Spec-Driven Development

CS 691 / SWE 699
Fall 2025

(G le GEORGE MASON
TM UNIVERSITY:

aaaaaaaaaaaaa

Logistics

* Project proposal grades up - should look at feedback in comments
* |ecture 8 reading questions due today next week at 4:30pm

* |ecture 8 activity (in class today), due by 10/24 at 4:30pm

* | ecture 9 reading questions due today next week at 4:30pm

* Project checkpoint due in 2 weeks

Research Study

* Opportunity to share your Reflections assignments with
researchers to help better understand impact of LLMs with
data

» (detailed announcement later today)

Today

* Discussion: Experiences from Lecture 7
* Discussion: Reading questions for Lecture 8
* |ecture

* Spec-Driven Development

* |In-Class Activity

Discussion: Experiences from Lecture 6 Activity

 What types of questions was the LLM able to answer?
 What types of questions was the LLM not able to answer?

e What did it do instead?

* |n what situations do you feel LLM can be helpful in answering
questions?

Discussion: Reading questions for Lecture 7

 What questions did you have from readings for Lecture 7
* Discuss questions & possible answers in group of 3 or 4

 Come back with 1 question you want to discuss w/ whole
class

Spec-Driven
Development

Motivation

 Agentic LLMs can generate lots of code

* But intent lost: instruct the LLM how to do something in
chat, only see the code at the end

* |s there a better way?

Spec Driven Development: Key ldea

 Capture what to do in a spec
 Rather than describe requirements through agents conversations, describe requirements in a doc
 Requirements doc becomes a "spec"

* Agent might even work with you to help write this spec from a high level plan

¥ todo-app.spec.md Agent chat

UGLER ol create a spec for a web-based todo app
A comprehensive todo application with full CRUD operations, filtering,
search, and persistence. Built with React and TypeScript for a modern,

accessible user experience.

Target I've created the spec todo-app.spec.md.
[@generate]l(../src/components/TodoApp.tsx) I'll search the spec registry for relevant context.

Capabilities
Users can create new todo i1tems with a text description. spec looks good, proceed to building
— Input validation prevents empty todos

[Ptest](../tests/input-validation.test.tsx)

— New todos are added to the active list by default
[Ptest](../tests/default-active-list.test.tsx)

Some Advantages

* Spec-centric understanding, moves focus from code ("how") to
requirements ("what")

o See exactly what is in the spec before it is built
 Something missing or underspecified: change the spec

* Can easily have LLM generate tests simply by looking at requirements and
trying to build corresponding tests for them

 And can easily understand what is or is not currently tested by seeing
the requirements

 Have confidence that spec really reflects the "what" of the code, as
system generates the code from the spec & uses tests to check

10

More ambitious (long term advantages)

* Portability: Can generate different versions of app for different
platforms simply by recompiling spec for different platforms

 Compile time customizability: change preferences about what to
optimize for (e.g., spend more $$$ on cloud costs to make faster
or fewer to spend less) w/ no need to change code

 End user programming: building requirements can be done w/
less CS knowledge (?7?)

11

Some Challenges

* Asks a lot of LLM to successfully generate code from a spec in all cases

 What happens when it fails or makes a poor choice? How does

developer override the implementation and still trust the spec / design
really reflects the code?

* Or if overrides the implementation, and then changes the spec, how
does the LLM know what to write, when everything is no longer
captured in the spec?

* |f the developer still needs to debug something not working, how does
that work"?

12

Current Status

e Big vision, not yet a reality

* Developer today already starting to do this by writing markdown files
that capture the design, that are then fed to the LLM as part of the
prompt

* Achieves the goal of keeping specs on record for posterity
 Can even use hooks to generates tests from these specs

» But still have to (mostly) work with code

e Just starting to see tools that try to implement part of the vision
 Look at Amazon Kiro as an example (w/ a free tier!)

* Differs in a number of important ways from longterm vision of spec-
driven development to make more practical today

13

NIRO

https://www.youtube.com/watch?v=JOqLp1adGO4

Specs Concepts

* requirements.md - Captures user stories and acceptance
criteria in structured EARS notation

* design.md - Documents technical architecture, sequence
diagrams, and implementation considerations

» tasks.md - Provides a detailed implementation plan with
discrete, trackable tasks

https://kiro.dev/docs/specs/concepts/

15

https://kiro.dev/docs/specs/concepts/

Specs Workflow

* The workflow follows a logical progression with decision
points between phases, ensuring each step is properly
completed before moving to the next.
 Requirements Phase (leftmost section): Define user
stories and acceptance criteria in structured EARS
notation

no

* Design Phase (second section): Document the

technical architecture, sequence diagrams, and
implementation considerations
» Execution Phase (rightmost section): Track progress as tes

tasks are completed, with the abllity to update and | |
refine the spec as needed

https://kiro.dev/docs/specs/concepts/

* Implementation Planning (third section): Break down
the work into discrete, trackable tasks with clear
descriptions and outcomes

yes
o)

16

https://kiro.dev/docs/specs/concepts/

Requirements docs

Intended to use EARS (Easy Approach to Requirements
Syntax) notation to provide a structured format

Kiro helps format requirements into this structure

WHEN [condition/event]
THE SYSTEM SHALL [expected behavior]

For example:

WHEN a user submits a form with invalid data
THE SYSTEM SHALL display validation errors next to the relevant fields

17

Design Docs

 Document technical architecture, sequence diagrams, and
Implementation considerations

» Captures big picture of how the system will work, including
the components and their interactions.

18

Implementation plan

» Clearly defined tasks and subtasks with necessary
resources and dependencies

 Shows real time status as tasks are completed

X IO SN W) tasks md _)
ro SPecs proguci-reviiew-sysiem lasks.ma M ¥ impiementation Mae I he plan Dreaks down 1he impemental no &Ny dirw a
1asks that bulid Incrementally on eat the
Spec: product-review-system 1 Requirements 2 Design Task bst - Update lasks r .
- e ! WCal Dol W0
Inplesentation Plan 1. Start wath data models and e infrastructure
BSuld 'eusate e mMponeants Lrating Gsexray |
c ‘I»') sn’.it 5.) o J i)
= [] 1. S5t up data models and mock data structure .. | te form and individual review component:
- Extend existing types with Review interface and related types 5. Agd sorting, ftenng, and votng features
Ad reviews array to sock data with sample review data 6. Inegrate everything together
Update Product interface to incluge calculated rating fields 7. Pohsh with responsive desan and accessibdity
. f N 135k 4 " ! . SCIVES. et "
MEGUIrASMents e "’ NG TOCUuSEes ON 18t -Orive """"':""'!'
| ne | S o sy ! h fxeculen 1) g Mt 1 A 1 Aavoig
= [] 2. Create core rating display component A
: ' NON-COONG aClivilies lixe deployment or user testing
- Implement RatimgDisplay component with star visualization
ADd Interactive rating selection functionaiity Do the tasks look good?
Include size variants (sm, sd, lg) and readonly modes
Perfect! The implemeniation olan 18 now comoistes and ready lor
=~ Nrite unit tests for rating component behavior
e uteo YOU! DIOOUCT-TEVIEW-Sysieam sDec NOw ™Nas ol ee

- Reg rRen | £.3. 4.4
required documents 19

10 min break

In-Class Activity

* |In groups of 2 or 3, use Kiro requirements / design / implementation plan workflow to build a city
simulator

* |nstall Kiro (free plan w/ 30 days of free credits)
 Mac ONLY -- need to find partner with a Mac
* Build a city simulator
 Goal: try to make it further into building a function city simulator than before
 Pay attention to design to try to keep project manageable and head off poor choices
* Deliverables
* Screen recording through Kaltura
* Upload to OneDirive, turn on link sharing, share link in Lecture 8 activity submission on Canvas
 Submit answers to questions on your experiences on Canvas (next slide)

 Aim to finish by 7:10pm today; Due tomorrow at 4:30pm

21

Example City Simulator Requirements

(feel free to add additional requirements)

* Create transportation, power systems: roads, power lines, power plants; determine which
zones have power or do not; calculate traffic along roads based on commuting & leisure
activities; show traffic on roads

* Public transit system: trains, subways, with access through stations, that support commutes
and leisure activities

* Build industrial shipping system, with support for connections to neighboring cities through
roads & trains, supply chains connecting different industrial buildings; show supply chain
industrial traffic on roads & trains

* Zone land for commercial, residential, industrial; Calculate value of zoned land every year,
update building based on value changes

* Build crime system, with calculated crime scores based on building types & proximity to police,
made visible on maps

* Build money system, with tax revenues & expenses based on buildings, roads, and other
developments

Questions to answer

 How many requirements were you able to use Kiro to complete?

 How did you make use of requirements, design, and implementation plan artifacts?
* |n what ways were specs helpful as compared to vibe coding?

* In what ways did specs get in the way?

 Compared to working with a vibe coding environment, did you make more progress
with specs? Why or why not?

* Deliverable: Submit through Canvas, at least a page

23

