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LaToza/Bell GMU SWE 432 Fall 2016

Today
• What’s “state” for our web apps? 
• How do we store it, where do we store it, and why 

there?
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For further reading: 

http://www.w3schools.com/html/html5_webstorage.asp 
https://github.com/gmu-swe432/lecture15demos 
https://www.npmjs.com/package/google-cloud 
https://devcenter.heroku.com/articles/getting-started-with-nodejs 

http://www.w3schools.com/html/html5_webstorage.asp
https://github.com/gmu-swe432/lecture15demos
https://www.npmjs.com/package/google-cloud
https://devcenter.heroku.com/articles/getting-started-with-nodejs


What’s “State” in our 
web app?
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Web App State
• Application state includes all of our data (not code) 
• What kinds of data are we concerned about? 

• What user is logged in? 
• What interactions have they had with us before? 
• What data have they given us? 
• What data have others given us? 

• Where do we store all of these things?
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State: Example
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Home page Login

Amazon.com…
Browse

Still logged in

Add to cart

Still logged in

visit 
amazon.com

Still logged in, 
still have cart…
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Where do we save stuff?
• Many options of where we keep our data 
• Where do we want to put it? 
• How do we get it to where it needs to be? 
• Goals: 

• Cost 
• Efficiency 
• Stability
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Web “Front 
End”

Our Node 
Backend

Firebase

Other storage
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Where do we save stuff?
• Probably depends on how often we need to show it to the user, and 

how permanently we need to store it 
• Examples:  

• What user is logged in? (Transient, relevant to user and backend) 
• What’s in my shopping cart? (Semi-transient, relevant to user and 

backend) 
• What products am I looking at? (Transient, relevant to user) 
• What are all of the products (Long-term, parts are relevant to 

users)
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Web “Front 
End”

Our Node 
Backend

Firebase

Other storage
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Where do we save stuff?
• On client 

• Data we might need to show again soon 
• Fairly small (KB’s or few MBs, not 100 MB’s or GB’s) 
• Data we don’t care about going away or being maliciously 

manipulated 
• In memory on backend 

• Data that we are working with that will fit in memory (MB’s 
probably not GB’s) 

• Transient data that can disappear if the server crashes 
• Cache or index of data stored externally 

• On backend disk, database, or storage service(e.g., Firebase) 
• Data we need persisted “permanently” 
• Even if we’ll be accessing it a lot, maybe we’ll cache it 

somewhere so OK to pay performance penalty

8
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Client Side State
• Original form of client state: Cookies 
• Motivation: 

• We want to correlate multiple requests 
• But HTTP is stateless

9
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Cookies
• String associated with a name/domain/path, stored at the 

browser  
• Series of name-value pairs, interpreted by the web application 
• Create in HTTP response with “Set-Cookie: ” 
• In all subsequent requests to this site, until cookie’s 

expiration, the client sends the HTTP header “Cookie: ” 
• Often have an expiration (otherwise expire when browser 

closed) 
• Various technical, privacy and security issues  

• Inconsistent state after using “back” button, third-party 
cookies, cross-site scripting, …

10
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Maintaining Client Side State
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Web “Front End” Server “Back End”

HTTP GET http://api.wunderground.com/api/
3bee87321900cf14/conditions/q/VA/Fairfax.json

HTTP Request

HTTP Response
HTTP/1.1 200 OK 
Server: Apache/2.2.15 (CentOS) 
Access-Control-Allow-Origin: * 
Access-Control-Allow-Credentials: true 
X-CreationTime: 0.134 
Last-Modified: Mon, 19 Sep 2016 17:37:52 GMT 
Content-Type: application/json; charset=UTF-8 
Expires: Mon, 19 Sep 2016 17:38:42 GMT 
Cache-Control: max-age=0, no-cache 
Pragma: no-cache 
Date: Mon, 19 Sep 2016 17:38:42 GMT 
Content-Length: 2589 
Connection: keep-alive 

{ 
  "response": { 
  "version":"0.1", 
  "termsofService":"http://www.wunderground.com/weather/api/d/terms.html", 
  "features": { 

How do we track request-response pairs?
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Cookies and Requests
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Web “Front End” Server “Back End”

HTTP Response
HTTP/1.1 200 OK 
... 
Set-Cookie: class=swe432 
...

HTTP Request
GET / HTTP/1.1 
... 
Cookie: class=swe432 
...

HTTP Request

HTTP Response

HTTP Request
GET / HTTP/1.1 
... 
Cookie: class=swe432 
...

HTTP Response
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Cookies & NodeJS
• Use the cookieParser module 
• Stateful Hello World: 
var express = require('express'); 
var cookieParser = require('cookie-parser'); 
 
var app = express(); 
var port = process.env.port || 3000;  
app.use(cookieParser()); 
app.get('/', function (req, res) { 
    if(req.cookies.helloSent == "true")  
        res.send("I already said hello to you!"); 
    else 
        res.cookie("helloSent","true").send('Hello World!'); 
}); 
 
app.listen(port, function () { 
    console.log('Example app listening on port' + port); 
}); 

• Can see cookies in Chrome under “Privacy”
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Cookies Demo

• https://github.com/gmu-swe432/lecture15demos/
tree/master/cookieshello 
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https://github.com/gmu-swe432/lecture15demos/tree/master/cookieshello
https://github.com/gmu-swe432/lecture15demos/tree/master/cookieshello


LaToza/Bell GMU SWE 432 Fall 2016

More complex state on frontend

• The most cookies you can have: 4KB (TOTAL per 
DOMAIN) 

• Old solution: 
• Cookie is a key to some data stored on server 
• When client makes a request, server always 

includes this “extra data” being stored on server 
• What’s wrong with this old solution? 

• Really slow - have to repetitively pass this same 
data back and forth

15
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LocalStorage
• Hooray, HTML5: 

localStorage (Sticks around forever) 
sessionStorage (Sticks around until tab is closed) 

• And two functions: 
setItem(“key","value"); 
getItem(“key”); 

var id = localStorage.getItem(“userID”); 

• Can store any string 
• All pages in the same domain see the same 

localStorage and sessionStorage 
• Alternatively: SQLite (SQL DB) that you can use in JS… 

16
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Demo: LocalStorage
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https://github.com/gmu-swe432/lecture15demos/tree/master/
localstoragetodos 

https://github.com/gmu-swe432/lecture15demos/tree/master/localstoragetodos
https://github.com/gmu-swe432/lecture15demos/tree/master/localstoragetodos


Keeping State on the 
Backend



LaToza/Bell GMU SWE 432 Fall 2016

Node and State
• Remember what a node route listener looks like… 
app.get('/', function (req, res) { 
    res.send('Hello World!');  
}); 

• Each time a request comes in, a new callback runs 
• How do we keep track of things? 
• Well…

19
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Recall: Node Architecture
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Node App
Express
Request HandlerNew Request

Request HandlerNew Request

Request HandlerNew Request

Request HandlerNew Request

Request HandlerNew Request

Each new request goes to a new request handler

While the server is running though, it’s all one app handling all requests

Keep state here!
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Keeping State in Node
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• Global variables
var express = require('express');  
var app = express(); 
var port = process.env.port || 3000;  
 
var counter = 0;  
app.get('/', function (req, res) { 
    res.send('Hello World has been said ' + counter + ' times!'); 
    counter++; 
}); 
 
app.listen(port, function () { 
    console.log('Example app listening on port' + port);  
}); 

• Pros/cons? 
• Keep data between requests 
• Goes away when your server stops 

• Should use for transient state or as cache
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Demo: Statefull hello

• https://github.com/gmu-swe432/lecture15demos/
tree/master/statefulhello 
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https://github.com/gmu-swe432/lecture15demos/tree/master/statefulhello
https://github.com/gmu-swe432/lecture15demos/tree/master/statefulhello
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The Bigger Backend State Space

• Databases 
• SQL: MySQL, PostgreSQL, SQL Server, … 
• NoSQL: Firebase, Mongo, … 
• Reference: RESTful todos 

• Files 
• Store arbitrary files on disk 

• JSON 
• Pictures, etc 

• Even better: blob stores

23
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How do we store our files?
• Dealing with text is easy - we already figured out 

firebase 
• Could use other databases too… but that’s another 

class! 
• But 

• What about pictures? 
• What about movies? 
• What about big huge text files? 

• Aka…Binary Large OBject (BLOB) 
• Collection of binary data stored as a single entity 
• Generic terms for an entity that is array of byte

24
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Blobs: Storing uploaded files
• Example: User uploads picture 

• … and then? 
• … somehow process the file?

25
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Working with Blobs
• Module: express-fileupload 

• Long story... can't use body-parser when you are 
taking files 

• Simplest case: take a file, save it on the server 
app.post('/upload', function(req, res) { 
    var sampleFile;  
    sampleFile = req.files.sampleFile; 
    sampleFile.mv('/somewhere/on/your/server/filename.jpg', function(err) { 
        if (err) { 
            res.status(500).send(err); 
        } 
        else {  
            res.send('File uploaded!'); 
        } 
    }); 
});

26
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Where to store blobs
• Saving them on our server is fine, but… 

• What if we don't want to deal with making sure 
we have enough storage 

• What if we don't want to deal with backing up 
those files 

• What if our app has too many requests for one 
server and state needs to be shared between 
load-balanced servers 

• What if we want someone else to deal with 
administering a server

27
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Blob stores
• Amazon, Google, and others want to let you use 

their platform to solve this!
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Client Node 
Backend

Google Cloud

Server

Server

Server

Server

Server

Server

Server

Server

Client

Client

Client

Client

Client

Client

Uploads file

Distributes file
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Blob Stores

Client Node 
Backend

Google Cloud

Server

Server

Server

Server

Server

Server

Server

Server

Uploads file

Returns link

Typical workflow: 
Client uploads file to your backend 
Backend persists file to blob store 
Backend saves link to file, e.g. i
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Google Cloud Storage
• You get to store 5GB for free! 
• Howto: 

• https://www.npmjs.com/package/google-cloud 
• Demo: Todos with images + Blobstore 

• Uses Multer instead of express-fileupload 
• Multer lets you temporarily store a file in 

memory as it goes directly to a remote server 
(rather than save it to your server first) 

• https://github.com/gmu-swe432/
lecture15demos/tree/master/blobstore 
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https://www.npmjs.com/package/google-cloud
https://github.com/gmu-swe432/lecture15demos/tree/master/blobstore
https://github.com/gmu-swe432/lecture15demos/tree/master/blobstore
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Where do we run these backends?

• So, running this on your laptop is not great 
• Who wants to run their own actual server? 
• Solution: 

• App hosting providers 
• Example: Heroku 
• Big infrastructure companies that will deal with 

the annoying stuff for you 
• https://devcenter.heroku.com/articles/getting-

started-with-nodejs
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https://devcenter.heroku.com/articles/getting-started-with-nodejs
https://devcenter.heroku.com/articles/getting-started-with-nodejs
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Heroku
• Once you install Heroku, you communicate via git 
• Instead of just pushing to GitHub, push to Heroku 
• Then Heroku does some magic 
• Do NOT use GHPages + Heroku unless you want extra pain: 

just run your app on Heroku (including frontend)
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Heroku Deployment 
Servers

Server

Server

Server

Server

Server

Server

Server

Server

Your computer
Git
Node App Heroku 

Git Server

GitHub
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Heroku Example
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1: Create account, install Heroku on your machine

3: Type heroku	create and follow instructions

5: Visit your app at the site listed in the result of the push (e.g. https://salty-
depths-97600.herokuapp.com)

2: In our app directory, create file “Procfile” with following contents:
web:	node	app.js Tells Heroku what to do 

when it gets your app

4: git	push	heroku	master Deploys your code

https://salty-depths-97600.herokuapp.com
https://salty-depths-97600.herokuapp.com
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Coming back to the high level

Web “Front 
End”

Our Node 
Backend

Firebase

Other storage

Cookies 
LocalStorage

In Memory Storage 
Maybe some files?

Databases 
Blob stores

Short-lived data In-between? Long-lived data



Exit-Ticket Activity

1: How well did you understand today's material 
2: What did you learn in today's class? 

For question 3: 
What state does your project have?

Go to socrative.com and select “Student Login”
Class: SWE432001 (Prof LaToza) or SWE432002 (Prof Bell)

ID is your @gmu.edu email

You may not submit this activity if you are not present in lecture.
Doing so will be considered academic dishonesty.

http://socrative.com
http://gmu.edu

