Organizing Code in
Web Apps

SWE 432, Fall 2016
Design and Implementation of Software for the Web

Today

 Some basics on how and why to organize code
(SWE!)

e (Closures
e (Classes
e Modules

For further reading:
http://stackoverflow.com/questions/111102/how-do-
Javascript-closures-work

LaToza/Bell GMU SWE 432 Fall 2016

http://stackoverflow.com/questions/111102/how-do-javascript-closures-work

History + Motivation

“Wow back in my day before ES6 we didn’t have your fancy
modules”

Spaghetti Code

Brian Foote and Joe Yoder
LaToza/Bell GMU SWE 432 Fall 2016

LaToza/Bell

function setOperator(newOperator) -

window.onload = function () {
eqCtl = document.getElementById('e
currNumberCtl = document.getElemer

var eqCtl,
currNumberCtl,
operator,
operatorSet = false,
equalsPressed = false,
lastNumber = null;

function add(x,y) {
return x + y;

function subtract(x, y) {
return x - y;

function multiply(x, y) {
return x x y;

function divide(x, y) {
if (y ==0) {
alert("Can't divide by 0");
return 0;

return x / y;

function setval(val) {
currNumberCtl.innerHTML = val; }_

function setEquation(val) {
eqCtl.innerHTML = val;

function clearNumbers() {
lastNumber = null;
equalsPressed = operatorSet = fals
setval('e');
setEquation('"');

function setOperator(newOperator) {
if (newOperator == '=') {
equalsPressed = true;
calculate();
setEquation('');
return;
}

if (!equalsPressed) calculate();
equalsPressed = false; }.
operator = newOperator;

operatorSet = true;

if (newOperato

= - = !) '{

equalsPressed = true;

calculate();
setEquation(
return;

}

11) ;

if (!equalsPressed) calculate();

equalsPressed =
operator = newOp

false;
erator;

operatorSet = true;
lastNumber = parseFloat(currNumberCtl.innerHTML);

var eqText = (eq

lastNumber +

eqCtl.innerH

Ctl.innerHTML == '') ?
‘' + operator + ' ' :
T™L + ' ' + operator + ' ';

setEquation(eqText);

var button = (e.
if (operatorSet
setVal('"');
operatorSet
}
setVal(currNumbe
setEquation(eqCt

lastNumber = parseFloat(currNumberCtl.innerHTML);

var eqText = (eqCtl.innerHTML ==

function numberClick(e) {

target) ? e.target : e.srcElement;
== true || currNumberCtl.innerHTML ==

= false;

rCtl.innerHTML + button.innerHTML);
l.innerHTML + button.innerHTML);

lastNumber + ' ' + operator +Ifunct ion Calcu-Late() {

eqCtl.innerHTML + ' ' + operat
setEquation(eqText);

function numberClick(e) {
var button = (e.target) ? e.target
if (operatorSet == true || currNun
setval('');
operatorSet = false;

setVal(currNumberCtl.innerHTML + t
setEquation(eqCtl.innerHTML + butt
}

function calculate() {
if ('operator || lastNumber == nul
var currNumber = parseFloat(currNt
newVal = 0;
switch (operator) {
case '+':
newVal = add(lastNumber, ¢
break;
case '-':
newVal = subtract(lastNumk
break;
case 'x':
newVal = multiply(lastNumk
break;
case '/':
newVal = divide(lastNumber
break;

}
setVal(newval);
lastNumber = newVal;

GMU SWE 432

if ('operator ||
var currNumber =
newVal = 0;
switch (operator)
case '+':
newVa'l
break;
case '-':
newVal =
break;
case 'x':
newVa'l
break;
case '/':
newVa'l
break;

}
setVal(newVal);

lastNumber == null) return;
parseFloat (currNumberCtl.innerHTML),

{

add(lastNumber, currNumber);

subtract(lastNumber, currNumber);

multiply(lastNumber, currNumber);

divide(lastNumber, currNumber);

...aka big ball of mud aka shanty town
;ode

e e el
Brian Foote and Joe Yoder

LaToza/Bell GMU SWE 432 Fall 2016

LaToza/Bell

Bad Code "Smells”

Tons of not-very related functions in the same file

if (err) {

console.log('Error finding files:

} else {

No/bad comments
Hard to understand
_ots of nested functions

fs.readdir(source, function (err, files) {

+ err)

files.forEach(function (filename, fileIndex) {

console. log(filename)

gm(source + filename).size(function (err, values) {

)

if (err) {
console.log('Error identifying file size:
} else {
console. log(filename + + values)
aspect = (values.width / values.height)
widths.forEach(function (width, widthIndex) {
height = Math.round(width / aspect)
console.log('resizing ' + filename + 'to ' + height +
this.resize(width, height).write(dest + 'w' + width +
if (err) console. log

+ err)

})
}.bind(this))
+
})
GMU SWE 432 Fall 2016 7

Design Goals

e Within a component
* Cohesive
« Complete
 Convenient
o Clear
* (Consistent
 Between components
 Low coupling

LaToza/Bell GMU SWE 432 Fall 2016

Cohesion and Coupling

 (Cohesion is a property or characteristic of an
individual unit

 Coupling is a property of a collection of units
* High cohesion GOOD, high coupling BAD
e Design for change:

 Reduce interdependency (coupling): You don't
want a change in one unit to ripple throughout
your system

* Group functionality (cohesion): Easier to find
things, intuitive metaphor aids understanding

LaToza/Bell GMU SWE 432 Fall 2016

Design for Reuse

o Why?
 Don't duplicate existing functionality
* Avoid repeated effort
e How?"

 Make it easy to extract a single component:
* Low coupling between components
* Have high cohesion witt

LaToza/Bell GMU SWE 432 Fall 20 hate

LaToza/Bell

Design for Change

o Why?
Want to be able to add new teatures
Want to be able to easily maintain existing

software

 Adapt to new environments

* Support new configurations

e How?

_ow coupling - prevents u
—High cohesion - easier to-

NiNnte

iNnd t

GMU SWE 432 Fall 2016

nded side effects‘

NINQS

Organizing Code

How do we structure things to achieve good organization?

Javascript

Individual Pieces
of Functional Classes
Components

Classes

Entire libraries Packages Modules

LaToza/Bell GMU SWE 432 Fall 2016 12

Closures

* (Closures are expressions that work with variables
IN a specific context

e (Closures contain a function, and its needed state

e (Closure is that function and a stack frame that is
allocated when a function starts executing and
not freed after the function returns

LaToza/Bell GMU SWE 432 Fall 2016 13

Closures & Stack Frames

e \What is a stack frame?

LaToza/Bell

e Variables created by function in its execution
 Maintained by environment executing code

function a() {
var Xx =5, z = 3;

b(x);
} (y)
function b(y . .
console.log(y); a: Xi O
/ z: 3

al); g
Stack frame

Function called: stack frame created

Contents of memory:

14

Closures & Stack Frames

e \What is a stack frame?

LaToza/Bell

e Variables created by function in its execution
 Maintained by environment executing code

function a() {
var x =5, z = 3;

b(x); b V!

+
function b(y) ’T”’//”//”//*

console. log(y);
I3
a();

5
a: 5
3

N X

Stack frame
Function called: new stack frame created

Contents of memory:

15

Closures & Stack Frames

e \What is a stack frame?

LaToza/Bell

e Variables created by function in its execution
 Maintained by environment executing code

function a() { Contents of memory:

var Xx =5, z = 3;

b(x);
} .
function b(y) <

console. log(y);
I3

a();

d. X.
Z.

5
3

Stack frame

Function returned: stack frame popped .

Closures

e Closures are expressions that work with variables in a specific context
e (Closures contain a function, and its needed state

e Closure is a stack frame that is allocated when a function starts
executing and not freed after the function returns

* That state just refers to that state by name (sees updates)

var | X 1;

func™Nion\f() {
vaRy|= 2;
retyrpn function() {

console. log(x + y).

This function attaches itself to x and y
so that it can continue to access them.

I

y++,
¥; It “closes up”’ those references
}
var g = f();
g(); // 1+2 is 3
g(); // 1+3 1is 4

LaToza/Bell GMU SWE 432 Fall 2016 17

Closures

retyrp function() {
console.log(x + y);

y++;
¥
}
var g = f(); _
g(); // 142 1is 3 Global
g(); // 1+3 is 4

varx | 1

/

vary | 2 | Closure

/

function

LaToza/Bell GMU SWE 432 Fall 2016

Closures

retyrp function() {
console.log(x + y);

y++,
¥
}
var g = f();
g(); // 1+2 1s 3_
g(); // 1+3 1is 4 Global

varx | 1

/

vary | 3 | Closure

/

function

LaToza/Bell GMU SWE 432 Fall 2016

Closures

retyrp function() {
console.log(x + y);

y++;
Fs
s
var g = T();
g(); // 1+2 is 3 Global

g(), // 1+3 1is 4ﬁ
varx | 1

vary | 4 | Closure

/

/

function

LaToza/Bell GMU SWE 432 Fall 2016

LaToza/Bell

Modules

e We can do it with closures!
e Define a function

e \ariables/functions defined in that function are
‘private”

 Return an object - every member of that object is
public!

e Remember: Closures have access to the outer
function’s variables even after it returns

GMU SWE 432 Fall 2016

21

Modules with Closures

var facultyAPI = (function(){

var faculty = [{name:"Prof Bell", section: 2}, {name:"Prof
LaToza", section:1}];

return {
getFaculty : function(i)

{
return faculty[i].name + " ("+facultyl[i].section +")";

}

F)();

console. log(facultyAPI.getFaculty(0));

This works because inner functions have visibility to all
variables of outer functions!

- =

LaToza/Bell GMU SWE 432 Fall 2016 22

LaToza/Bell

Closures gone awry

var funcs = [
for (var| i
[

l;
= 0;\1 < 5; i++) {
i] =| function() { return 1i;| };

funcs
I3
What is the output of funcs[0]()?
>5
Why?

Closures retain a pointer to their needed state!

GMU SWE 432 Fall 2016 23

Closures under control

Solution: IIFE - Immediately-Invoked Function Expression
function makeFunction(n)]

{
return function(){ [ceturn n} };
¥
for (var i = 03 i < 5; i++) {
funcs[i] = makeFunction(i):
b

Why does it work?

Each time the anonymous function is called, it will create a new

variable n, rather than reusing the same variable i

SIOPECUL SY TG e
var funcs = [];
for (var 1 = 0; i < 5; i++) {
funcs[i] = (functlon(n) {
return function() { [return nj; }
F)(i);
s

LaToza/Bell GMU SWE 432 Fall 2016 24

Exercise: Closures

var facultyAPI = (function(){
var faculty = [{name:"Prof Bell", section: 2}, {name:"Prof
LaToza", section:1}];

return {
getFaculty : function(i)

{

return faculty[i].name + " ("+facultyl[i].section +")";

}
. https://isfiddle.net/hkca5vpa/
1) 0); https://jsfiddle.net/hkcgbvpal/l/
console. log(facultyAPI.getFaculty(0));

Here’s our simple closure. Add a new function to create a new
faculty, then call getFaculty to view their formatted name.

LaToza/Bell GMU SWE 432 Fall 2016 25

https://jsfiddle.net/hkcq5vpa/
https://jsfiddle.net/hkcq5vpa/1/

LaToza/Bell

Classes

A small correction:

Remember... There’s no Class’."

var proflon = {
firstName: "Jonathan",
lastName: "Bell",
teaches: “SWE 432",
office: "ENGR 4322",
fullName: function(){
return this,.firstName + " " + this.lastName;
}

¥

Our Object

profJon.officeHours = "Tuesdays 10:30-12:00";

T —

T

Lazily creates a new property and sets it

delete proflon.office;

Deletes a property

LaToza/Bel GMU SWE 432 Fall 2016 19

Lecture 4, JavaScript

GMU SWE 432 Fall 2016

26

LaToza/Bell

Classes

e ESO6 introduces the class keyword

* Mainly just syntax - still not like Java Classes

function Faculty(first, last, teaches, office)

{
this.firstName = first;
this. lastName = last;
Old this.teaches = teaches;

this.office = office;
this.fullName = function(){

return this.firstName + " " + this. lastName;
}

+
var profJon = new Faculty("Jonathan", "Bell", "SWE432", "ENGR 4322");

class Faculty A{
constructor(first, last, teaches, office)
{
this.firstName = first;
pd this.lastName = last;
W this.teaches = teaches;
€ this.office = office;

}
fullname() {

return this.firstName + " " + this. lastName;
}

}

var profJon = new FaculRy(“Jonathan", "Bell", "SWE432", "ENGR 4322");
GMU SWE 432 Fall 2016

27

Classes - Extends

extends allows an object created by a class to be linked to
a “super” class. Can (but dont have to) add parent
constructor.

class Faculty {
constructor(first, last, teaches, office)

{
this.firstName = first;
this. lastName = last;
this.teaches = teaches;
this.office = office;
}
fullname() {
return this.firstName + " " + this.lastName;
¥

}

class CoolFaculty extends Faculty {
fullname() {
return "The really cool " + super.fullname();
I3

LaToza/Bell GMU SWE 432 Fall 2016 28

LaToza/Bell

Classes - static

static declarations in a class work like in Java

class Faculty {
constructor(first, last, teaches, office)

{

this.firstName = first;

this. lastName = last;

this.teaches = teaches:

this.office = office:
¥
fullname() {

return this.firstName + " " + this.lastName;
¥
static formatFacultyName(f) {

return f.firstName + " " + f.lastName;
¥

GMU SWE 432 Fall 2016

29

Modules (ES6)

 With ESG6, there is finally language support for
modules

e Module must be defined in its own JS file
« Modules export declarations

* Publicly exposes functions as part of module
iINntertface

 Code imports modules (and optionally only parts
of them)

» Specify module by path to the file

LaToza/Bell GMU SWE 432 Fall 2016

Modules (ES6) - Export Syntax

var faculty = [{name:"Prof Bell", section: 2}, {name:"Prof
| ATnza'", section:1}];

export function getFaculty(i) { Label each declaration with
\ Ay “export”

export var someVar = [1,2,3];

var faculty = [{name:"Prof Bell", section: 2}, {name:"Prof
LaToza", section:1}];

var someVar = [1,2,3];
function getFaculty(i) {
/] s Or name all of the exports at

L, once
export {getFaculty, someVar}; — S

export {getFaculty as aliasForFunction, someVar};

| ———

Can rename exports too

| ——— S

export default function getFaculty(i){...

Default export

LaToza/Bell GMU SWE 432 Fall 31

LaToza/Bell

Modules (ES6) - Import Syntax

e Import specitic exports, binding them to the same

name

import { getFaculty, someVar } from "myModule";
getFaculty()...

* Import specitic exports, binding them to a new name

import { getFaculty as aliasForFaculty } from
""myModu le";
aliasForFaculty()...

* |mport default export, binding to specified name
import theThing from "myModule",
theThing()... —> calls getFaculty()

* |mport all exports, binding to specitied name

import * as facModule from "myModule";
facModule.getFaculty()...

GMU SWE 432 Fall 2016

32

LaToza/Bell

Patterns for using/creating libraries

* [rytoreuse as much as possible!
 Name your module in all lower case, with hyphens
* [nclude:

« README.md

e keywords, description, and license in
package.json (from npm init)

e Strive for high cohesion, low coupling

o Separate models from views
 How much code to put in a single module?

» Cascades (see jQuery)

GMU SWE 432 Fall 2016

33

LaToza/Bell

Cascade Pattern

aka “chaining”

Offer set of operations that mutate object and returns the
‘this™ object

 Build an API that has single purpose operations that
can be combined easily

e | ets us read code like a sentence

Example (String):
str.replace("k","R").toUpperCase().substr(0,4);

Example (jQuery):
$(“#wrapper")
. fadeOQut ()
html(“Welcome")
. fadeIn();

GMU SWE 432 Fall 2016

34

LaToza/Bell

Demo: Modules

Not yet supported by any browser!

GMU SWE 432 Fall 2016

35

Closures Exercise

 Work from our example before of the Faculty

Closure

APl to create a Class APl (with Closures).

e Private fields:

e Faculi

v AP

e Listo

- students (students are objects with names,

section numbers, and partners [which are

stude

nts])

e Public functions:
e Add a student to the class
* Retrieve the name of the student’s faculty

LaToza/Bell

https://jsfiddle.net/hkcgbvpa/l/
https://jsfiddle.net/hkcgbvpa/3/

GMU SWE 432 Fall 2016

36

https://jsfiddle.net/hkcq5vpa/1/
https://jsfiddle.net/hkcq5vpa/3/

=XIt- TIcket Activity

Go to socrative.com and select “Student Login”

Class: SWE432001 (Prof LaToza) or SWE432002 (Prof Bell)
ID is your @gmu.edu emalil

1: How well did you understand today's material
2: What did you learn in today's class”
For question 3: What happens when the user clicks on the 4th
button on this page and why?

var nodes = document.getElementsByTagName('button');
for (var 1 = 0; 1 < nodes.length; i++) A
nodes[i] .addEventListener('click', function() {
console.log('You clicked element #' + 1i);
r);
I3

http://socrative.com
http://gmu.edu

