
Course Overview
SWE 432, Fall 2016

Design and Implementation of Software for the Web

LaToza/Bell GMU SWE 432 Fall 2016

Course Topics
• How do we organize, structure and share information?

• How to make web applications

• Tools, front-end and back-end development,
programming models, testing, performance,
privacy, security, scalability, deployment, etc.

• How to make usable web applications

• User-centered design, user studies, information
visualization, visual design, etc.

2

LaToza/Bell GMU SWE 432 Fall 2016

Logistics
• No textbook, but suggested supplementary readings from time-to-time

• Group-based homework; each assignment builds on the last

• Lab-style work included in many lectures (bring your laptop)

• Grading:
• 40% Homeworks

• Late policy. 24 hours late or less: lose 10%
• HW assignments submitted more than 24 hours late will receive

a zero.
• 5% Project Presentation
• 5% Class Participation
• 20% Quizzes (drop 3 lowest)
• 30% Final Exam

3

LaToza/Bell GMU SWE 432 Fall 2016

Plagiarism & Honor Code

• Do not work on homework with those not in your
group

• Do not copy and paste large sections of your
homework from third party sources

• Questions?

4

“Just Don’t It”

LaToza/Bell GMU SWE 432 Fall 2016

Project Overview
• Build a portfolio-worthy web application piece-by-piece

• Weekly deliverables follow class topics

• Will form two-person project groups

• Web app will be dynamic, use web services, and information
visualization

• Example - News browser

5

LaToza/Bell GMU SWE 432 Fall 2016

Participation/Quizes

• Once a week: short quiz reviewing last week’s
material. We’ll drop the 3 lowest. No midterm!

• Every class: interactive exercises, graded on a
present/not present basis.

• Access via http://www.socrative.com, room
SWE432001 (or SWE432002), log in with email

6

LaToza/Bell GMU SWE 432 Fall 2016

Getting Started

7

Room name:
SWE432001 (Prof. LaToza) or SWE432002 (Prof. Bell)

Student ID:
Your @gmu.edu email

http://gmu.edu

LaToza/Bell GMU SWE 432 Fall 2016

What is the web?
• A set of standards

• TCP/IP, HTTP, URLs, HTML, CSS, …

• A means for distributing structured and semi-
structured information to the world

• Infrastructure

8

LaToza/Bell GMU SWE 432 Fall 2016

Pre-Web
• “As We May Think”, by Vannevar Bush, in The

Atlantic Monthly, July 1945

• Recommended that scientists work on inventing
machines for storing, organizing, retrieving and
sharing the increasing vast amounts of human
knowledge

• He targeted physicists and electrical engineers -
there were no computer scientists in 1945

9

LaToza/Bell GMU SWE 432 Fall 2016

Pre-Web - Memex

• MEMEX = MEMory EXtension

• Create and follow “associative trails” (links) and
annotations between microfilm documents

• Technically based on “rapid selectors” Bush built in
1930’s to search microfilm

• Conceptually based on human associative memory
rather than indexing

10

LaToza/Bell GMU SWE 432 Fall 2016

Pre-Web - Memex

11

Never built

LaToza/Bell GMU SWE 432 Fall 2016

Hypertext and the WWW
• 1965: Ted Nelson coins “hypertext” (the HT in

HTML) - “beyond” the linear constraints of text

• Many hypertext/hypermedia systems followed,
many not sufficiently scalable to take off

• 1968: Doug Engelbart gives “the mother of all
demos”, demonstrating windows, hypertext,
graphics, video conferencing, the mouse,
collaborative real-time editor

• 1969: ARPANET comes online

• 1980: Tim Berners-Lee writes ENQUIRE, a
notebook program which allows links to be made
between arbitrary nodes with titles

12

LaToza/Bell GMU SWE 432 Fall 2016

Origin of the Web

• 1989: Tim Berners-Lee,
“Information
Management: A Proposal”

• Became what we know
as the WWW

• A “global” hypertext
system full of links
(which could be single
directional, and could
be broken!)

13

© CERN

LaToza/Bell GMU SWE 432 Fall 2016

Early Browsers

14

LaToza/Bell GMU SWE 432 Fall 2016

Original WWW Architecture

15

Links!!

LaToza/Bell GMU SWE 432 Fall 2016

URI: Universal Resource Identifier

URI: <scheme>://<authority><path>?<query>

http://cs.gmu.edu/syllabus/syllabi-fall16/SWE432BellJ.html

16

“Use HTTP  
scheme”

“Connect to cs.gmu.edu”

“Request syllabus/syllabi-fall16/SWE432BellJ.html”
More details: https://en.wikipedia.org/wiki/Uniform_Resource_Identifier

Other popular schemes:
ftp, mailto, file

May be host name or an IP address
Optional port name (e.g., :80 for port 80)

LaToza/Bell GMU SWE 432 Fall 2016

DNS: Domain Name System

• Domain name system
(DNS) (~1982)

• Mapping from names
to IP addresses

• E.g. cs.gmu.edu ->
129.174.125.139

17

LaToza/Bell GMU SWE 432 Fall 2016

HTTP: HyperText Transfer Protocol
High-level protocol built on TCP/IP that defines how data is transferred
on the web

18

HTTP Request
GET	/syllabus/syllabi-fall16/SWE432BellJ.html	HTTP/1.1	
Host:	cs.gmu.edu	
Accept:	text/html

web server

HTTP Response
HTTP/1.1	200	OK	
Content-Type:	text/html;	charset=UTF-8	

<html><head>...

Reads file from disk

LaToza/Bell GMU SWE 432 Fall 2016

HTTP Requests

• Request may contain additional header lines specifying,
e.g. client info, parameters for forms, cookies, etc.

• Ends with a carriage return, line feed (blank line)

• May also contain a message body, delineated by a blank
line

19

HTTP Request
GET	/syllabus/syllabi-fall16/SWE432BellJ.html	HTTP/1.1	
Host:	cs.gmu.edu	
Accept:	text/html

“GET request”
Other popular types:
POST, PUT, DELETE, HEAD

“Resource”

LaToza/Bell GMU SWE 432 Fall 2016

HTTP Responses

20

“OK response”
Response status codes:
1xx Informational
2xx Success
3xx Redirection
4xx Client error
5xx Server error

“HTML returned  
content”
Common MIME types:
application/json
application/pdf
image/png

[HTML data]

LaToza/Bell GMU SWE 432 Fall 2016

Properties of HTTP

• Request-response

• Interactions always initiated by client request to server

• Server responds with results

• Stateless

• Each request-response pair independent from every
other

• Any state information (login credentials, shopping carts,
etc.) needs to be encoded somehow

21

LaToza/Bell GMU SWE 432 Fall 2016

HTML: HyperText Markup Language

HTML is a markup language - it is a language for
describing parts of a document

22

<i> </i>

LaToza/Bell GMU SWE 432 Fall 2016

HTML: HyperText Markup Language

• NOT a programming language

• Tags are added to markup the text, encompassed
with <>’s

• Simple markup tags: ,<i>, <u> (bold, italic,
underline)

23

This	text	is	bold!

This	text	is	bold!

• See Lecture 3 for much more!

LaToza/Bell GMU SWE 432 Fall 2016

Web vs. Internet

24

Web

Internet

HTML

Internet layer

Browser

Link layer

Transport layer

Application layer

PPP, MAC (Ethernet, DSL,
ISDN, …), …

IP, ICMP, IPSec, …

TCP, UDP, …

DNS, FTP, HTTP, IMAP, POP,
SSH, Telnet, TLS/SSL, …

CSS

LaToza/Bell GMU SWE 432 Fall 2016

The Modern Web

• Evolving competing architectures for organizing content
and computation between browser (client) and web server

• 1990s: static web pages

• 1990s: server-side scripting (CGI, PHP, ASP, ColdFusion,
JSP, …)

• 2000s: single page apps (JQuery)

• 2010s: front-end frameworks (Angular, Aurelia, React, …),
microservices

25

LaToza/Bell GMU SWE 432 Fall 2016

Static Web Pages
• URL corresponds to directory location on server

• e.g. http://domainName.com/img/image5.jpg maps to img/
image5.jpg file on server

• Server responds to HTTP request by returning requested files

• Advantages

• Simple, easily cacheable, easily searchable

• Disadvantages

• No interactivity

26

LaToza/Bell GMU SWE 432 Fall 2016

Web 1.0 Problems

• At this point, most sites
were “read only”

• Lack of standards for
advanced content -
“browser war”

• No rich client content…
the best you could hope
for was a Java applet

27

https://en.wikipedia.org/wiki/Browser_wars

https://en.wikipedia.org/wiki/Java_applet

LaToza/Bell GMU SWE 432 Fall 2016

Dynamic Web Pages

28

HTTP Request
GET	/syllabus/syllabi-fall16/SWE432BellJ.html	HTTP/1.1	
Host:	cs.gmu.edu	
Accept:	text/html

web server

HTTP Response
HTTP/1.1	200	OK	
Content-Type:	text/html;	charset=UTF-8	

<html><head>...

Reads file from diskRuns a program

LaToza/Bell GMU SWE 432 Fall 2016

Dynamic Web Pages

29

HTTP Request
GET	/syllabus/syllabi-fall16/SWE432BellJ.html	HTTP/1.1	
Host:	cs.gmu.edu	
Accept:	text/html

web server

HTTP Response
HTTP/1.1	200	OK	
Content-Type:	text/html;	charset=UTF-8	

<html><head>...

Runs a program

Web Server
Application

Syllabus
Generator

Application

Give	me	/syllabus/syllabi-fall16/SWE432BellJ.html

Here’s	some	text	to	send	back

Does whatever it wants

There’s a standard mechanism to talk to these
auxiliary applications, called CGI (Common

Gateway Interface)

LaToza/Bell GMU SWE 432 Fall 2016

Server Side Scripting

• Generate HTML on the server through scripts

• Early approaches emphasized embedding server
code inside html pages

• Examples: CGI

30

LaToza/Bell GMU SWE 432 Fall 2016

Server Side Scripting Site

31

Browser
HTML

Web Server

Database

HTTP  
Request

HTTP  
Response

(HTML)

HTML templates, server logic, load / store state to database

LaToza/Bell GMU SWE 432 Fall 2016

Limitations

• Poor modularity

• Code representing logic, database interactions,
generating HTML presentation all tangled

• Example of a Big Ball of Mud [1]

• Hard to understand, difficult to maintain

• Still a step up over static pages!

32

[1] http://www.laputan.org/mud/

LaToza/Bell GMU SWE 432 Fall 2016

Server Side Frameworks
• Framework that structures server into tiers,

organizes logic into classes

• Create separate tiers for presentation, logic,
persistence layer

• Can understand and reason about domain logic
without looking at presentation (and vice versa)

• Examples: ASP.NET, JSP

33

LaToza/Bell GMU SWE 432 Fall 2016

Server Side Framework Site

34

Browser

HTML

Web Server

Database

HTTP  
Request

HTTP  
Response

(HTML)

Presentation tier

Domain logic tier

Persistence tier

LaToza/Bell GMU SWE 432 Fall 2016

Limitations

• Need to load a whole new web page to get new data

• Users must wait while new web page loads,
decreasing responsiveness & interactivity

• If server is slow or temporarily non-responsive,
whole user interface hangs!

• Page has a discernible refresh, where old content
is replaced and new content appears rather than
seamless transition

35

LaToza/Bell GMU SWE 432 Fall 2016

Single Page Application (SPA)

• Client-side logic sends messages to server, receives response

• Logic is associated with a single HTML pages, written in Javascript

• HTML elements dynamically added and removed through DOM
manipulation

• Processing that does not require server may occur entirely client side,
dramatically increasing responsiveness & reducing needed server
resources

• Classic example: Gmail

36

LaToza/Bell GMU SWE 432 Fall 2016

SPA Enabling Technologies
• AJAX: Asynchronous Javascript and XML

• Set of technologies for sending asynchronous
request from web page to server, receiving
response

• DOM Manipulation

• Methods for updating the HTML elements in a
page after the page may already have loaded

• JSON: JavaScript Object Notation

• Standard syntax for describing and transmitting
Javascript data objects

• JQuery

• Wrapper library built on HTML standards designed
for AJAX and DOM manipulation

37

https://en.wikipedia.org/wiki/JSON

JSON

LaToza/Bell GMU SWE 432 Fall 2016

Single Page Application Site

38

Browser

HTML

Web Server

Database

HTTP  
Request

HTTP  
Response

(JSON)

Presentation tier

Domain logic tier

Persistence tier

Javascript

events

HTML elements

LaToza/Bell GMU SWE 432 Fall 2016

Limitations
• Poor modularity client-side

• As logic in client grows increasingly large and
complex, becomes Big Ball of Mud

• Hard to understand & maintain

• DOM manipulation is brittle & tightly coupled, where
small changes in HTML may cause unintended
changes (e.g., two HTML elements with the same id)

• Poor reuse: logic tightly coupled to individual HTML
elements, leading to code duplication of similar
functionality in many places

39

LaToza/Bell GMU SWE 432 Fall 2016

Front End Frameworks

• Client is organized into separate components, capturing model of
web application data

• Components are reusable, have encapsulation boundary (e.g.,
class)

• Components separate logic from presentation

• Components dynamically generate corresponding code based on
component state

• In contrast to HTML element manipulation, framework
generates HTML, not user code, decreasing coupling

• Examples: Meteor, Ember, Angular, Aurelia, React

40

LaToza/Bell GMU SWE 432 Fall 2016

Front End Framework Site

41

Browser

Web Server

Database

HTTP  
Request

HTTP  
Response

(JSON)

Presentation tier

Domain logic tier

Persistence tier

Front end framework

Component logic Component logic Component logic

Component presentation Component presentation Component presentation

LaToza/Bell GMU SWE 432 Fall 2016

Limitations

• Duplication of logic in client & server

• As clients grow increasingly complex, must have logic
in both client & server

• May even need to be written twice in different
languages! (e.g., Javascript, Java)

• Server logic closely coupled to corresponding client
logic. Changes to server logic require corresponding
client logic change.

• Difficult to reuse server logic

42

LaToza/Bell GMU SWE 432 Fall 2016

Microservices

• Small, focused web server that communicates
through data requests & responses

• Focused only on logic, not presentation

• Organized around capabilities that can be reused
in multiple context across multiple applications

• Rather than horizontally scale identical web
servers, vertically scale server infrastructure into
many, small focused servers

43

LaToza/Bell GMU SWE 432 Fall 2016

Microservice Site

44

Browser

Web Servers

Database

HTTP  
Request

HTTP  
Response

(JSON)

Front end framework

Component logic Component logic Component logic

Component presentation Component presentation Component presentation

HTTP  
Request

HTTP  
Response

(JSON)

HTTP  
Request

HTTP  
Response

(JSON)

Microservice Microservice

HTTP  
Request

HTTP  
Response

(JSON)

LaToza/Bell GMU SWE 432 Fall 2016

Architectural Styles

• Architectural style specifies

• how to partition a system

• how components identify and communicate with
each other

• how information is communicated

• how elements of a system can evolve
independently

45

LaToza/Bell GMU SWE 432 Fall 2016

Constant change in web architectural styles
• Key drivers

• Maintainability (new ways to achieve better modularity)

• Reuse (organizing code into modules)

• Scalability (partitioning monolithic servers into services)

• Responsiveness (movement of logic to client)

• Versioning (support continuous roll-out of new features)

• Web standards have enabled many possible solutions

• Explored through many, many frameworks, libraries, and
programming languages

46

LaToza/Bell GMU SWE 432 Fall 2016

The web today
• Many technologies for each architectural style

• Most support more than one

• Applications often evolve from one architectural style to
another

• Leads to applications combining multiple architectural styles

• E.g., Single page app that uses server side scripting for a
separate set of pages

• Newer architectural styles not always better

• More complex, may be overkill for simple sites

47

LaToza/Bell GMU SWE 432 Fall 2016

Philosophy of the Internet
• Decentralisation: No permission is needed from a central authority to post anything on

the Web, there is no central controlling node, and so no single point of failure … and no
“kill switch”! This also implies freedom from indiscriminate censorship and surveillance.

• Non-discrimination: If I pay to connect to the internet with a certain quality of service,
and you pay to connect with that or a greater quality of service, then we can both
communicate at the same level. This principle of equity is also known as Net Neutrality.

• Bottom-up design: Instead of code being written and controlled by a small group of
experts, it was developed in full view of everyone, encouraging maximum participation
and experimentation.

• Universality: For anyone to be able to publish anything on the Web, all the computers
involved have to speak the same languages to each other, no matter what different
hardware people are using; where they live; or what cultural and political beliefs they
have. In this way, the Web breaks down silos while still allowing diversity to flourish.

• Consensus: For universal standards to work, everyone had to agree to use them. Tim
and others achieved this consensus by giving everyone a say in creating the standards,
through a transparent, participatory process at W3C.

From http://webfoundation.org/about/vision/history-of-the-web/

48

LaToza/Bell GMU SWE 432 Fall 2016

Internet Governance

• IETF = Internet Engineering Task Force

• Open, all-volunteer organization

• Organized into working groups on specific topics

• Request for Comments

• One of a series, begun in 1969, of numbered
informational documents and standards followed by
commercial software and freeware in the Internet and
Unix communities

• All Internet standards are recorded in RFCs

49

LaToza/Bell GMU SWE 432 Fall 2016

Internet Governance
• World Wide Web Consortium (W3C)

• Defines data formats and usage conventions as well as
Internet protocols relevant to Web

• Members pay fees depending on country, revenues and
non-profit/for-profit status

• Otherwise organized similar to IETF, but writes
“Recommendations” instead of “Requests for Comments”

• http://www.w3.org/

50

