

What includes are unnecessary? (2)

How do I build this without doing a full build? (1)
Why did the build break? (2)[59]

Which preprocessor definitions were active when this was built? (1)

Architecture (11)
How does this code interact with libraries? (4)
What is the architecture of the code base? (3)

How is this functionality organized into layers? (1)
Is our API understandable and flexible? (3)

Concurrency (9)

What threads reach this code (4) or data structure (2)? (6)
Is this class or method thread-safe? (2)
What members of this class does this lock protect? (1)

Dependencies (5)

What depends on this code or design decision? (4)[7]
What does this code depend on? (1)

Method properties (2)
How big is this code? (1) 40

How overloaded are the parameters to this function? (1)

What does this do?
What does these functions do?

What does this do in this case?

What happens if an exception is thrown?
What happens if this operation times out?
What happens if the remote service is slow?

What is the intent of the code?
What is it trying to accomplish?

How does it implement this behavior?
How is this data aggregated and how is it translated from one place to another.
How does this class (or collection of classes) fulfill the functional feature of the application?

Thomas D. LaToza and Brad A. Myers. 2010. Hard-to-answer questions about code. In Evaluation and Usability of Programming Languages and
Tools (PLATEAU '10), 1-6. https://doi.org/10.1145/1937117.1937125

41

What depends on this code or design decision?
What else depends on this code?

Who else uses this code / function. (i.e. If we change this, what will break simply because
someone else has found a way to use this and we don't even know they are doing so...)

What are the implications of this change for API clients, security, concurrency,
performance, platforms, tests, or obfuscation?

What is the implication of these changes in terms of the backward compatibility?
Across components with a code base the size of complete applications, what are the implications

of a functional change in base storage to all accessors in the system (including clients of
applications built on top of the place where the change is occurring)

How can I refactor this without breaking existing users?
How can I refactor this piece w/o causing an avalanche of new places to refactor?

Thomas D. LaToza and Brad A. Myers. 2010. Hard-to-answer questions about code. In Evaluation and Usability of Programming Languages and
Tools (PLATEAU '10), 1-6. https://doi.org/10.1145/1937117.1937125

42

Why was it done this way?
Why was this code structured in this way?

Why was this done this way? Is there some reason for this ancient code doing what it
does that I'm missing?

Why wasn't it done this other way?

Why didn't they use this method/object/interface as it appears to have been designed?

Why did the original developer not use library function X? (was there a good reason or just
ignorance)

Was this intentional, accidental, or a hack?

Is the lack of parameter validation (most often lack of null checks) intentional or
incidental?

Is the lack of ''sealed'’ on the class intentional or incidental? If intentional, why?
(assuming no virtual methods are present).

Thomas D. LaToza and Brad A. Myers. 2010. Hard-to-answer questions about code. In Evaluation and Usability of Programming Languages and
Tools (PLATEAU '10), 1-6. https://doi.org/10.1145/1937117.1937125

43

Understanding Code &
LLMs

Examples of answering questions with an LLM
Chatting with agent

<& API| Endpoints Question

 Agentic LLMs can answer utple-deviol-a
questions about code

C

What endpoints does this controller support?

* Uses tools (grep) to find
relevant context

endpoints under the base path /v0@/user :

° Su m marizes and 1. GET [- Get current user details
SyntheSizeS ConteXt api/src/controller/user.controller.ts

BGet ()
« Decides what else it G

status: 200

ShOUId read description: 'Get the current user',
type: Jolt.MeResponseDto,
1)
async me(
@UserDataFromRequest() { id }:

RequestUserData,
): Promise<Jolt.MeResponseDto>

Challenges answering questions about code

 |f identifiers are poor, code is poorly organized, grep may not be effective in
finding focus points

 Missing docs or out of date design docs that are misleading

* Need access to tools to access code history, slack, design docs, other
non-code resources

 Connecting quality attributes to code: may or may not effectively
understand what quality attributes motivated code to be written as it is

» QOut of distribution: design that is inconsistent with standard practices

46

10 min break

In-Class Activity

* |In groups of 1 or 2, try to find questions your tool (Cursor or Claude Code) can't answer
o Start with the codebase you used for last time (Lecture 6)
* (Goal: find questions the tool doesn't seem to create good answers for
e Start with simpler questions, works towards more complex questions
* Free to use example of questions from slides today or make up your own

 Want to hear about each of the types of questions you tried, what you expected, what worked, and
what didn't

* Deliverables

e Screen recording through Kaltura
* Upload to OneDrive, turn on link sharing, share link in Lecture 7 activity submission on Canvas
e Submit answers to questions on your experiences on Canvas (next slide)

 Aim to finish by 7:10pm today; Due tomorrow at 4:30pm

48

Questions to answer

» List all of the different questions you tried

 Which did the LLM seem to answer correctly? Which did the answer seem to be
wrong? Were there answers where you didn't know what was right or wrong??

 What were the types of questions where the LLM was most helpful?
 What were the types of questions where the LLM was least helpful?

* To what extent was the LLM able to tell you when it didn't know an answer?

* Deliverable: Submit through Canvas, at least a page

49

