
Organizing Code in
Web Apps

SWE 432, Fall 2016
Design and Implementation of Software for the Web

LaToza/Bell GMU SWE 432 Fall 2016

Today
• Some basics on how and why to organize code

(SWE!)
• Closures
• Classes
• Modules

2

For further reading:
http://stackoverflow.com/questions/111102/how-do-

javascript-closures-work

http://stackoverflow.com/questions/111102/how-do-javascript-closures-work

History + Motivation
“Wow back in my day before ES6 we didn’t have your fancy

modules”

LaToza/Bell GMU SWE 432 Fall 2016 4

Spaghetti Code

Brian Foote and Joe Yoder

LaToza/Bell GMU SWE 432 Fall 2016 5

window.onload = function () {
 eqCtl = document.getElementById('eq');
 currNumberCtl = document.getElementById('currNumber');
};

var eqCtl,
 currNumberCtl,
 operator,
 operatorSet = false,
 equalsPressed = false,
 lastNumber = null;

function add(x,y) {
 return x + y;
}

function subtract(x, y) {
 return x - y;
}

function multiply(x, y) {
 return x * y;
}

function divide(x, y) {
 if (y == 0) {
 alert("Can't divide by 0");
 return 0;
 }
 return x / y;
}

function setVal(val) {
 currNumberCtl.innerHTML = val;
}

function setEquation(val) {
 eqCtl.innerHTML = val;
}

function clearNumbers() {
 lastNumber = null;
 equalsPressed = operatorSet = false;
 setVal('0');
 setEquation('');
}

function setOperator(newOperator) {
 if (newOperator == '=') {
 equalsPressed = true;
 calculate();
 setEquation('');
 return;
 }

 if (!equalsPressed) calculate();
 equalsPressed = false;
 operator = newOperator;
 operatorSet = true;
 lastNumber = parseFloat(currNumberCtl.innerHTML);
 var eqText = (eqCtl.innerHTML == '') ?
 lastNumber + ' ' + operator + ' ' :
 eqCtl.innerHTML + ' ' + operator + ' ';
 setEquation(eqText);
}

function numberClick(e) {
 var button = (e.target) ? e.target : e.srcElement;
 if (operatorSet == true || currNumberCtl.innerHTML == '0') {
 setVal('');
 operatorSet = false;
 }
 setVal(currNumberCtl.innerHTML + button.innerHTML);
 setEquation(eqCtl.innerHTML + button.innerHTML);
}

function calculate() {
 if (!operator || lastNumber == null) return;
 var currNumber = parseFloat(currNumberCtl.innerHTML),
 newVal = 0;
 switch (operator) {
 case '+':
 newVal = add(lastNumber, currNumber);
 break;
 case '-':
 newVal = subtract(lastNumber, currNumber);
 break;
 case '*':
 newVal = multiply(lastNumber, currNumber);
 break;
 case '/':
 newVal = divide(lastNumber, currNumber);
 break;
 }
 setVal(newVal);
 lastNumber = newVal;
}

function setOperator(newOperator) {
 if (newOperator == '=') {
 equalsPressed = true;
 calculate();
 setEquation('');
 return;
 }

 if (!equalsPressed) calculate();
 equalsPressed = false;
 operator = newOperator;
 operatorSet = true;
 lastNumber = parseFloat(currNumberCtl.innerHTML);
 var eqText = (eqCtl.innerHTML == '') ?
 lastNumber + ' ' + operator + ' ' :
 eqCtl.innerHTML + ' ' + operator + ' ';
 setEquation(eqText);
}

function numberClick(e) {
 var button = (e.target) ? e.target : e.srcElement;
 if (operatorSet == true || currNumberCtl.innerHTML == '0') {
 setVal('');
 operatorSet = false;
 }
 setVal(currNumberCtl.innerHTML + button.innerHTML);
 setEquation(eqCtl.innerHTML + button.innerHTML);
}

function calculate() {
 if (!operator || lastNumber == null) return;
 var currNumber = parseFloat(currNumberCtl.innerHTML),
 newVal = 0;
 switch (operator) {
 case '+':
 newVal = add(lastNumber, currNumber);
 break;
 case '-':
 newVal = subtract(lastNumber, currNumber);
 break;
 case '*':
 newVal = multiply(lastNumber, currNumber);
 break;
 case '/':
 newVal = divide(lastNumber, currNumber);
 break;
 }
 setVal(newVal);
 lastNumber = newVal;

LaToza/Bell GMU SWE 432 Fall 2016 6

…aka big ball of mud aka shanty town
code

Brian Foote and Joe Yoder

LaToza/Bell GMU SWE 432 Fall 2016

Bad Code “Smells”
• Tons of not-very related functions in the same file
• No/bad comments
• Hard to understand
• Lots of nested functions

7

 fs.readdir(source, function (err, files) {
 if (err) {
 console.log('Error finding files: ' + err)
 } else {
 files.forEach(function (filename, fileIndex) {
 console.log(filename)
 gm(source + filename).size(function (err, values) {
 if (err) {
 console.log('Error identifying file size: ' + err)
 } else {
 console.log(filename + ' : ' + values)
 aspect = (values.width / values.height)
 widths.forEach(function (width, widthIndex) {
 height = Math.round(width / aspect)
 console.log('resizing ' + filename + 'to ' + height + 'x' + height)
 this.resize(width, height).write(dest + 'w' + width + '_' + filename, function(err) {
 if (err) console.log('Error writing file: ' + err)
 })
 }.bind(this))
 }
 })
 })
 }
 });

LaToza/Bell GMU SWE 432 Fall 2016

Design Goals
• Within a component

• Cohesive
• Complete
• Convenient
• Clear
• Consistent

• Between components
• Low coupling

8

LaToza/Bell GMU SWE 432 Fall 2016

Cohesion and Coupling
• Cohesion is a property or characteristic of an

individual unit
• Coupling is a property of a collection of units
• High cohesion GOOD, high coupling BAD
• Design for change:

• Reduce interdependency (coupling): You don't
want a change in one unit to ripple throughout
your system

• Group functionality (cohesion): Easier to find
things, intuitive metaphor aids understanding

9

LaToza/Bell GMU SWE 432 Fall 2016

Design for Reuse
• Why?

• Don’t duplicate existing functionality
• Avoid repeated effort

• How?
• Make it easy to extract a single component:

• Low coupling between components
• Have high cohesion within a component

10

LaToza/Bell GMU SWE 432 Fall 2016

Design for Change
• Why?

• Want to be able to add new features
• Want to be able to easily maintain existing

software
• Adapt to new environments
• Support new configurations

• How?
• Low coupling - prevents unintended side effects
• High cohesion - easier to find things

11

LaToza/Bell GMU SWE 432 Fall 2016 12

Organizing Code
How do we structure things to achieve good organization?

Java Javascript

Individual Pieces
of Functional
Components

Classes Classes

Entire libraries Packages Modules

LaToza/Bell GMU SWE 432 Fall 2016

Closures

• Closures are expressions that work with variables
in a specific context

• Closures contain a function, and its needed state
• Closure is that function and a stack frame that is

allocated when a function starts executing and
not freed after the function returns

13

LaToza/Bell GMU SWE 432 Fall 2016

Closures & Stack Frames
• What is a stack frame?

• Variables created by function in its execution
• Maintained by environment executing code

14

function a() {
 var x = 5, z = 3;
 b(x);
}
function b(y) {
 console.log(y);
}
a();

a: x: 5
z: 3

Contents of memory:

Stack frame
Function called: stack frame created

LaToza/Bell GMU SWE 432 Fall 2016

Closures & Stack Frames
• What is a stack frame?

• Variables created by function in its execution
• Maintained by environment executing code

15

function a() {
 var x = 5, z = 3;
 b(x);
}
function b(y) {
 console.log(y);
}
a();

a:

b:

x: 5

y: 5

z: 3

Contents of memory:

Stack frame
Function called: new stack frame created

LaToza/Bell GMU SWE 432 Fall 2016

Closures & Stack Frames
• What is a stack frame?

• Variables created by function in its execution
• Maintained by environment executing code

16

function a() {
 var x = 5, z = 3;
 b(x);
}
function b(y) {
 console.log(y);
}
a();

a: x: 5
z: 3

Contents of memory:

Stack frame
Function returned: stack frame popped

LaToza/Bell GMU SWE 432 Fall 2016

Closures
• Closures are expressions that work with variables in a specific context
• Closures contain a function, and its needed state

• Closure is a stack frame that is allocated when a function starts
executing and not freed after the function returns

• That state just refers to that state by name (sees updates)

17

var x = 1;
function f() {
 var y = 2;
 return function() {

 console.log(x + y);
 y++;
 };
}
var g = f();
g(); // 1+2 is 3
g(); // 1+3 is 4

This function attaches itself to x and y
so that it can continue to access them.

It “closes up” those references

LaToza/Bell GMU SWE 432 Fall 2016

var x = 1;
function f() {
 var y = 2;
 return function() {

 console.log(x + y);
 y++;
 };
}
var g = f();
g(); // 1+2 is 3
g(); // 1+3 is 4

18

Closures

f()

var x

var y

function

Global

Closure

1

2

LaToza/Bell GMU SWE 432 Fall 2016

var x = 1;
function f() {
 var y = 2;
 return function() {

 console.log(x + y);
 y++;
 };
}
var g = f();
g(); // 1+2 is 3
g(); // 1+3 is 4

19

Closures

f()

var x

var y

function

1

3

Global

Closure

LaToza/Bell GMU SWE 432 Fall 2016

var x = 1;
function f() {
 var y = 2;
 return function() {

 console.log(x + y);
 y++;
 };
}
var g = f();
g(); // 1+2 is 3
g(); // 1+3 is 4

20

Closures

f()

var x

var y

function

1

4

Global

Closure

LaToza/Bell GMU SWE 432 Fall 2016

Modules
• We can do it with closures!
• Define a function

• Variables/functions defined in that function are
“private”

• Return an object - every member of that object is
public!

• Remember: Closures have access to the outer
function’s variables even after it returns

21

LaToza/Bell GMU SWE 432 Fall 2016 22

Modules with Closures
var facultyAPI = (function(){
 var faculty = [{name:"Prof Bell", section: 2}, {name:"Prof
LaToza", section:1}];

 return {
 getFaculty : function(i)
 {
 return faculty[i].name + " ("+faculty[i].section +")";
 }

 };
})();

console.log(facultyAPI.getFaculty(0));

This works because inner functions have visibility to all
variables of outer functions!

LaToza/Bell GMU SWE 432 Fall 2016 23

Closures gone awry

var funcs = [];
for (var i = 0; i < 5; i++) {
 funcs[i] = function() { return i; };
}

What is the output of funcs[0]()?
>5

Why?
Closures retain a pointer to their needed state!

LaToza/Bell GMU SWE 432 Fall 2016 24

Closures under control
Solution: IIFE - Immediately-Invoked Function Expression

Why does it work?
Each time the anonymous function is called, it will create a new

variable n, rather than reusing the same variable i

function makeFunction(n)
{
 return function(){ return n; };
}
for (var i = 0; i < 5; i++) {
 funcs[i] = makeFunction(i);
}

var funcs = [];
for (var i = 0; i < 5; i++) {
 funcs[i] = (function(n) {
 return function() { return n; }
 })(i);
}

Shortcut syntax:

LaToza/Bell GMU SWE 432 Fall 2016 25

Exercise: Closures

Here’s our simple closure. Add a new function to create a new
faculty, then call getFaculty to view their formatted name.

var facultyAPI = (function(){
 var faculty = [{name:"Prof Bell", section: 2}, {name:"Prof
LaToza", section:1}];

 return {
 getFaculty : function(i)
 {
 return faculty[i].name + " ("+faculty[i].section +")";
 }

 };
})();

console.log(facultyAPI.getFaculty(0));

https://jsfiddle.net/hkcq5vpa/
https://jsfiddle.net/hkcq5vpa/1/

https://jsfiddle.net/hkcq5vpa/
https://jsfiddle.net/hkcq5vpa/1/

LaToza/Bell GMU SWE 432 Fall 2016

Classes

26

Lecture 4, JavaScript

A small correction:

*

LaToza/Bell GMU SWE 432 Fall 2016

Classes
• ES6 introduces the class keyword
• Mainly just syntax - still not like Java Classes

27

function Faculty(first, last, teaches, office)
{
 this.firstName = first;
 this.lastName = last;
 this.teaches = teaches;
 this.office = office;
 this.fullName = function(){
 return this.firstName + " " + this.lastName;
 }
}
var profJon = new Faculty("Jonathan", "Bell", "SWE432", "ENGR 4322");

Old

class Faculty {
 constructor(first, last, teaches, office)
 {
 this.firstName = first;
 this.lastName = last;
 this.teaches = teaches;
 this.office = office;
 }
 fullname() {
 return this.firstName + " " + this.lastName;
 }
}
var profJon = new Faculty("Jonathan", "Bell", "SWE432", "ENGR 4322");

New

LaToza/Bell GMU SWE 432 Fall 2016

Classes - Extends
extends allows an object created by a class to be linked to
a “super” class. Can (but don’t have to) add parent
constructor.

28

class Faculty {
 constructor(first, last, teaches, office)
 {
 this.firstName = first;
 this.lastName = last;
 this.teaches = teaches;
 this.office = office;
 }
 fullname() {
 return this.firstName + " " + this.lastName;
 }
}

class CoolFaculty extends Faculty {
 fullname() {
 return "The really cool " + super.fullname();
 }
}

LaToza/Bell GMU SWE 432 Fall 2016

Classes - static
static declarations in a class work like in Java

29

class Faculty {
 constructor(first, last, teaches, office)
 {
 this.firstName = first;
 this.lastName = last;
 this.teaches = teaches;
 this.office = office;
 }
 fullname() {
 return this.firstName + " " + this.lastName;
 }

static formatFacultyName(f) {
 return f.firstName + " " + f.lastName;
 }
}

LaToza/Bell GMU SWE 432 Fall 2016

Modules (ES6)
• With ES6, there is finally language support for

modules
• Module must be defined in its own JS file
• Modules export declarations

• Publicly exposes functions as part of module
interface

• Code imports modules (and optionally only parts
of them)
• Specify module by path to the file

30

LaToza/Bell GMU SWE 432 Fall 2016

Modules (ES6) - Export Syntax

31

var faculty = [{name:"Prof Bell", section: 2}, {name:"Prof
LaToza", section:1}];
export function getFaculty(i) {
 // ..
}
export var someVar = [1,2,3];
var faculty = [{name:"Prof Bell", section: 2}, {name:"Prof
LaToza", section:1}];
var someVar = [1,2,3];
function getFaculty(i) {
 // ..
}
export {getFaculty, someVar};
export {getFaculty as aliasForFunction, someVar};

Label each declaration with
“export”

Or name all of the exports at
once

Can rename exports too

export default function getFaculty(i){...

Default export

LaToza/Bell GMU SWE 432 Fall 2016

Modules (ES6) - Import Syntax
• Import specific exports, binding them to the same

name
import { getFaculty, someVar } from "myModule";
getFaculty()...
• Import specific exports, binding them to a new name
import { getFaculty as aliasForFaculty } from
"myModule";
aliasForFaculty()...
• Import default export, binding to specified name
import theThing from "myModule";
theThing()... -> calls getFaculty()
• Import all exports, binding to specified name
import * as facModule from "myModule";
facModule.getFaculty()...

32

LaToza/Bell GMU SWE 432 Fall 2016

Patterns for using/creating libraries

• Try to reuse as much as possible!
• Name your module in all lower case, with hyphens
• Include:

• README.md
• keywords, description, and license in

package.json (from npm init)
• Strive for high cohesion, low coupling

• Separate models from views
• How much code to put in a single module?

• Cascades (see jQuery)

33

LaToza/Bell GMU SWE 432 Fall 2016

Cascade Pattern
• aka “chaining”
• Offer set of operations that mutate object and returns the

“this” object
• Build an API that has single purpose operations that

can be combined easily
• Lets us read code like a sentence

• Example (String):
 str.replace("k","R").toUpperCase().substr(0,4);
• Example (jQuery):
 $(“#wrapper")

.fadeOut()

.html(“Welcome")

.fadeIn();

34

LaToza/Bell GMU SWE 432 Fall 2016

Demo: Modules

35

Not yet supported by any browser!

LaToza/Bell GMU SWE 432 Fall 2016

Closures Exercise
• Work from our example before of the Faculty

Closure API to create a Class API (with Closures).
• Private fields:

• Faculty API
• List of students (students are objects with names,

section numbers, and partners [which are
students])

• Public functions:
• Add a student to the class
• Retrieve the name of the student’s faculty

36

https://jsfiddle.net/hkcq5vpa/1/
https://jsfiddle.net/hkcq5vpa/3/

https://jsfiddle.net/hkcq5vpa/1/
https://jsfiddle.net/hkcq5vpa/3/

Exit-Ticket Activity

1: How well did you understand today's material
2: What did you learn in today's class?

For question 3: What happens when the user clicks on the 4th
button on this page and why?

Go to socrative.com and select “Student Login”
Class: SWE432001 (Prof LaToza) or SWE432002 (Prof Bell)

ID is your @gmu.edu email

var nodes = document.getElementsByTagName('button');
for (var i = 0; i < nodes.length; i++) {
nodes[i].addEventListener('click', function() {
console.log('You clicked element #' + i);

});
}

http://socrative.com
http://gmu.edu

