
AJAX
SWE 432, Fall 2016

Design and Implementation of Software for the Web

LaToza/Bell GMU SWE 432 Fall 2016

Today’s Objectives

• Learn how to interact with remote hosts from a web
page using AJAX

• Learn how to use Firebase web service to persist
and synchronize data in realtime

2

LaToza/Bell GMU SWE 432 Fall 2016

AJAX: Asynchronous JavaScript and XML

• Set of technologies to send and
receive data from server
asynchronously without interfering
with behavior of page
• HTML & CSS
• DOM Manipulation
• JSON or XML for data interchange
• XMLHttpRequest for

asynchronous communication
• JavaScript

• Originally defined for XML. But
representation independent, and
now used mostly for JSON.

3

LaToza/Bell GMU SWE 432 Fall 2016

History
• 1998: Microsoft Outlook Web App

implements first XMLHttp script
• 2004: Google releases Gmail with

AJAX
• 2005: “AJAX: A New Approach to

Web Applications” by Jesse
James Garrett [1]

• 2005: Google Maps with AJAX
• 2006: W3C releases draft of

XMLHttpRequest standard

4

[1] http://adaptivepath.org/ideas/ajax-new-approach-web-applications/

http://adaptivepath.org/ideas/ajax-new-approach-web-applications/

LaToza/Bell GMU SWE 432 Fall 2016

Synchronous vs. Asynchronous Requests

• Classic web
apps require user
to wait for
response to
server

• Asynchronous
requests enable
user to continue
to interact with
app

5

LaToza/Bell GMU SWE 432 Fall 2016

Example - Lazy Content Loading

• User changes visible viewport
• JS code renders new area of

map based on updated
viewport

• Check tile cache
• If in cache, load tile from

cache
• If not in cache,

• request tile from Google
Maps Server

6

LaToza/Bell GMU SWE 432 Fall 2016

Lazy Content Loading

• Advantages:
• Can have vast dataset that the user feels as if

they are interacting with in real time
• Only need to download content that user actually

needs
• Can (sometimes) do computation on client with

really simple server that just fetches appropriate
part of large data set

7

LaToza/Bell GMU SWE 432 Fall 2016

Some Uses for AJAX

• Lazily load content only when requested
• e.g., FB newsfeed, Google Maps tile loading

• Load parts of web page from different hosts
• e.g., advertisements, embedded Twitter widget, …

• Persist user data
• In some cases, can do all computation client side
• Enables building web app without dedicated backend

• Submit form data to server

8

LaToza/Bell GMU SWE 432 Fall 2016

Single Page Application Site

9

Browser

HTML

Web Server

Database

HTTP  
Request

HTTP  
Response

(JSON)

Presentation tier

Domain logic tier

Persistence tier

Javascript

events

HTML elements

LaToza/Bell GMU SWE 432 Fall 2016

Single Page Application (SPA)

• Client-side logic sends messages to server, receives response

• Logic is associated with a single HTML pages, written in Javascript

• HTML elements dynamically added and removed through DOM
manipulation

• Processing that does not require server may occur entirely client side,
dramatically increasing responsiveness & reducing needed server
resources

• Classic example: Gmail

10

LaToza/Bell GMU SWE 432 Fall 2016

Example: Weather

• Let’s use a Web Service API to get the current
weather.

• Will use the WeatherUnderground API.
• https://www.wunderground.com/weather/api/d/

docs?MR=1

11

https://www.wunderground.com/weather/api/d/docs?MR=1

LaToza/Bell GMU SWE 432 Fall 2016

Recall: HTTP

12

HTTP/1.1 200 OK
Server: Apache/2.2.15 (CentOS)
Access-Control-Allow-Origin: *
Access-Control-Allow-Credentials: true
X-CreationTime: 0.134
Last-Modified: Mon, 19 Sep 2016 17:37:52 GMT
Content-Type: application/json; charset=UTF-8
Expires: Mon, 19 Sep 2016 17:38:42 GMT
Cache-Control: max-age=0, no-cache
Pragma: no-cache
Date: Mon, 19 Sep 2016 17:38:42 GMT
Content-Length: 2589
Connection: keep-alive

{
 "response": {
 "version":"0.1",
 "termsofService":"http://www.wunderground.com/weather/api/d/terms.html",
 "features": {
 "conditions": 1
 }
 }
 , "current_observation": {
 "image": {
 "url":"http://icons.wxug.com/graphics/wu2/logo_130x80.png",
 "title":"Weather Underground",
 "link":"http://www.wunderground.com"

HTTP GET http://api.wunderground.com/api/3bee87321900cf14/conditions/q/VA/Fairfax.json

HTTP Request

HTTP Response

LaToza/Bell GMU SWE 432 Fall 2016

Recall: HTTP

13

HTTP/1.1 200 OK
Server: Apache/2.2.15 (CentOS)
Access-Control-Allow-Origin: *
Access-Control-Allow-Credentials: true
X-CreationTime: 0.134
Last-Modified: Mon, 19 Sep 2016 17:37:52 GMT
Content-Type: application/json; charset=UTF-8
Expires: Mon, 19 Sep 2016 17:38:42 GMT
Cache-Control: max-age=0, no-cache
Pragma: no-cache
Date: Mon, 19 Sep 2016 17:38:42 GMT
Content-Length: 2589
Connection: keep-alive

{
 "response": {
 "version":"0.1",
 "termsofService":"http://www.wunderground.com/weather/api/d/terms.html",
 "features": {
 "conditions": 1
 }
 }
 , "current_observation": {
 "image": {
 "url":"http://icons.wxug.com/graphics/wu2/logo_130x80.png",
 "title":"Weather Underground",
 "link":"http://www.wunderground.com"

HTTP GET http://api.wunderground.com/api/3bee87321900cf14/conditions/q/VA/Fairfax.json

HTTP Request

HTTP Response

JSON format response

JSON data

LaToza/Bell GMU SWE 432 Fall 2016

XMLHttpRequest

14

function reqListener () {
 console.log(JSON.parse(this.responseText));
}

var oReq = new XMLHttpRequest();
oReq.addEventListener("load", reqListener);
oReq.open("GET", "http://api.wunderground.com/api/
3bee87321900cf14/conditions/q/VA/Fairfax.json");
oReq.send();

“Listen for load events”
Event occurs when resource
finishes loading (i.e., when request
completes).

“Make request” “Execute”

“Parse into
JSON”

• Offers standard API for making HTTP requests against servers.
• Used to be used for XML format data

• But returns text which can be parsed into arbitrary format
data

https://developer.mozilla.org/en-US/docs/Web/API/XMLHttpRequest/Using_XMLHttpRequest

This is a lot of typing…

https://developer.mozilla.org/en-US/docs/Web/API/XMLHttpRequest/Using_XMLHttpRequest

LaToza/Bell GMU SWE 432 Fall 2016

jQuery AJAX

15

http://api.jquery.com/jquery.ajax/

var jqxhr = $.ajax(“http://api.wunderground.com/api/
3bee87321900cf14/conditions/q/VA/Fairfax.json")
.done(function() {
 console.log(jqxhr.responseJSON); // JSON of response data
});

• Convenience wrapper for making HTTP requests using jQuery
• Defaults to GET method

• Can specify post with type: “POST” or using $.post(…)
• Looks at content-type response header to determine parser

• Can override with data-type (e.g., data-type: “JSON”)

http://api.jquery.com/jquery.ajax/
http://api.wunderground.com/api/

LaToza/Bell GMU SWE 432 Fall 2016

AJAX w/ jQuery

• Can use AJAX to load or send resources of any type
• HTML, CSS, JSON, text, JS, XML, images, …
• Content-Type HTTP header describes format

• Load JS file and run it
• $.load(…)

• Combine DOM manipulation w/ HTTP request
• $(“#result”).load(“ajax/test.html”);
• Requests data from server, updates selected elements

with returned HTML

16

LaToza/Bell GMU SWE 432 Fall 2016

Demo: Sentiment Analysis Web Service

17

Very similar to the news demo I posted online
 

But instead we use POST + AJAX

Tricks: Host static files using express

LaToza/Bell GMU SWE 432 Fall 2016

Troubleshooting AJAX
• Make sure that the data

sent to server is a JSON
object
• Not an array, String,

primitive, etc.
• Check for errors (will look

at this next time)
• Inspect HTTP requests

through the Network tab
on the Developer tools

18

LaToza/Bell GMU SWE 432 Fall 2016

API keys
• Problem: limiting request to a web service

• Handling requests costs time and money
• But still want to let developers play with service for free
• And want to bill heavy users based on usage

• Solution: API key
• e.g., AIzaSyDPyU6iHOovjYYONyFxixI9NRYQKlxfR0A
• Generate a unique key for each user
• Require all calls to API to provide key
• Monitor use & bill based on key provided
• DO NOT want to let these API keys be released publicly!

19

LaToza/Bell GMU SWE 432 Fall 2016

Packaging web services
• Web services are sometimes packaged as library.

• Include an external library through a <script> include
• Library itself makes AJAX calls to remote host.

• Advantages
• Makes possible higher level abstractions for interacting

with web service
• Don’t have to worry about individual HTTP requests

• Can implement caching of data received from server
• Can maintain local state of data when server may not be

available

20

LaToza/Bell GMU SWE 432 Fall 2016

Example: Firebase Realtime Database

• Google web service
• https://firebase.google.com/docs/database/

• Realtime database
• Data stored to remote web service
• Data synchronized to clients in real time

• Simple API
• Offers library wrapping AJAX calls
• Handles synchronization of data

• Can build web apps with persistence without backend
• Magically makes it look like all data is local

21

https://firebase.google.com/docs/database/

LaToza/Bell GMU SWE 432 Fall 2016

Firebase data model: JSON
• JSON format data

• Hierarchic tree of
key/value pairs

• Can access arbitrary
node in tree
• Just like JSON

object…
• Offers realtime console

• Shows data values
in realtime

• Edit data values

22

LaToza/Bell GMU SWE 432 Fall 2016

Firebase data model: JSON

23

Your App
Code Firebase API

Updates objects

Firebase
remote servers

Sends callbacks

AJAX
Magic

LaToza/Bell GMU SWE 432 Fall 2016

Storing Data: Set

24

function writeUserData(userId, name, email, imageUrl) {
 firebase.database().ref('users/' + userId).set({
 username: name,
 email: email,
 profile_picture : imageUrl
 });
}

“On the active
firebase database”
Must be initialized first (coming
soon….).

“Get the users/
[userID] node”

“Set value”

Arbitrary nodes in the tree can be
addressed by their path.

Sets the value to
specified JSON.

LaToza/Bell GMU SWE 432 Fall 2016

Storing Data: Push

• What about storing collections?
• Use push to create key automatically
• All data MUST have a key so it can be uniquely referenced

• Arrays given index keys
• You really should not ever make your own keys
• Should never have multiple clients synchronizing an array

• Local indexes could get of sync with remote keys
• Instead, use JSON object with number as key

25

var key = firebase.database().ref().child('posts').push(
 { author: username, uid: uid, body: body, title: title });

LaToza/Bell GMU SWE 432 Fall 2016

Storing Data: Delete

• Can delete a subtree by setting value to null or by
calling remove on ref

26

firebase.database().ref().child(‘posts’).remove();

Removes the ‘posts’ subtree.

LaToza/Bell GMU SWE 432 Fall 2016

Listening to data changes

• Read data by listening to changes to specific
subtrees

• Events will be generated for initial values and then
for each subsequent update

27

var starCountRef = firebase.database().ref('posts/' + postId + '/starCount');
starCountRef.on('value', function(snapshot) {
 updateStarCount(postElement, snapshot.val());
});

“When values changes, invoke function”
Specify a subtree by creating a reference to a path. Listen to one or
more events by using on(eventName, eventHandlerFunction(snapshot))

LaToza/Bell GMU SWE 432 Fall 2016

Data Update Events

• Types of events
• value: entire contents of a path
• child_added
• child_changed
• child_removed

• Can listen to events on any part of subtree
• Could have subtrees that correspond to different collections of

data
• Should always listen to lowest subtree of interest to minimize

extraneous communication
• Can read data exactly one time (and not get updates) using once

28

LaToza/Bell GMU SWE 432 Fall 2016

Ordering data
• Data is by, default, ordered by key in ascending

order
• e.g., numeric index keys are ordered from 0…n
• e.g., alphanumeric keys are ordered in

alphanumeric order
• Can get only first (or last) n elements

• e.g., get n most recent news items

29

var recentPostsRef = firebase.database().ref('posts').limitToLast(100);
recentPostsRef.once('value', function(snapshot) {
 displayPost(snapshot.val());
});

LaToza/Bell GMU SWE 432 Fall 2016

Setting up Firebase

• Detailed instructions to create project, get API key
• https://firebase.google.com/docs/web/setup
• You should run through web server, not localhost

30

<script src="https://www.gstatic.com/firebasejs/3.4.0/firebase.js"></script>
<script>
// Initialize Firebase
// TODO: Replace with your project's customized code snippet
var config = {
 apiKey: "<API_KEY>",
 authDomain: "<PROJECT_ID>.firebaseapp.com",
 databaseURL: "https://<DATABASE_NAME>.firebaseio.com",
 storageBucket: "<BUCKET>.appspot.com",
};
firebase.initializeApp(config);
</script>

https://firebase.google.com/docs/web/setup

LaToza/Bell GMU SWE 432 Fall 2016

Permissions
• By default, Firebase requires authentication

• All unauthenticated requests will be refused
• Do not want anyone with your URL to steal, destroy your production

data
• Will look at authentication in later lecture
• For development, ok to allow anonymous access

31

LaToza/Bell GMU SWE 432 Fall 2016

Firebase Demo

32

