Organizing Code in
Web Apps

SWE 432, Fall 2016
Design and Implementation of Software for the Web




Today

 Some basics on how and why to organize code
(SWE!)

e (Closures
e (Classes
e Modules

For further reading:
http://stackoverflow.com/questions/111102/how-do-
Javascript-closures-work
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http://stackoverflow.com/questions/111102/how-do-javascript-closures-work

History + Motivation

“Wow back in my day before ES6 we didn’t have your fancy
modules”



Spaghetti Code

Brian Foote and Joe Yoder
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function setOperator(newOperator) -

window.onload = function () {
eqCtl = document.getElementById('e
currNumberCtl = document.getElemer

var eqCtl,
currNumberCtl,
operator,
operatorSet = false,
equalsPressed = false,
lastNumber = null;

function add(x,y) {
return x + y;

function subtract(x, y) {
return x - y;

function multiply(x, y) {
return x x y;

function divide(x, y) {
if (y ==0) {
alert("Can't divide by 0");
return 0;

return x / y;

function setval(val) {
currNumberCtl.innerHTML = val; }_

function setEquation(val) {
eqCtl.innerHTML = val;

function clearNumbers() {
lastNumber = null;
equalsPressed = operatorSet = fals
setval('e');
setEquation('"');

function setOperator(newOperator) {
if (newOperator == '=') {
equalsPressed = true;
calculate();
setEquation('');
return;
}

if (!equalsPressed) calculate();
equalsPressed = false; }.
operator = newOperator;

operatorSet = true;

if (newOperato

= - = ! ) '{

equalsPressed = true;

calculate();
setEquation(
return;

}

11 ) ;

if (!equalsPressed) calculate();

equalsPressed =
operator = newOp

false;
erator;

operatorSet = true;
lastNumber = parseFloat(currNumberCtl.innerHTML);

var eqText = (eq

lastNumber +

eqCtl.innerH

Ctl.innerHTML == '') ?
‘' + operator + ' ' :
T™L + ' ' + operator + ' ';

setEquation(eqText);

var button = (e.
if (operatorSet
setVal('"');
operatorSet
}
setVal(currNumbe
setEquation(eqCt

lastNumber = parseFloat(currNumberCtl.innerHTML);

var eqText = (eqCtl.innerHTML ==

function numberClick(e) {

target) ? e.target : e.srcElement;
== true || currNumberCtl.innerHTML ==

= false;

rCtl.innerHTML + button.innerHTML);
l.innerHTML + button.innerHTML);

lastNumber + ' ' + operator +Ifunct ion Calcu-Late( ) {

eqCtl.innerHTML + ' ' + operat
setEquation(eqText);

function numberClick(e) {
var button = (e.target) ? e.target
if (operatorSet == true || currNun
setval('');
operatorSet = false;

setVal(currNumberCtl.innerHTML + t
setEquation(eqCtl.innerHTML + butt
}

function calculate() {
if ('operator || lastNumber == nul
var currNumber = parseFloat(currNt
newVal = 0;
switch (operator) {
case '+':
newVal = add(lastNumber, ¢
break;
case '-':
newVal = subtract(lastNumk
break;
case 'x':
newVal = multiply(lastNumk
break;
case '/':
newVal = divide(lastNumber
break;

}
setVal(newval);
lastNumber = newVal;

GMU SWE 432

if ('operator ||
var currNumber =
newVal = 0;
switch (operator)
case '+':
newVa'l
break;
case '-':
newVal =
break;
case 'x':
newVa'l
break;
case '/':
newVa'l
break;

}
setVal(newVal);

lastNumber == null) return;
parseFloat (currNumberCtl.innerHTML),

{

add( lastNumber, currNumber);

subtract(lastNumber, currNumber);

multiply(lastNumber, currNumber);

divide(lastNumber, currNumber);



...aka big ball of mud aka shanty town
;ode

e e el
Brian Foote and Joe Yoder

LaToza/Bell GMU SWE 432 Fall 2016



LaToza/Bell

Bad Code "Smells”

Tons of not-very related functions in the same file

if (err) {

console.log('Error finding files:

} else {

No/bad comments
Hard to understand
_ots of nested functions

fs.readdir(source, function (err, files) {

+ err)

files.forEach(function (filename, fileIndex) {

console. log(filename)

gm(source + filename).size(function (err, values) {

)

if (err) {
console.log('Error identifying file size:
} else {
console. log(filename + + values)
aspect = (values.width / values.height)
widths.forEach(function (width, widthIndex) {
height = Math.round(width / aspect)
console.log('resizing ' + filename + 'to ' + height +
this.resize(width, height).write(dest + 'w' + width +
if (err) console. log

+ err)

})
}.bind(this))
+
})
GMU SWE 432 Fall 2016 7



Design Goals

e Within a component
* Cohesive
« Complete
 Convenient
o Clear
* (Consistent
 Between components
 Low coupling
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Cohesion and Coupling

 (Cohesion is a property or characteristic of an
individual unit

 Coupling is a property of a collection of units
* High cohesion GOOD, high coupling BAD
e Design for change:

 Reduce interdependency (coupling): You don't
want a change in one unit to ripple throughout
your system

* Group functionality (cohesion): Easier to find
things, intuitive metaphor aids understanding

LaToza/Bell GMU SWE 432 Fall 2016



Design for Reuse

o Why?
 Don't duplicate existing functionality
* Avoid repeated effort
e How?"

 Make it easy to extract a single component:
* Low coupling between components
* Have high cohesion witt

LaToza/Bell GMU SWE 432 Fall 20 hate
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Design for Change

o Why?
Want to be able to add new teatures
Want to be able to easily maintain existing

software

 Adapt to new environments

* Support new configurations

e How?

_ow coupling - prevents u
—High cohesion - easier to-

NiNnte

iNnd t

GMU SWE 432 Fall 2016

nded side effects‘
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Organizing Code

How do we structure things to achieve good organization?

Javascript

Individual Pieces
of Functional Classes
Components

Classes

Entire libraries Packages Modules

LaToza/Bell GMU SWE 432 Fall 2016 12



Closures

* (Closures are expressions that work with variables
IN a specific context

e (Closures contain a function, and its needed state

e (Closure is that function and a stack frame that is
allocated when a function starts executing and
not freed after the function returns

LaToza/Bell GMU SWE 432 Fall 2016 13



Closures & Stack Frames

e \What is a stack frame?

LaToza/Bell

e Variables created by function in its execution
 Maintained by environment executing code

function a() {
var Xx =5, z = 3;

b(x);
} (y)
function b(y . .
console.log(y); a:  Xi O
/ z: 3

al); g
Stack frame

Function called: stack frame created

Contents of memory:

14



Closures & Stack Frames

e \What is a stack frame?

LaToza/Bell

e Variables created by function in its execution
 Maintained by environment executing code

function a() {
var x =5, z = 3;

b(x); b V!

+
function b(y) ’T”’//”//”//*

console. log(y);
I3
a();

5
a: 5
3

N X

Stack frame
Function called: new stack frame created

Contents of memory:

15



Closures & Stack Frames

e \What is a stack frame?

LaToza/Bell

e Variables created by function in its execution
 Maintained by environment executing code

function a() { Contents of memory:

var Xx =5, z = 3;

b(x);
} .
function b(y) <

console. log(y);
I3

a();

d. X.
Z.

5
3

Stack frame

Function returned: stack frame popped .




Closures

e Closures are expressions that work with variables in a specific context
e (Closures contain a function, and its needed state

e Closure is a stack frame that is allocated when a function starts
executing and not freed after the function returns

* That state just refers to that state by name (sees updates)

var | X 1;

func™Nion\f() {
vaRy|= 2;
retyrpn function() {

console. log(x + y).

This function attaches itself to x and y
so that it can continue to access them.

I

y++,
¥; It “closes up”’ those references
}
var g = f();
g(); // 1+2 is 3
g(); // 1+3 1is 4

LaToza/Bell GMU SWE 432 Fall 2016 17



Closures

retyrp function() {
console.log(x + y);

y++;
¥
}
var g = f(); _
g(); // 142 1is 3 Global
g(); // 1+3 is 4

varx | 1

/

vary | 2 | Closure

/

function
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Closures

retyrp function() {
console.log(x + y);

y++,
¥
}
var g = f();
g(); // 1+2 1s 3_
g(); // 1+3 1is 4 Global

varx | 1

/

vary | 3 | Closure

/

function
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Closures

retyrp function() {
console.log(x + y);

y++;
Fs
s
var g = T();
g(); // 1+2 is 3 Global

g(), // 1+3 1is 4ﬁ
varx | 1

vary | 4 | Closure

/

/

function
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Modules

e We can do it with closures!
e Define a function

e \ariables/functions defined in that function are
‘private”

 Return an object - every member of that object is
public!

e Remember: Closures have access to the outer
function’s variables even after it returns

GMU SWE 432 Fall 2016
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Modules with Closures

var facultyAPI = (function(){

var faculty = [{name:"Prof Bell", section: 2}, {name:"Prof
LaToza", section:1}];

return {
getFaculty : function(i)

{
return faculty[i].name + " ("+facultyl[i].section +")";

}

F)();

console. log(facultyAPI.getFaculty(0));

This works because inner functions have visibility to all
variables of outer functions!

- =

LaToza/Bell GMU SWE 432 Fall 2016 22
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Closures gone awry

var funcs = [
for (var| i
[

l;
= 0;\1 < 5; i++) {
i] =| function() { return 1i;| };

funcs
I3
What is the output of funcs[0]()?
>5
Why?

Closures retain a pointer to their needed state!

GMU SWE 432 Fall 2016 23



Closures under control

Solution: IIFE - Immediately-Invoked Function Expression
function makeFunction(n)]

{
return function(){ [ceturn n} };
¥
for (var i = 03 i < 5; i++) {
funcs[i] = makeFunction(i):
b

Why does it work?

Each time the anonymous function is called, it will create a new

variable n, rather than reusing the same variable i

SIOPECUL SY TG e
var funcs = [];
for (var 1 = 0; i < 5; i++) {
funcs[i] = (functlon(n) {
return function() { [return nj; }
F)(i);
s

LaToza/Bell GMU SWE 432 Fall 2016 24




Exercise: Closures

var facultyAPI = (function(){
var faculty = [{name:"Prof Bell", section: 2}, {name:"Prof
LaToza", section:1}];

return {
getFaculty : function(i)

{

return faculty[i].name + " ("+facultyl[i].section +")";

}
. https://isfiddle.net/hkca5vpa/
1) 0); https://jsfiddle.net/hkcgbvpal/l/
console. log(facultyAPI.getFaculty(0));

Here’s our simple closure. Add a new function to create a new
faculty, then call getFaculty to view their formatted name.

LaToza/Bell GMU SWE 432 Fall 2016 25
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Classes

A small correction:

Remember... There’s no Class’."

var proflon = {
firstName: "Jonathan",
lastName: "Bell",
teaches: “SWE 432",
office: "ENGR 4322",
fullName: function(){
return this,.firstName + " " + this.lastName;
}

¥

Our Object

profJon.officeHours = "Tuesdays 10:30-12:00";

T —

T

Lazily creates a new property and sets it

delete proflon.office;

Deletes a property

LaToza/Bel GMU SWE 432 Fall 2016 19
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Classes

e ESO6 introduces the class keyword

* Mainly just syntax - still not like Java Classes

function Faculty(first, last, teaches, office)

{
this.firstName = first;
this. lastName = last;
Old this.teaches = teaches;

this.office = office;
this.fullName = function(){

return this.firstName + " " + this. lastName;
}

+
var profJon = new Faculty("Jonathan", "Bell", "SWE432", "ENGR 4322");

class Faculty A{
constructor(first, last, teaches, office)
{
this.firstName = first;
pd this.lastName = last;
W this.teaches = teaches;
€ this.office = office;

}
fullname() {

return this.firstName + " " + this. lastName;
}

}

var profJon = new FaculRy(“Jonathan", "Bell", "SWE432", "ENGR 4322");
GMU SWE 432 Fall 2016
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Classes - Extends

extends allows an object created by a class to be linked to
a “super” class. Can (but dont have to) add parent
constructor.

class Faculty {
constructor(first, last, teaches, office)

{
this.firstName = first;
this. lastName = last;
this.teaches = teaches;
this.office = office;
}
fullname() {
return this.firstName + " " + this.lastName;
¥

}

class CoolFaculty extends Faculty {
fullname() {
return "The really cool " + super.fullname();
I3

LaToza/Bell GMU SWE 432 Fall 2016 28
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Classes - static

static declarations in a class work like in Java

class Faculty {
constructor(first, last, teaches, office)

{

this.firstName = first;

this. lastName = last;

this.teaches = teaches:

this.office = office:
¥
fullname() {

return this.firstName + " " + this.lastName;
¥
static formatFacultyName(f) {

return f.firstName + " " + f.lastName;
¥

GMU SWE 432 Fall 2016
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Modules (ES6)

 With ESG6, there is finally language support for
modules

e Module must be defined in its own JS file
« Modules export declarations

* Publicly exposes functions as part of module
iINntertface

 Code imports modules (and optionally only parts
of them)

» Specify module by path to the file

LaToza/Bell GMU SWE 432 Fall 2016



Modules (ES6) - Export Syntax

var faculty = [{name:"Prof Bell", section: 2}, {name:"Prof
| ATnza'", section:1}];

export function getFaculty(i) {  Label each declaration with
\ Ay “export”

export var someVar = [1,2,3];

var faculty = [{name:"Prof Bell", section: 2}, {name:"Prof
LaToza", section:1}];

var someVar = [1,2,3];
function getFaculty(i) {
/] s Or name all of the exports at

L, once
export {getFaculty, someVar}; — S

export {getFaculty as aliasForFunction, someVar};

| ———

Can rename exports too

| ——— S

export default function getFaculty(i){...

Default export

LaToza/Bell GMU SWE 432 Fall 31
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Modules (ES6) - Import Syntax

e Import specitic exports, binding them to the same

name

import { getFaculty, someVar } from "myModule";
getFaculty()...

* Import specitic exports, binding them to a new name

import { getFaculty as aliasForFaculty } from
""myModu le";
aliasForFaculty()...

* |mport default export, binding to specified name
import theThing from "myModule",
theThing()... —> calls getFaculty()

* |mport all exports, binding to specitied name

import * as facModule from "myModule";
facModule.getFaculty()...

GMU SWE 432 Fall 2016
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Patterns for using/creating libraries

* [rytoreuse as much as possible!
 Name your module in all lower case, with hyphens
* [nclude:

« README.md

e keywords, description, and license in
package.json (from npm init)

e Strive for high cohesion, low coupling

o Separate models from views
 How much code to put in a single module?

» Cascades (see jQuery)

GMU SWE 432 Fall 2016
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Cascade Pattern

aka “chaining”

Offer set of operations that mutate object and returns the
‘this™ object

 Build an API that has single purpose operations that
can be combined easily

e | ets us read code like a sentence

Example (String):
str.replace("k","R").toUpperCase().substr(0,4);

Example (jQuery):
$(“#wrapper")
. fadeOQut ()
html(“Welcome")
. fadeIn();

GMU SWE 432 Fall 2016
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Demo: Modules

Not yet supported by any browser!

GMU SWE 432 Fall 2016
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Closures Exercise

 Work from our example before of the Faculty

Closure

APl to create a Class APl (with Closures).

e Private fields:

e Faculi

v AP

e Listo

- students (students are objects with names,

section numbers, and partners [which are

stude

nts])

e Public functions:
e Add a student to the class
* Retrieve the name of the student’s faculty

LaToza/Bell

https://jsfiddle.net/hkcgbvpa/l/
https://jsfiddle.net/hkcgbvpa/3/

GMU SWE 432 Fall 2016

36


https://jsfiddle.net/hkcq5vpa/1/
https://jsfiddle.net/hkcq5vpa/3/

=XIt- TIcket Activity

Go to socrative.com and select “Student Login”

Class: SWE432001 (Prof LaToza) or SWE432002 (Prof Bell)
ID is your @gmu.edu emalil

1: How well did you understand today's material
2: What did you learn in today's class”
For question 3: What happens when the user clicks on the 4th
button on this page and why?

var nodes = document.getElementsByTagName('button');
for (var 1 = 0; 1 < nodes.length; i++) A
nodes[i] .addEventListener('click', function() {
console.log('You clicked element #' + 1i);
r);
I3


http://socrative.com
http://gmu.edu

