
Microservices +
Authentication

SWE 432, Fall 2016
Design and Implementation of Software for the Web

LaToza/Bell GMU SWE 432 Fall 2016

Today
• How do we split up the different modules of our

apps?
• Services vs Modules

• Practical: Authentication services

2

For further reading:
http://www.martinfowler.com/articles/microservices.html
https://blog.karmawifi.com/how-we-build-microservices-

at-karma-71497a89bfb4#.54o4pr8nd
http://techblog.netflix.com/search?q=microservices

http://www.martinfowler.com/articles/microservices.html
https://blog.karmawifi.com/how-we-build-microservices-at-karma-71497a89bfb4#.54o4pr8nd
https://blog.karmawifi.com/how-we-build-microservices-at-karma-71497a89bfb4#.54o4pr8nd
http://techblog.netflix.com/search?q=microservices

LaToza/Bell GMU SWE 432 Fall 2016

How do we build big apps?

3

Our Cool App

Frontend

Backend
Server

Database

What happens when we want to add more functionality to our
backend?

Basic todo app

LaToza/Bell GMU SWE 432 Fall 2016

How do we build big apps?

4

Our Cool App

Frontend

Backend Server

Database

What happens when we add more functionality?

Basic todo app with new
feature to email todo

reminders

LaToza/Bell GMU SWE 432 Fall 2016

How do we build big apps?

5

Our Cool App

Frontend

Backend Server

Database

But we learned about modules, so our backend isn’t total
spaghetti but rather…

Basic todo app with new
feature to email todo

reminders PLUS something
to find events on Facebook
and create Todos for them

LaToza/Bell GMU SWE 432 Fall 2016

How do we build big apps?

6

Our Cool App

Frontend

Backend Server

Database

Mod 1 Mod 2

Mod 3 Mod 4

Mod 5 Mod 6

Our backend is not an unorganized mess, but instead
organized into modules. Now how do we scale it? Run

multiple backends?

LaToza/Bell GMU SWE 432 Fall 2016

Now how do we scale it?

7

Our Cool App

Backend Server

Database

Backend Server Backend Server

Mod 1 Mod 2

Mod 3 Mod 4

Mod 5 Mod 6

Mod 1 Mod 2

Mod 3 Mod 4

Mod 5 Mod 6

Mod 1 Mod 2

Mod 3 Mod 4

Mod 5 Mod 6

We run multiple copies of the backend, each with each of
the modules

Frontend

LaToza/Bell GMU SWE 432 Fall 2016

What's wrong with this picture?
• This is called the “monolithic”

app
• If we need 100 servers…
• Each server will have to run

EACH module
• What if we need more of some

modules than others?
• How do we update individual

modules?
• Do all modules need to use

the same DB and language,
runtime etc?

8

Our Cool App

Backend Server

Database

Backend Server Backend Server
Mod 1 Mod 2

Mod 3 Mod 4

Mod 5 Mod 6

Mod 1 Mod 2

Mod 3 Mod 4

Mod 5 Mod 6

Mod 1 Mod 2

Mod 3 Mod 4

Mod 5 Mod 6

Frontend

LaToza/Bell GMU SWE 432 Fall 2016

Microservices

9

Our Cool App

Frontend

“Dumb”
Backend

Mod 1

REST
service

Database

Mod 2

REST
service

Database

Mod 3

REST
service

Database

Mod 4

REST
service

Database

Mod 5

REST
service

Database

Mod 6

REST
service

Database

AJAX

Todos
NodeJS, Firebase

Mailer
Java, MySQL

Accounts
Google Service

Search Engine

Java, Neo4J

Analytics

C#, SQLServer

Facebook Crawler

Python, Firebase

LaToza/Bell GMU SWE 432 Fall 2016

What’s good about this picture?
• Spaghetti is contained
• Components can be developed

totally independently
• Different languages, runtimes,

OS, hardware, DB
• Components can be replaced easily

• Could even change technology
entirely (or use legacy service)

• Can scale individual components at
different rates

• Components may require
different levels of resources

10

Our Cool App

Frontend

“Dumb”
Backend

Mod 1

REST service

Database

Mod 2

REST service

Database

Mod 3

REST service

Database

Mod 4

REST service

Database

Mod 5

REST service

Database

Mod 6

REST service

Database

AJAX

Todos

NodeJS, Firebase

Mailer

Java, MySQL

Accounts

Google Service

Search Engine

Java, Neo4J

Analytics

C#, SQLServer

Facebook Crawler

Python, Firebase

Mod 4

REST service

Database

Search Engine

Java, Neo4J

Mod 4

REST service

Database

Search Engine

Java, Neo4J

Mod 4

REST service

Database

Search Engine

Java, Neo4J

LaToza/Bell GMU SWE 432 Fall 2016

Requirements for successful microservices

• 1 component = 1 service
• 1 business use case = 1 component
• Smart endpoints, dumb pipes
• Decentralized governance
• Decentralized data management
• Infrastructure automation
• Design for failure
• Evolutionary design

11

LaToza/Bell GMU SWE 432 Fall 2016

How big is a component?
• Metaphor: Building a stereo system
• Components are independently replaceable
• Components are independently updatable
• This means that they can be also independently

developed, tested, etc
• Components can be built as:

• Library (e.g. module)
• Service (e.g. web service)

12

LaToza/Bell GMU SWE 432 Fall 2016

Components as Libraries or Services?

• Microservices says 1 service per component
• This means that we can:

• Develop them independently
• Upgrade the independently
• Have ZERO coupling between components,

aside from their shared interface

13

LaToza/Bell GMU SWE 432 Fall 2016

Organization around business capabilities

14

Frontend

Backend

Database

Classic teams:
1 team per “tier”Orders, shipping, catalog

Orders, shipping, catalog

Orders, shipping, catalog

LaToza/Bell GMU SWE 432 Fall 2016

Organization around business capabilities

15

Orders

Shipping

Catalog

Example: Amazon

Teams can focus on one
business task

And be responsible
directly to users

“Full Stack”

“2 pizza teams”

LaToza/Bell GMU SWE 432 Fall 2016

Decentralized Data Management

• Decentralizes implementation decisions
• Services exchange data ONLY through their

exposed APIs - NO shared databases
• Allows each service to manage data in the way that

makes the most sense for that service

16

LaToza/Bell GMU SWE 432 Fall 2016

Infrastructure Automation (Teaser for next
week)

• To effectively use microservices, you’ll probably be:
• Developing services independently
• Deploying services independently (and often)

• MUST HAVE:
• Rapid provisioning of servers so you can take

advantage of scaling
• Monitoring to see when things aren’t talking nicely
• Rapid deployment of new/updated services
• Strong culture of integration between those doing the

monitoring and those doing the development ("devops")
• Key to successfully using microservices is automating all

of this
• We’ll talk about this stuff more next lecture

17

LaToza/Bell GMU SWE 432 Fall 2016

Design for Failure
• Our system picture has gotten a lot more complicated
• Lots more moving pieces that might fail:

• Services might have bugs
• Services might be slow to respond
• Entire servers might go down

• If I have 60,000 HD’s, 3 fail a day
• Key: design every service assuming that at some

point, everything it depends on might disappear -
must fail “gracefully”

• Netflix simulates this constantly with “ChaosMonkey”

18

LaToza/Bell GMU SWE 432 Fall 2016

Maintaining Consistency
• One of our rules was “no shared

database”
• But surely some data will be

shared
• Updates are sent via AJAX…
• No guarantee that those

updates occur immediately
• Instead, guarantee that they

occur eventually
• Can force some ordering, but

that’s expensive

19

Our Cool App

Frontend

“Dumb”
Backend

Mod 1

REST service

Database

Mod 2

REST service

Database

Mod 3

REST service

Database

Mod 4

REST service

Database

Mod 5

REST service

Database

Mod 6

REST service

Database

AJAX

Todos

NodeJS, Firebase

Mailer

Java, MySQL

Accounts

Google Service

Search Engine

Java, Neo4J

Analytics

C#, SQLServer

Facebook Crawler

Python, Firebase

LaToza/Bell GMU SWE 432 Fall 2016

Maintaining Consistency

• Core problem: different services may respond to requests at different
times.
• What if a request results in change to resource in one service, but

other service has not yet processed corresponding request?
• May end up with different states in different resources.
• Logic needs to be written to correctly handle such situations.

20

Our Cool App

Frontend

“Dumb”
Backend

Mod 1

REST service

Database

Mod 2

REST service

Database

Mod 3

REST service

Database

Mod 4

REST service

Database

Mod 5

REST service

Database

Mod 6

REST service

Database

AJAX

Todos

NodeJS, Firebase

Mailer

Java, MySQL

Accounts

Google Service

Search Engine

Java, Neo4J

Analytics

C#, SQLServer

Facebook Crawler

Python, Firebase

LaToza/Bell GMU SWE 432 Fall 2016

When to use?
• Monolith:

• Simplicity
• Microservices require distributed computing, a lot of async

business…
• Consistency
• Easy to refactor what's in 1 module vs another - better early on

• Microservice:
• Partial deployment

• Netflix benefited big from this - hourly/daily updates to
components

• Availability - even if one service goes down, the rest stays up
• Modularity is enforced
• Easy to use multiple platforms

• Often times, might have something of a hybrid

21

LaToza/Bell GMU SWE 432 Fall 2016

Microservices & Authentication
• If using microservices, how do we decide who is

logged in?
• Typical solution: Sign-on gateway

22

Our Cool App

Frontend

“Dumb”
Backend

Mod 1

REST service

Database

Mod 2

REST service

Database

Mod 3

REST service

Database

Mod 4

REST service

Database

Mod 5

REST service

Database

Mod 6

REST service

Database

AJAX

Todos

NodeJS, Firebase

Mailer

Java, MySQL

Accounts

Google Service

Search Engine

Java, Neo4J

Analytics

C#, SQLServer

Facebook

Python, Firebase

LaToza/Bell GMU SWE 432 Fall 2016

Microservices & Authentication
• If using microservices, how do we decide who is

logged in?
• Typical solution: Sign-on gateway

23

Our Cool App

Frontend
“Dumb”
Backend

Mod 1

REST service

Database

Mod 2

REST service

Database

Mod 3

REST service

Database

Mod 4

REST service

Database

Mod 5

REST service

Database

Mod 6

REST service

Database

AJAX

Todos

NodeJS, Firebase

Mailer

Java, MySQL

Accounts

Google Service

Search Engine

Java, Neo4J

Analytics

C#, SQLServer

Facebook

Python, Firebase

Sign-on
gateway

Unauthenticated
request Authenticated

request

LaToza/Bell GMU SWE 432 Fall 2016

Authentication & Authorization
• Putting this sign on gateway will ensure that people

are signed in
• But how do we ensure that someone is authorized

to view some given data or make some request?
• Role of individual services to check back (either

with authorization service, or some other service)

24

LaToza/Bell GMU SWE 432 Fall 2016

Bigger picture - authentication with
multiple service providers

• Let’s consider updating our Todos app so that it
can automatically put calendar events on my
Google Calendar

25

Mod 1

REST
service

Database

Todos

Prof LaToza

Logs into,
posts new todo

Google
Calendar
API

Connects as user,
creates new event

How does Todos tell Google that it’s posting something for Prof LaToza?
Should Prof LaToza tell the Todos app his Google password?

LaToza/Bell GMU SWE 432 Fall 2016 26

We’ve got something for that…

LaToza/Bell GMU SWE 432 Fall 2016

OAuth
• OAuth is a standard protocol for sharing information

about users from a “service provider” to a “consumer
app” without them disclosing their password to the
consumer app

• 3 key actors:
• User, consumer app, service provider app
• E.x. “Prof LaToza,” “Todos App,” “Google Calendar”

• Service provider issues a token on the user’s behalf that
the consumer can use

• Consumer holds onto this token on behalf of the user
• Protocol could be considered a conversation…

27

LaToza/Bell GMU SWE 432 Fall 2016 28

An OAuth Conversation

TodosApp

Google Calendar

User

1: intent

2: permission
(to ask)

3: re
direct

to provider

4: permission to share
5:

 to
ke

n
cr

ea
te

d

6: Access resource

Goal: TodosApp can post events to User’s calendar.
TodosApp never finds out User’s email or password

LaToza/Bell GMU SWE 432 Fall 2016 29

Tokens?

Example token:
eyJhbGciOiJSUzI1NiIsImtpZCI6ImU3Yjg2NjFjMGUwM2Y3ZTk3NjQyNGUxZWFiMzI5OWIxNzRhNGVlNWUifQ.eyJpc3MiOiJodHRwczovL3NlY3VyZXRva
2VuLmdvb2dsZS5jb20vYXV0aGRlbW8tNzJhNDIiLCJuYW1lIjoiSm9uYXRoYW4gQmVsbCIsInBpY3R1cmUiOiJodHRwczovL2xoNS5nb29nbGV1c2VyY29ud
GVudC5jb20vLW0tT29jRlU1R0x3L0FBQUFBQUFBQUFJL0FBQUFBQUFBQUgwL0JVV2tONkRtTVJrL3Bob3RvLmpwZyIsImF1ZCI6ImF1dGhkZW1vLTcyYTQyI
iwiYXV0aF90aW1lIjoxNDc3NTI5MzcxLCJ1c2VyX2lkIjoiSk1RclFpdTlTUlRkeDY0YlR5Z0EzeHhEY3VIMiIsInN1YiI6IkpNUXJRaXU5U1JUZHg2NGJUe
WdBM3h4RGN1SDIiLCJpYXQiOjE0Nzc1MzA4ODUsImV4cCI6MTQ3NzUzNDQ4NSwiZW1haWwiOiJqb25iZWxsd2l0aG5vaEBnbWFpbC5jb20iLCJlbWFpbF92Z
XJpZmllZCI6dHJ1ZSwiZmlyZWJhc2UiOnsiaWRlbnRpdGllcyI6eyJnb29nbGUuY29tIjpbIjEwOTA0MDM1MjU3NDMxMjE1NDIxNiJdLCJlbWFpbCI6WyJqb
25iZWxsd2l0aG5vaEBnbWFpbC5jb20iXX0sInNpZ25faW5fcHJvdmlkZXIiOiJnb29nbGUuY29tIn19.rw1pPK377hDGmSaX31uKRphKt4i79aHjceepnA8A
2MppBQnPJlCqmgSapxs-Pwmp-1Jk382VooRwc8TfL6E1UQUl65yi2aYYzSx3mWMTWtPTHTkMN4E-GNprp7hX-
pqD3PncBh1bq1dThPNyjHLp3CUlPPO_QwaAeSuG5xALhzfYkvLSINty4FguD9vLHydpVHWscBNCDHACOqSeV5MzUs6ZYMnBIitFhbkak6z5OClvxGTGMhvI8
m11hIHdWgNGnDQNNoosiifzlwMqDHiF5t3KOL-mxtcNq33TvMAc43JElxnyB4g7qV2hJIOy4MLtLxphAfCeQZA3sxGf7vDXBQ

A token is a secret value. Holding it gives us access to some
privileged data. The token identifies our users and app.

{  
 "iss": "https://securetoken.google.com/authdemo-72a42",  
 "name": “Thomas LaToza",  
 "picture": "https://lh5.googleusercontent.com/-m-OocFU5GLw/AAAAAAAAAAI/AAAAAAAAAH0/BUWkN6DmMRk/photo.jpg",  
 "aud": "authdemo-72a42",  
 "auth_time": 1477529371,  
 "user_id": "JMQrQiu9SRTdx64bTygA3xxDcuH2",  
 "sub": "JMQrQiu9SRTdx64bTygA3xxDcuH2",  
 "iat": 1477530885,  
 "exp": 1477534485,  
 "email": "latoza@gmail.com",  
 "email_verified": true,  
 "firebase": { 
 "identities": { 
 "google.com": ["109040352574312154216"], 
 "email": ["latoza@gmail.com"]  
 }, 
 "sign_in_provider": "google.com" 
},  
 "uid": "JMQrQiu9SRTdx64bTygA3xxDcuH2" 
}

Decoded:

LaToza/Bell GMU SWE 432 Fall 2016

Trust in OAuth
• How does the Service

provider (Google calendar)
know what the TodosApp
is?

• Solution: When you set up
OAuth for the first time, you
must register your
consumer app with the
service provider

• Let the user decide
• … they were the one who

clicked the link after all

30

TodosApp Google CalendarUser

Evil TodosApp

LaToza/Bell GMU SWE 432 Fall 2016

Authentication as a Service
• Whether we are building “microservices” or not,

might make sense to farm out our authentication
(user registration/logins) to another service

• Why?
• Security
• Reliability
• Convenience

• We can use OAuth for this!
• We’re going to use Firebase’s authentication API in

our homework this week

31

LaToza/Bell GMU SWE 432 Fall 2016 32

Using an Authentication Service

Firebase

User

1: intent

2: permission
(to ask)

3: re
direct

to provider

4: permission to share
5:

 to
ke

n
cr

ea
te

d
6: Access resource

LaToza/Bell GMU SWE 432 Fall 2016

Firebase Authentication
• Firebase provides an entire suite of authentication

services you can use to build into your app
• Can either use “federated” logins (e.g. login with

google, facebook, GitHub credentials) or simple email/
password logins. Use whichever you want.

• Getting started guide: https://github.com/firebase/
FirebaseUI-Web

• For backend: https://firebase.google.com/docs/auth/
server/verify-id-tokens

• Firebase handles browser local storage to track that the
user is logged in across pages (woo)

33

https://github.com/firebase/FirebaseUI-Web
https://github.com/firebase/FirebaseUI-Web
https://firebase.google.com/docs/auth/server/verify-id-tokens
https://firebase.google.com/docs/auth/server/verify-id-tokens

LaToza/Bell GMU SWE 432 Fall 2016

Firebase Authentication
• We can update our firebase database rules so that:

• Every user gets their own area
• No user can read another user’s area
• Only our sweet backend server (with a private

key called “sweetbackend” can write)

34

LaToza/Bell GMU SWE 432 Fall 2016

OAuth + Heroku
• Normally we set up our OAuth server so that it will

only send the result of a login back to our own
server

• Could be a security vulnerability if someone else
could get it

35

Heroku Gotcha!

LaToza/Bell GMU SWE 432 Fall 2016

Demo
• In our demo, we’ll add Google login to our todo

app
• We’ll let Firebase manage client side logins
• When the client talks to our backend, it will send its

token

36

Exit-Ticket Activity

1: How well did you understand today's material
2: What did you learn in today's class?

For question 3:
Do you think your app could benefit from microservices?

Go to socrative.com and select “Student Login”
Class: SWE432001 (Prof LaToza) or SWE432002 (Prof Bell)

ID is your @gmu.edu email

You may not submit this activity if you are not present in lecture.
Doing so will be considered academic dishonesty.

http://socrative.com
http://gmu.edu

