
Persistence & State
SWE 432, Fall 2016

Design and Implementation of Software for the Web

LaToza/Bell GMU SWE 432 Fall 2016

Today
• What’s “state” for our web apps?
• How do we store it, where do we store it, and why

there?

2

For further reading:

http://www.w3schools.com/html/html5_webstorage.asp
https://github.com/gmu-swe432/lecture15demos
https://www.npmjs.com/package/google-cloud
https://devcenter.heroku.com/articles/getting-started-with-nodejs

http://www.w3schools.com/html/html5_webstorage.asp
https://github.com/gmu-swe432/lecture15demos
https://www.npmjs.com/package/google-cloud
https://devcenter.heroku.com/articles/getting-started-with-nodejs

What’s “State” in our
web app?

LaToza/Bell GMU SWE 432 Fall 2016

Web App State
• Application state includes all of our data (not code)
• What kinds of data are we concerned about?

• What user is logged in?
• What interactions have they had with us before?
• What data have they given us?
• What data have others given us?

• Where do we store all of these things?

4

LaToza/Bell GMU SWE 432 Fall 2016

State: Example

5

Home page Login

Amazon.com…
Browse

Still logged in

Add to cart

Still logged in

visit
amazon.com

Still logged in,
still have cart…

LaToza/Bell GMU SWE 432 Fall 2016

Where do we save stuff?
• Many options of where we keep our data
• Where do we want to put it?
• How do we get it to where it needs to be?
• Goals:

• Cost
• Efficiency
• Stability

6

Web “Front
End”

Our Node
Backend

Firebase

Other storage

LaToza/Bell GMU SWE 432 Fall 2016

Where do we save stuff?
• Probably depends on how often we need to show it to the user, and

how permanently we need to store it
• Examples:

• What user is logged in? (Transient, relevant to user and backend)
• What’s in my shopping cart? (Semi-transient, relevant to user and

backend)
• What products am I looking at? (Transient, relevant to user)
• What are all of the products (Long-term, parts are relevant to

users)

7

Web “Front
End”

Our Node
Backend

Firebase

Other storage

LaToza/Bell GMU SWE 432 Fall 2016

Where do we save stuff?
• On client

• Data we might need to show again soon
• Fairly small (KB’s or few MBs, not 100 MB’s or GB’s)
• Data we don’t care about going away or being maliciously

manipulated
• In memory on backend

• Data that we are working with that will fit in memory (MB’s
probably not GB’s)

• Transient data that can disappear if the server crashes
• Cache or index of data stored externally

• On backend disk, database, or storage service(e.g., Firebase)
• Data we need persisted “permanently”
• Even if we’ll be accessing it a lot, maybe we’ll cache it

somewhere so OK to pay performance penalty

8

LaToza/Bell GMU SWE 432 Fall 2016

Client Side State
• Original form of client state: Cookies
• Motivation:

• We want to correlate multiple requests
• But HTTP is stateless

9

LaToza/Bell GMU SWE 432 Fall 2016

Cookies
• String associated with a name/domain/path, stored at the

browser
• Series of name-value pairs, interpreted by the web application
• Create in HTTP response with “Set-Cookie: ”
• In all subsequent requests to this site, until cookie’s

expiration, the client sends the HTTP header “Cookie: ”
• Often have an expiration (otherwise expire when browser

closed)
• Various technical, privacy and security issues

• Inconsistent state after using “back” button, third-party
cookies, cross-site scripting, …

10

LaToza/Bell GMU SWE 432 Fall 2016

Maintaining Client Side State

11

Web “Front End” Server “Back End”

HTTP GET http://api.wunderground.com/api/
3bee87321900cf14/conditions/q/VA/Fairfax.json

HTTP Request

HTTP Response
HTTP/1.1 200 OK
Server: Apache/2.2.15 (CentOS)
Access-Control-Allow-Origin: *
Access-Control-Allow-Credentials: true
X-CreationTime: 0.134
Last-Modified: Mon, 19 Sep 2016 17:37:52 GMT
Content-Type: application/json; charset=UTF-8
Expires: Mon, 19 Sep 2016 17:38:42 GMT
Cache-Control: max-age=0, no-cache
Pragma: no-cache
Date: Mon, 19 Sep 2016 17:38:42 GMT
Content-Length: 2589
Connection: keep-alive

{
 "response": {
 "version":"0.1",
 "termsofService":"http://www.wunderground.com/weather/api/d/terms.html",
 "features": {

How do we track request-response pairs?

LaToza/Bell GMU SWE 432 Fall 2016

Cookies and Requests

12

Web “Front End” Server “Back End”

HTTP Response
HTTP/1.1 200 OK
...
Set-Cookie: class=swe432
...

HTTP Request
GET / HTTP/1.1
...
Cookie: class=swe432
...

HTTP Request

HTTP Response

HTTP Request
GET / HTTP/1.1
...
Cookie: class=swe432
...

HTTP Response

LaToza/Bell GMU SWE 432 Fall 2016

Cookies & NodeJS
• Use the cookieParser module
• Stateful Hello World:
var express = require('express'); 
var cookieParser = require('cookie-parser'); 
 
var app = express(); 
var port = process.env.port || 3000;  
app.use(cookieParser()); 
app.get('/', function (req, res) { 
 if(req.cookies.helloSent == "true")  
 res.send("I already said hello to you!"); 
 else 
 res.cookie("helloSent","true").send('Hello World!'); 
}); 
 
app.listen(port, function () { 
 console.log('Example app listening on port' + port); 
});

• Can see cookies in Chrome under “Privacy”

13

LaToza/Bell GMU SWE 432 Fall 2016

Cookies Demo

• https://github.com/gmu-swe432/lecture15demos/
tree/master/cookieshello

14

https://github.com/gmu-swe432/lecture15demos/tree/master/cookieshello
https://github.com/gmu-swe432/lecture15demos/tree/master/cookieshello

LaToza/Bell GMU SWE 432 Fall 2016

More complex state on frontend

• The most cookies you can have: 4KB (TOTAL per
DOMAIN)

• Old solution:
• Cookie is a key to some data stored on server
• When client makes a request, server always

includes this “extra data” being stored on server
• What’s wrong with this old solution?

• Really slow - have to repetitively pass this same
data back and forth

15

LaToza/Bell GMU SWE 432 Fall 2016

LocalStorage
• Hooray, HTML5:

localStorage (Sticks around forever) 
sessionStorage (Sticks around until tab is closed)

• And two functions:
setItem(“key","value");
getItem(“key”);

var id = localStorage.getItem(“userID”);

• Can store any string
• All pages in the same domain see the same

localStorage and sessionStorage
• Alternatively: SQLite (SQL DB) that you can use in JS…

16

LaToza/Bell GMU SWE 432 Fall 2016

Demo: LocalStorage

17

https://github.com/gmu-swe432/lecture15demos/tree/master/
localstoragetodos

https://github.com/gmu-swe432/lecture15demos/tree/master/localstoragetodos
https://github.com/gmu-swe432/lecture15demos/tree/master/localstoragetodos

Keeping State on the
Backend

LaToza/Bell GMU SWE 432 Fall 2016

Node and State
• Remember what a node route listener looks like…
app.get('/', function (req, res) { 
 res.send('Hello World!');  
});

• Each time a request comes in, a new callback runs
• How do we keep track of things?
• Well…

19

LaToza/Bell GMU SWE 432 Fall 2016

Recall: Node Architecture

20

Node App
Express
Request HandlerNew Request

Request HandlerNew Request

Request HandlerNew Request

Request HandlerNew Request

Request HandlerNew Request

Each new request goes to a new request handler

While the server is running though, it’s all one app handling all requests

Keep state here!

LaToza/Bell GMU SWE 432 Fall 2016

Keeping State in Node

21

• Global variables
var express = require('express');  
var app = express(); 
var port = process.env.port || 3000;  
 
var counter = 0;  
app.get('/', function (req, res) { 
 res.send('Hello World has been said ' + counter + ' times!'); 
 counter++; 
}); 
 
app.listen(port, function () { 
 console.log('Example app listening on port' + port);  
});

• Pros/cons?
• Keep data between requests
• Goes away when your server stops

• Should use for transient state or as cache

LaToza/Bell GMU SWE 432 Fall 2016

Demo: Statefull hello

• https://github.com/gmu-swe432/lecture15demos/
tree/master/statefulhello

22

https://github.com/gmu-swe432/lecture15demos/tree/master/statefulhello
https://github.com/gmu-swe432/lecture15demos/tree/master/statefulhello

LaToza/Bell GMU SWE 432 Fall 2016

The Bigger Backend State Space

• Databases
• SQL: MySQL, PostgreSQL, SQL Server, …
• NoSQL: Firebase, Mongo, …
• Reference: RESTful todos

• Files
• Store arbitrary files on disk

• JSON
• Pictures, etc

• Even better: blob stores

23

LaToza/Bell GMU SWE 432 Fall 2016

How do we store our files?
• Dealing with text is easy - we already figured out

firebase
• Could use other databases too… but that’s another

class!
• But

• What about pictures?
• What about movies?
• What about big huge text files?

• Aka…Binary Large OBject (BLOB)
• Collection of binary data stored as a single entity
• Generic terms for an entity that is array of byte

24

LaToza/Bell GMU SWE 432 Fall 2016

Blobs: Storing uploaded files
• Example: User uploads picture

• … and then?
• … somehow process the file?

25

LaToza/Bell GMU SWE 432 Fall 2016

Working with Blobs
• Module: express-fileupload

• Long story... can't use body-parser when you are
taking files

• Simplest case: take a file, save it on the server
app.post('/upload', function(req, res) { 
 var sampleFile;  
 sampleFile = req.files.sampleFile; 
 sampleFile.mv('/somewhere/on/your/server/filename.jpg', function(err) { 
 if (err) { 
 res.status(500).send(err); 
 } 
 else {  
 res.send('File uploaded!'); 
 } 
 }); 
});

26

LaToza/Bell GMU SWE 432 Fall 2016

Where to store blobs
• Saving them on our server is fine, but…

• What if we don't want to deal with making sure
we have enough storage

• What if we don't want to deal with backing up
those files

• What if our app has too many requests for one
server and state needs to be shared between
load-balanced servers

• What if we want someone else to deal with
administering a server

27

LaToza/Bell GMU SWE 432 Fall 2016

Blob stores
• Amazon, Google, and others want to let you use

their platform to solve this!

28

Client Node
Backend

Google Cloud

Server

Server

Server

Server

Server

Server

Server

Server

Client

Client

Client

Client

Client

Client

Uploads file

Distributes file

LaToza/Bell GMU SWE 432 Fall 2016 29

Blob Stores

Client Node
Backend

Google Cloud

Server

Server

Server

Server

Server

Server

Server

Server

Uploads file

Returns link

Typical workflow:
Client uploads file to your backend
Backend persists file to blob store
Backend saves link to file, e.g. i

LaToza/Bell GMU SWE 432 Fall 2016

Google Cloud Storage
• You get to store 5GB for free!
• Howto:

• https://www.npmjs.com/package/google-cloud
• Demo: Todos with images + Blobstore

• Uses Multer instead of express-fileupload
• Multer lets you temporarily store a file in

memory as it goes directly to a remote server
(rather than save it to your server first)

• https://github.com/gmu-swe432/
lecture15demos/tree/master/blobstore

30

https://www.npmjs.com/package/google-cloud
https://github.com/gmu-swe432/lecture15demos/tree/master/blobstore
https://github.com/gmu-swe432/lecture15demos/tree/master/blobstore

LaToza/Bell GMU SWE 432 Fall 2016

Where do we run these backends?

• So, running this on your laptop is not great
• Who wants to run their own actual server?
• Solution:

• App hosting providers
• Example: Heroku
• Big infrastructure companies that will deal with

the annoying stuff for you
• https://devcenter.heroku.com/articles/getting-

started-with-nodejs

31

https://devcenter.heroku.com/articles/getting-started-with-nodejs
https://devcenter.heroku.com/articles/getting-started-with-nodejs

LaToza/Bell GMU SWE 432 Fall 2016

Heroku
• Once you install Heroku, you communicate via git
• Instead of just pushing to GitHub, push to Heroku
• Then Heroku does some magic
• Do NOT use GHPages + Heroku unless you want extra pain:

just run your app on Heroku (including frontend)

32

Heroku Deployment
Servers

Server

Server

Server

Server

Server

Server

Server

Server

Your computer
Git
Node App Heroku

Git Server

GitHub

LaToza/Bell GMU SWE 432 Fall 2016

Heroku Example

33

1: Create account, install Heroku on your machine

3: Type heroku	create and follow instructions

5: Visit your app at the site listed in the result of the push (e.g. https://salty-
depths-97600.herokuapp.com)

2: In our app directory, create file “Procfile” with following contents:
web:	node	app.js Tells Heroku what to do

when it gets your app

4: git	push	heroku	master Deploys your code

https://salty-depths-97600.herokuapp.com
https://salty-depths-97600.herokuapp.com

LaToza/Bell GMU SWE 432 Fall 2016 34

Coming back to the high level

Web “Front
End”

Our Node
Backend

Firebase

Other storage

Cookies
LocalStorage

In Memory Storage
Maybe some files?

Databases
Blob stores

Short-lived data In-between? Long-lived data

Exit-Ticket Activity

1: How well did you understand today's material
2: What did you learn in today's class?

For question 3:
What state does your project have?

Go to socrative.com and select “Student Login”
Class: SWE432001 (Prof LaToza) or SWE432002 (Prof Bell)

ID is your @gmu.edu email

You may not submit this activity if you are not present in lecture.
Doing so will be considered academic dishonesty.

http://socrative.com
http://gmu.edu

