
Tools
SWE 432, Fall 2016

Design and Implementation of Software for the Web

LaToza/Bell GMU SWE 432 Fall 2016

Today
• Before we can really make anything, there’s a

bunch of technical stuff to get out of the way

• Tools make our lives so much easier

• Actually, this is what a lot of software engineering
research is - making better tools for making
software!

• Today we’ll cover version control, and some really
basic hello world stuff in HTML* and Javascript*

2

*See next 2 lectures for a lot more detail

Version Control

We’ve always had some
kind of version control

Carbon copies?

LaToza/Bell GMU SWE 432 Fall 2016

Git
• One of the latest generation of Version Control

Systems (VCS)

• Came out of the Linux development community

• Fast

• Supports non-linear development

• Fully distributed (no need for “central” server)

• Able to handle large projects effectively

5

Linear vs Nonlinear
Development

Distribution Model
Centralized Model

Examples:
CVS, Subversion, Perforce

Distribution Model
Centralized Model Distributed Model

Examples:
CVS, Subversion, Perforce Examples:

Git, Mercurial
No central point of failure

No latency when doing most operations

LaToza/Bell GMU SWE 432 Fall 2016

GitHub
• You don’t need a central server to use git

• But it sure makes it easier

• GitHub: Free open source hosting site

• For students, free private repositories too!

• Set up a user account

• Create a repository

• Add collaborators

9

LaToza/Bell GMU SWE 432 Fall 2016

Local repository

Git’s local repository

Index

Git’s local record of changes

Git, High level

10

add commit

commit	-a

Workspace

E.g. The files you see

Remote repository

E.g. GitHub

push

pull

fetch
checkout

diff

Github

Person 1 Person 2

Typical Use Case

Create Project & Repo

Edit/commit

Edit/commit

Edit/commit
Edit/commit

Push to Github Clone from Github
Edit/commit/push

Pull/push

Pull/push

Edit/commit

Git Demo
https://try.github.io/levels/1/challenges/1

Also: Git Cheat Sheet
https://services.github.com/kit/downloads/github-git-cheat-

sheet.pdf

Download and install git:
https://git-scm.com/downloads

https://try.github.io/levels/1/challenges/1
https://services.github.com/kit/downloads/github-git-cheat-sheet.pdf
https://git-scm.com/downloads

Chrome Developer Tools
+ HTML + JavaScript

LaToza/Bell GMU SWE 432 Fall 2016

Chrome Developer Tools
• A suite of tools built into Chrome (Safari and other browsers have

similar tools) to help with debugging web apps

• Key features:

• View the HTML elements that make up the current page

• Access a JavaScript Console

• View all supplemental files loaded by a page

• View all outbound requests that a page made

• Plus more (we’ll skip for now)

• Let’s all open Chrome together now!

14

Accessing Chrome Dev Tools

Inspecting HTML
Elements

Click the inspector to highlight actual HTML elements
in browser

After highlighting an element in the browser, the
“elements” section filters to highlight the code that

generates that element

Works both ways: Highlight some HTML in the
Elements panel, see the corresponding part of the

page be highlighted

You can even change the HTML or CSS!

You can even change the HTML or CSS!

You can even change the HTML or CSS!

Using the JavaScript
Console

Sources Panel

View and edit CSS and JavaScript files (we’ll talk about
that later!)

Network Panel

View all resources loaded in a timeline

Let’s spend 5 minutes
playing with Chrome

Developer Tools

IDEs

LaToza/Bell GMU SWE 432 Fall 2016

Integrated Development Environments
(IDEs)

• Integrates everything you need to develop into a
single environment

• E.g. text editor (with complex highlighting, auto
complete, etc), version control access, debugger, etc.

• You don’t have to use one. It sure makes things handy
though!

• We recommend you use WebStorm for this class. You
can get a free student license: https://
www.jetbrains.com/student/

33

https://www.jetbrains.com/student/

Node.js

LaToza/Bell GMU SWE 432 Fall 2016

Node.js
• Node.js is not a web server

• Node.js is a runtime for JavaScript based on
Chrome’s JavaScript runtime

• Uses an event-driven, non-blocking I/O model

• Your code runs single threaded

• Has a large ecosystem of packages (npm)

35

Non-Blocking I/O
Regular (blocking) I/O Non-Blocking I/O

App Network

Read

Data Returned

App waits for response

App Network

Read

Data Returned

App can do other things

LaToza/Bell GMU SWE 432 Fall 2016

Event-Driven Programming

37

Procedural

Done?

Does stuff

Calls some
methods

Main

Event-Driven

Wait for Events

Call Event Handler

Event-driven
programming relies on

non-blocking I/O

Non-blocking I/O is easy
with events… data being
returned is just an event!

LaToza/Bell GMU SWE 432 Fall 2016

Packages
• Easily re-use libraries written by others

• npm manages libraries that your app uses: it
downloads them, keeps them up to date, and
ensures that they are in the right spot

• Example packages:

• express (web server)

• gulp (build system)

38

LaToza/Bell GMU SWE 432 Fall 2016

Node.js Getting Started
• Download and install it: https://nodejs.org/en/

• We recommend v4.5.0 LTS (LTS -> Long Term
Support, designed to be super stable)

• Demo: Hello world server

• Demo will show:

• Using package manager to get a package
(express)

• Running a simple node application

39

https://nodejs.org/en/

Demo: Hello World Server
1: Make a directory, myapp

2: Enter that directory, type npm	init (accept all defaults)

3: Type npm	install	express	--save

var	express	=	require('express');	
var	app	=	express();	
var	port	=	process.env.port	||	3000;		
app.get('/',	function	(req,	res)	{	
		res.send('Hello	World!');	
});	

app.listen(port,	function	()	{	
		console.log('Example	app	listening	on	port'	+	port);	
});

4: Create text file app.js:

5: Type node	app.js
6: Point your browser to http://localhost:3000

Creates a configuration file
for your project

Tells NPM that you want to use
express, and to save that in your

project config

Let’s not worry about JavaScript
syntax until next Thursday!

Runs your app

http://localhost:3000

Building & Grunt

LaToza/Bell GMU SWE 432 Fall 2016

Build Systems & JavaScript
• You’ve probably used a build system before

• Make, ant, maven, gradle, etc.

• Apps written in JavaScript get a build system too!

• Need to package together modules that we use, possibly also compile
the JavaScript into some intermediate language before running it

• Why use a build system?

• Builds should be repeatable

• Builds should be reproducible

• Builds should be standard

42

LaToza/Bell GMU SWE 432 Fall 2016

What else does a build system do for JS?

• Transcompile

• Transform modules

• Minification

• Preprocess stylesheets

• Cache Busting

• Image Optimization

• Run Tests

43

LaToza/Bell GMU SWE 432 Fall 2016

Grunt: A JS Build System
• One of many build systems for JS

• Configuration is written in JS

• Grunt is installed as an npm module (see http://
gruntjs.com/getting-started)

44

http://gruntjs.com/getting-started

LaToza/Bell GMU SWE 432 Fall 2016

Example Grunt Configuration

45

module.exports = function(grunt) {

 // Project configuration.
 grunt.initConfig({
 pkg: grunt.file.readJSON('package.json'),
 uglify: {
 options: {
 banner: '/*! <%= pkg.name %> <%= grunt.template.today("yyyy-mm-dd") %> */\n'
 },
 build: {
 src: 'src/<%= pkg.name %>.js',
 dest: 'build/<%= pkg.name %>.min.js'
 }
 }
 });

 // Load the plugin that provides the "uglify" task.
 grunt.loadNpmTasks('grunt-contrib-uglify');

 // Default task(s).
 grunt.registerTask('default', ['uglify']);

};

Deploying & Heroku

LaToza/Bell GMU SWE 432 Fall 2016

Deployment
• Our little hello world example was cool, but how do

we share with our friends?

• We need somewhere to run our node scripts

• Option 1: Use a machine that you have access to

• Option 2: Use a deployment service

47

LaToza/Bell GMU SWE 432 Fall 2016

Heroku

48

Github

Create Project & Repo

Edit/commit
Edit/commit

Push to Github

Pull/push

Edit/commit

Heroku

Push

Magic deployment!

Hosts personal projects for free
Uses git as an interface

Heroku Example!
Let’s adapt our example to run on Heroku

(See https://devcenter.heroku.com/articles/getting-started-
with-nodejs for reference)

https://devcenter.heroku.com/articles/getting-started-with-nodejs

Heroku Example
1: Create account, install Heroku on your machine

4: Type heroku	create and follow instructions

6: Visit your app at the site listed in the result of the push (e.g. https://salty-
depths-97600.herokuapp.com)

2: In our app directory, create file “Procfile” with following contents:
web:	node	app.js Tells Heroku what to do

when it gets your app

3: Make the app a git repository: git	init;	git	add	app.js	Procfile	package.json;	git	
commit	-m	“Initial	Commit”

Because Heroku uses git

5: git	push	heroku	master Deploys your code

https://salty-depths-97600.herokuapp.com

Reminder: HW0 due
Tuesday!

Exit-Ticket Activity

For question 3:
Write one project idea that you have

Go to socrative.com and select “Student Login”
Class: SWE4320001 (Prof LaToza) or SWE4320002 (Prof Bell)

ID is your @gmu.edu email

http://socrative.com
http://gmu.edu

