
Spec-Driven Development
CS 691 / SWE 699
Fall 2025

© Thomas LaToza

Logistics

• Project proposal grades up - should look at feedback in comments

• Lecture 8 reading questions due today next week at 4:30pm

• Lecture 8 activity (in class today), due by 10/24 at 4:30pm

• Lecture 9 reading questions due today next week at 4:30pm

• Project checkpoint due in 2 weeks

2

Research Study

• Opportunity to share your Reflections assignments with
researchers to help better understand impact of LLMs with
data

• (detailed announcement later today)

3

Today

• Discussion: Experiences from Lecture 7

• Discussion: Reading questions for Lecture 8

• Lecture

• Spec-Driven Development

• In-Class Activity

4

Discussion: Experiences from Lecture 6 Activity

• What types of questions was the LLM able to answer?

• What types of questions was the LLM not able to answer?

• What did it do instead?

• In what situations do you feel LLM can be helpful in answering
questions?

5

Discussion: Reading questions for Lecture 7

• What questions did you have from readings for Lecture 7

• Discuss questions & possible answers in group of 3 or 4

• Come back with 1 question you want to discuss w/ whole
class

6

Spec-Driven
Development

Motivation

• Agentic LLMs can generate lots of code

• But intent lost: instruct the LLM how to do something in
chat, only see the code at the end

• Is there a better way?

8

Spec Driven Development: Key Idea

• Capture what to do in a spec

• Rather than describe requirements through agents conversations, describe requirements in a doc

• Requirements doc becomes a "spec"

• Agent might even work with you to help write this spec from a high level plan

9

Some Advantages

• Spec-centric understanding, moves focus from code ("how") to
requirements ("what")

• See exactly what is in the spec before it is built

• Something missing or underspecified: change the spec

• Can easily have LLM generate tests simply by looking at requirements and
trying to build corresponding tests for them

• And can easily understand what is or is not currently tested by seeing
the requirements

• Have confidence that spec really reflects the "what" of the code, as
system generates the code from the spec & uses tests to check

10

More ambitious (long term advantages)

• Portability: Can generate different versions of app for different
platforms simply by recompiling spec for different platforms

• Compile time customizability: change preferences about what to
optimize for (e.g., spend more $$$ on cloud costs to make faster
or fewer to spend less) w/ no need to change code

• End user programming: building requirements can be done w/
less CS knowledge (??)

11

Some Challenges

• Asks a lot of LLM to successfully generate code from a spec in all cases

• What happens when it fails or makes a poor choice? How does
developer override the implementation and still trust the spec / design
really reflects the code?

• Or if overrides the implementation, and then changes the spec, how
does the LLM know what to write, when everything is no longer
captured in the spec?

• If the developer still needs to debug something not working, how does
that work?

12

Current Status

• Big vision, not yet a reality

• Developer today already starting to do this by writing markdown files
that capture the design, that are then fed to the LLM as part of the
prompt

• Achieves the goal of keeping specs on record for posterity

• Can even use hooks to generates tests from these specs

• But still have to (mostly) work with code

• Just starting to see tools that try to implement part of the vision

• Look at Amazon Kiro as an example (w/ a free tier!)

• Differs in a number of important ways from longterm vision of spec-
driven development to make more practical today

13

Kiro

14

https://www.youtube.com/watch?v=JOqLp1adGO4

Specs Concepts

• requirements.md - Captures user stories and acceptance
criteria in structured EARS notation

• design.md - Documents technical architecture, sequence
diagrams, and implementation considerations

• tasks.md - Provides a detailed implementation plan with
discrete, trackable tasks

15
https://kiro.dev/docs/specs/concepts/

https://kiro.dev/docs/specs/concepts/

Specs Workflow

• The workflow follows a logical progression with decision
points between phases, ensuring each step is properly
completed before moving to the next.

• Requirements Phase (leftmost section): Define user
stories and acceptance criteria in structured EARS
notation

• Design Phase (second section): Document the
technical architecture, sequence diagrams, and
implementation considerations

• Implementation Planning (third section): Break down
the work into discrete, trackable tasks with clear
descriptions and outcomes

• Execution Phase (rightmost section): Track progress as
tasks are completed, with the ability to update and
refine the spec as needed

16https://kiro.dev/docs/specs/concepts/

https://kiro.dev/docs/specs/concepts/

Requirements docs

• Intended to use EARS (Easy Approach to Requirements
Syntax) notation to provide a structured format

• Kiro helps format requirements into this structure

17

Design Docs

• Document technical architecture, sequence diagrams, and
implementation considerations

• Captures big picture of how the system will work, including
the components and their interactions.

18

Implementation plan

• Clearly defined tasks and subtasks with necessary
resources and dependencies

• Shows real time status as tasks are completed

19

10 min break

In-Class Activity

• In groups of 2 or 3, use Kiro requirements / design / implementation plan workflow to build a city
simulator

• Install Kiro (free plan w/ 30 days of free credits)

• Mac ONLY -- need to find partner with a Mac

• Build a city simulator

• Goal: try to make it further into building a function city simulator than before

• Pay attention to design to try to keep project manageable and head off poor choices

• Deliverables

• Screen recording through Kaltura

• Upload to OneDrive, turn on link sharing, share link in Lecture 8 activity submission on Canvas

• Submit answers to questions on your experiences on Canvas (next slide)

• Aim to finish by 7:10pm today; Due tomorrow at 4:30pm
21

Example City Simulator Requirements
(feel free to add additional requirements)

• Create transportation, power systems: roads, power lines, power plants; determine which
zones have power or do not; calculate traffic along roads based on commuting & leisure
activities; show traffic on roads

• Public transit system: trains, subways, with access through stations, that support commutes
and leisure activities

• Build industrial shipping system, with support for connections to neighboring cities through
roads & trains, supply chains connecting different industrial buildings; show supply chain
industrial traffic on roads & trains

• Zone land for commercial, residential, industrial; Calculate value of zoned land every year,
update building based on value changes

• Build crime system, with calculated crime scores based on building types & proximity to police,
made visible on maps

• Build money system, with tax revenues & expenses based on buildings, roads, and other
developments

22

Questions to answer

• How many requirements were you able to use Kiro to complete?

• How did you make use of requirements, design, and implementation plan artifacts?

• In what ways were specs helpful as compared to vibe coding?

• In what ways did specs get in the way?

• Compared to working with a vibe coding environment, did you make more progress
with specs? Why or why not?

• Deliverable: Submit through Canvas, at least a page

23

