AJAX

SWE 432, Fall 2016
Design and Implementation of Software for the Web




Today's Objectives

e | earn how to Iinteract with remote hosts from a web
nDage using AJAX

 [earn how to use Firebase web service to persist
and synchronize data in realtime

LaToza/Bell GMU SWE 432 Fall 2016



AJAX: Asynchronous JavaScript and XML

* Set of technologies to send and

receive data from server

asynchronously without interfering user nterfce
. . |
with behavior of page ""“i"“‘"mm&m
o —|TI\/|I_ & CSS userl"tcrfaccA AjaxengineA
« DOM Manipulation
HTML+CSS data XML data
 JSON or XML for data interchange " e e i . s
y A v A
* XMLHttpRequest for e s o
asynchronous communication
. classic Ajax
° JaVaSC”pt web application model web application model
Jesse James Garrett / adaptivepath.com
* Originally defined for XML. But
representation independent, and
now used mostly for JSON.
GMU SWE 432 Fall 2016 3

LaToza/Bell



History
o 1998: Microsoft Outlook Web App q

implements first XMLHttp script

Ajax: A New Approach to Web Applications

o 2004: Google releases Gmail with
AJAX

« 2005: “AJAX: A New Approach to Google = st e
Web Applications” by Jesse w

James Garrett [1] R (et W s,

o :U.Lv Chek 10 Contee
. d uT | MO L, AN " Example searches:
[ ] "
. oogle Maps wi S Ry e
u LJ WY = A ~ NY LS o1 o0 10 a location
N a, L mOn PA A N "Kansas oty”
- Ul,| & kS ‘wo Ky WY, ) L." i “10 mard rar (s

» 2006: W3C releases draft of \ g QR -
XMLHttpRequest standard o

- N
Imn- J " Gy
1000 on S0008 Coogie - Map dals S0106 MAK 10™ - S

[1] http://adaptivepath.org/ideas/ajax-new-approach-web-applications

LaToza/Bell GMU SWE 432 Fall 2016 4


http://adaptivepath.org/ideas/ajax-new-approach-web-applications/

Synchronous vs. Asynchronous Requests

classic web application model (synchronous)

user activity user activity

>

system processing system processing

Ajax web application model (asynchronous)

dient-side processing

UOSSRUSUR A €Vep
data transmission

server-side
processing

server-sde
processing

Jesse James Garrett / adaptivepath.com

LaToza/Bell GMU SWE 432 Fall 2016

Classic web
apps require user
to wait for
response to
server

Asynchronous
requests enable
user to continue
to interact with

app



Example - Lazy Content Loading

 User changes visible viewport

 JS code renders new area of
map based on updated
viewport

e Checktile cache

 |fin cache, load tile from
cache

 |f notin cache,

e request tile from Google
Maps Server

LaToza/Bell GMU SWE 432 Fall 2016



Lazy Content Loading

* Advantages:

e (Can have vast dataset that the user feels as if
they are interacting with in real time

* Only need to download content that user actually
needs

 Can (sometimes) do computation on client with
really simple server that just fetches appropriate
part of large data set

LaToza/Bell GMU SWE 432 Fall 2016



Some Uses for AJAX

* [azily load content only when requested

* e.9., FB newsfeed, Google Maps tile loading
 |Load parts of web page from different hosts
* e.9g., advertisements, embedded Twitter widget, ...
e Persist user data
* |In some cases, can do all computation client side
* Enables building web app without dedicated backend

e Submit form data to server

LaToza/Bell GMU SWE 432 Fall 2016



Single Page Application Site

s —_— nellcworld();
&w 16 & Alale/inier events !uncnonrhel\mﬂdQ(:‘ - R
Browser ,,:;"E;:m weridi<ipe ) S(v':oo?;.s::lz); s>Hello, wmorid! >3
HTML HTML elements Javascript
HTTP HTTP
Request Response
(JSON)

Web Server

Database

(R

LaToza/Bell GMU SWE 432 Fall 2016



Single Page Application (SPA)

* Client-side logic sends messages to server, receives response
* Logic is associated with a single HTML pages, written in Javascript

« HTML elements dynamically added and removed through DOM

manipulation

<b>Projects:</b>
<ol id="new-projects"></ol>

<script>

S$( "#new-projects" ).load( "/resources/load.html #projects 1i" );
</script>

</body>

</html>

* Processing that does not require server may occur entirely client side,
dramatically increasing responsiveness & reducing needed server
resources

e Classic example: Gmail

LaToza/Bell GMU SWE 432 Fall 2016



LaToza/Bell

Example: Weather

» Let’'s use a Web Service API to get the current
weather.

e Will use the WeatherUnderground API.

o https://www.wunderground.com/weather/api/d/
docs?”MR=1

GMU SWE 432 Fall 2016

11


https://www.wunderground.com/weather/api/d/docs?MR=1

Recall: HTTP

HTTP Request
HTTP GET http://api.wunderground.com/api/3bee87321900cf1l4/conditions/q/VA/Fairfax.json

HTTP Response

HTTP/1.1 200 OK

Server: Apache/2.2.15 (Cent0S)
Access—-Control-Allow-0rigin: =
Access-Control-Allow-Credentials: true
X-CreationTime: 0.134

Last-Modified: Mon, 19 Sep 2016 17:37:52 GMT
Content-Type: application/json; charset=UTF-8
Expires: Mon, 19 Sep 2016 17:38:42 GMT
Cache-Control: max—-age=0, no-cache

Pragma: no-cache

Date: Mon, 19 Sep 2016 17:38:42 GMT
Content-Length: 2589

Connection: keep—-alive

"response'": {
"version":"0.1",
"termsofService":"http://www.wunderground.com/weather/api/d/terms.html",
"features": {
""conditions": 1
Iy
I3
, "current_observation": {
"image": {
"url":"http://icons.wxug.com/graphics/wu2/logo_130x80.png",
LaToza/Bell "title" "Weather Unde rg rolhGWE 432 Fall 2016

12



Recall: HTTP

HTTP Request
HTTP GET http://api.wunderground.com/api/3bee87321900cf1l4/conditions/q/VA/Fairfax.json

HTTP Response

HTTP/1.1 200 OK

Server: Apache/2.2.15 (Cent0S)
Access—-Control-Allow-0rigin: =
Access-Control-Allow-Credentials: true
X-CreationTime: 0.134

Last-Modified: Mon, 19 Sep 2016 17:37:52 GMT
Content-Type: application/json; charset=UTF-8
Expires: Mon, 19 Sep 2016 17:38:42 GMT JSON format response
Cache-Control: max—-age=0, no-cache

Pragma: no-cache

Date: Mon, 19 Sep 2016 17:38:42 GMT
Content-Length: 2589

Connection: keep—-alive

"response'": {

"version":"0.1",
"termsofService":"http://www.wunderground.com/weather/api/d/terms.html",
"features": {

JSON data "conditions": 1
¥
}
, "current_observation": {
"image": {

"url":"http://icons.wxug.com/graphics/wu2/logo_130x80.png",
LaToza/Bell "title":"Weather UndergralingWe 432 Fall 2016

13



XMLHttpRequest

function reqListener () {
console. log(JSON.parse(this.responseText));

; ———Parse into

var oReq = new XMLHttpRequest(); \JESC)PQN
oReqg.addEventListener('"load", reqlListener);
oReqg. open("GET", "http://api.wunderground.com/api/

ee87321 cfl4/conditions/q/VA/Fairfax.json");
oReq.sendgL;

“Listen for load L _
Event occurs when resol This is a lot of typmg---

finishes loading (i.e., whenregquest
completes).

‘Execute’

* QOffers standard API for making HTTP requests against servers.
* Used to be used for XML format data

e But returns text which can be parsed into arbitrary format
data

https://developer.mozilla.org/en-UsS/docs/Web/API/XMLHttpRequest/Using XMLHttpRequest

LaToza/Bell GMU SWE 432 Fall 2016 14


https://developer.mozilla.org/en-US/docs/Web/API/XMLHttpRequest/Using_XMLHttpRequest

jQuery AJAX

var jgxhr = $.ajax( “http: i.wunderground.com/api
3bee87321900cf14/conditions/q/VA/Fairfax.json" )
.done(function() {

console. log( jgxhr.responselJSON ); // JSON of response data

});

* Convenience wrapper for making HTTP requests using jQuery
e Defaults to GET method

e Can specify post with type: “POST” or using $.post(...)
* Looks at content-type response header to determine parser

e Can override with data-type (e.g., data-type: “JSON")
http://api.jquery.com/jquery.ajax

LaToza/Bell GMU SWE 432 Fall 2016

15


http://api.jquery.com/jquery.ajax/
http://api.wunderground.com/api/

LaToza/Bell

AJAX w/ jQuery

e Can use AJAX to load or send resources of any type
« HTML, CSS, JSON, text, JS, XML, images, ...
o Content-Type HTTP header describes format
« Load JS file and run it
e $.load(...)
« Combine DOM manipulation w/ HTTP request
o P(“#result”).load( “ajax/test.html” );

 Requests data from server, updates selected elements
with returned HTML

GMU SWE 432 Fall 2016

16



LaToza/Bell

Demo: Sentiment Analysis Web Service

Very similar to the news demo | posted online
But instead we use POST + AJAX

Tricks: Host static files using express

GMU SWE 432 Fall 2016

17



Troubleshooting AJAX

* Make sure that the data
sent to server is a JSON
object

x a4l
® © W 5  Vew = =

Elements Console Sources Network Timeline Profiles » 03 : X

Preserve log ¢ Disable cache Offline No throttlir

Regex Hide data URLs

XHR JS CSS Img Media Font Doc WS Manifest Other

20000 ms 40000 ms 60000 ms 80000 ms 100000 ms 120000 ms 140000
* Not an array, String,
. . t . 't Name X Headers Preview Response Timing
p rl m I Ive ) e C ) lecture7Demo’.html ¥ General
jquery.min.js Request URL: http://127.0.0.1:4000/
* CheCk fOr errors (WI | | |OOk 127.0.01 Provisional headers are shown
. . Accept: */%
127.0.01 R . : : PP - . =
a't 'l:h |S n eXt 'l:l me) S::tgnt Type: application/x-www-form-urlencoded; charset
Origin: http://localhost:4000
Referer: http://localhost:4000/lecture7Demol.html
* |Inspect HIT TP requests O ApPCHeLRLS 37,36 (L ik Gecko) Chromersa. 8,37
43.116 Safari/537.36
th h th N t k t b ¥ Form Data view source view URL encoded
roug e NelwOrK 1a e e s | ‘
on the Developer tools
LaToza/Bell GMU SWE 432 Fall 2016 18



LaToza/Bell

API keys

* Problem: limiting request to a web service

Handling requests costs time and money

But still want to let developers play with service for free

 And want to bill heavy users based on usage
e Solution: APl key

e.g., AlzaSyDPyUGiIHOovjYYONyFxixI9NRYQKIxfROA
Generate a unique key for each user

Require all calls to APl to provide key

Monitor use & bill based on key provided

DO NOT want to let these API keys be released publicly!

GMU SWE 432 Fall 2016

19



LaToza/Bell

Packaging web services

 Web services are sometimes packaged as library.

* [nclude an external library through a <script> include

e Library itselt makes AJAX calls to remote host.

 Advantages

 Makes possible higher level abstractions for interacting
with web service

 Don't have to worry about individual HTTP requests

e Can implement caching of data received from server

 Can maintain local state of data when server may not be
available

GMU SWE 432 Fall 2016

20



LaToza/Bell

Example: Firebase Realtime Database

Google web service

« https://firebase.google.com/docs/database/

Realtime database

* Data stored to remote web service

 Data synchronized to clients in real time

Simple API

e Offers library wrapping AJAX calls

 Handles synchronization of data

Can build web apps with persistence without backend

Magically makes it look like all data is local

GMU SWE 432 Fall 2016

21


https://firebase.google.com/docs/database/

Firebase data model: JSON

 JSON format data = seecoderun

- -KFjyGiQaKEPILFNZDmb
0 - =KFjyljjJuLVeok_oONk

©- -KFjylZ2t3B-drOhwQZF
- . -KFJZDdAKEsxp8QygbjF

e Hierarchic tree of
key/value pairs

» Can access arbitrary o
node in tree | L history
_ L AO
* Justlike JSON - a: "-KFJZDh1MfFqTnp8REBE"
object...
. é % é e 0: "h1 { font-weight: bold; }"
e QOffers realtime console -t 1460633924378
* Shows data values | & history
in realtime i 0- A0
0 A1
* Edit data values L Js
o history

LaToza/Bell GMU SWE 432 Fall 2016 22



LaToza/Bell

Firebase data model: JSON

A

&

Updates objects

AJAX Firebase
Magic remote servers
Sends callbacks A

&

GMU SWE 432 Fall 2016

23



Storing Data: Set

function writeUserData(userId, name, email, imageUrl) A
firebase.database().ref('users/' + userld).set({
userngme: name,
emall)s email,

rofile_picture : imagelrl

Y);

On the active “Qat valye’

firebase database” Sets the value to

Must be initialized first (coming specified JSON.
soon....).

tdl-swed32-f1

n test
N .. todos
-\ users

=) tlatoza

“Get the users/ |
[UserlD] node” ------- profile_picture: "profilePic.jpg"

... username: "Thomas LaToza"

.. email: "tlatoza@gmu.edu"

Arbitrary nodes in the tree can be
addressed by their path.

LaToza/Bell GMU SWE 432 Fall 2016 24



Storing Data: Push

var key = firebase.database().ref().child('posts"').push(
{ author: username, uid: uid, body: body, title: title });

* \What about storing collections?
 Use push to create key automatically

* All data MUST have a key so it can be uniquely referenced
* Arrays given index keys
* You really should not ever make your own keys

e Should never have multiple clients synchronizing an array

* Local indexes could get of sync with remote keys

* |nstead, use JSON object with number as key

LaToza/Bell GMU SWE 432 Fall 2016 25



LaToza/Bell

Storing Data: Delete

firebase.database().ref().child(‘posts’).remove();

Removes the ‘posts’ subtree.

» (Can delete a subtree by setting value to null or by
calling remove on ref

GMU SWE 432 Fall 2016

26



Listening to data changes

var starCountRef = firebase.database().ref('posts/' + postId + '/starCount');
starCountRef.on('value', function(snapshot) {
updateStarCount(postElement, snapshot.val());

H;

"When values changes, invoke function”

Specity a subtree by creating a reference to a path. Listen to one or
more events by using on(eventName, eventHandlerFunction(snapshot))

 Read data by listening to changes to specific
subtrees

* Events will be generated for initial values and then
for each subsequent update

LaToza/Bell GMU SWE 432 Fall 2016

27



Data Update Events

* Types of events
* value: entire contents of a path
e child_added

* child_changead

* child_removed
* Can listen to events on any part of subtree

* Could have subtrees that correspond to different collections of
data

e Should always listen to lowest subtree of interest to minimize
extraneous communication

 (Can read data exactly one time (and not get updates) using once

LaToza/Bell GMU SWE 432 Fall 2016



LaToza/Bell

Ordering data

 Data is by, default, ordered by key in ascending
order

* e.g., numeric index keys are ordered from 0O...n

* e.9g., alphanumeric keys are ordered in
alphanumeric order

e Can get only first (or last) n elements
* e.g., get n most recent news items

var recentPostsRef = firebase.database().ref('posts').limitToLast(100);
recentPostsRef.once('value', function(snapshot) {

displayPost(snapshot.val());
F);

GMU SWE 432 Fall 2016 29



Setting up Firebase

» Detalled instructions to create project, get APl key

» https://firebase.google.com/docs/web/setup

e You should run through web server, not localhost

<script src="https://www.gstatic.com/firebasejs/3.4.0/firebase.js"></script>
<script>
// Initialize Firebase
// TODO: Replace with your project's customized code snippet
var config = {
apiKey: "<API_KEY>",
authDomain: "<PROJECT_ID>.firebaseapp.com",
databaseURL: "https://<DATABASE_NAME>.firebaseio.com",
storageBucket: "<BUCKET=>.appspot.com",
Fi
firebase.initializeApp(config);
</script>

LaToza/Bell GMU SWE 432 Fall 2016

30


https://firebase.google.com/docs/web/setup

Permissions

« By default, Firebase requires authentication
« All unauthenticated requests will be refused

Do not want anyone with your URL to steal, destroy your production
data

e Will look at authentication in later lecture

e For development, ok to allow anonymous access

A tdl-swed32-f16 Realtime Database
RULES
® Analytics
== Auth
&= Database 1+ 1 4
2w "rules": {
Py Storage 3 ".read": true,
4 ".write": true
® Hosting 5 }
6 }
”? Remote Confia

LaToza/Bell GMU SWE 432 Fall 2016



Firebase Demo

22222222222222222

32



