
Templates and
Databinding

SWE 432, Fall 2016
Design and Implementation of Software for the Web

LaToza/Bell GMU SWE 432 Fall 2016

Today
• What are templates?
• What are frontend components?
• How can I use these with React?

2

For further reading:
https://facebook.github.io/react/docs/tutorial.html

React Guide: https://facebook.github.io/react/docs/why-react.html

Starter code snippets: https://facebook.github.io/react/downloads/react-15.3.2.zip

https://facebook.github.io/react/docs/tutorial.html
https://facebook.github.io/react/docs/why-react.html
https://facebook.github.io/react/downloads/react-15.3.2.zip

LaToza/Bell GMU SWE 432 Fall 2016

What’s wrong with this code?

3

				function	createItem(value,	key)	
				{	
								$('#todoItems').append(
																'<div	class="todoItem"	data-index="'	+	key		
																+	'"><input	type="text"	onchange="itemChanged(this)"	value='	
							+	value	+	'"><button	onclick="deleteItem(this.parentElement)">✖</button></div>'	
);	
				}	

LaToza/Bell GMU SWE 432 Fall 2016

What’s wrong with this code?

4

				function	createItem(value,	key)	
				{	
								$('#todoItems').append(
																'<div	class="todoItem"	data-index="'	+	key		
																+	'"><input	type="text"	onchange="itemChanged(this)"	value="'	
							+	value	+	'"><button	onclick="deleteItem(this.parentElement)">✖</button></div>'	
);	
				}	

No syntax checking

LaToza/Bell GMU SWE 432 Fall 2016

Anatomy of a Non-Trivial Web App

5

User profile widget

Who to follow
widget

Follow widget

Feed widget

Feed item widget

LaToza/Bell GMU SWE 432 Fall 2016

Typical properties of web app UIs
• Each widget has both visual presentation & logic

• e.g., clicking on follow button executes some logic related to the
containing widget

• Logic and presentation of individual widget strongly related,
loosely related to other widgets

• Some widgets occur more than once
• e.g., Follow widget occurs multiple times in Who to Follow

Widget
• Need to generate a copy of widget based on data

• Changes to data should cause changes to widget
• e.g., following person should update UI to show that the person

is followed. Should work even if person becomes followed
through other UI

• Widgets are hierarchical, with parent and child
• Seen this already with container elements in HTML…

6

LaToza/Bell GMU SWE 432 Fall 2016

Idea 1: Templates

• Templates describe repeated HTML through a single
common representation
• May have variables that describe variations in the

template
• May have logic that describes what values are used or

when to instantiate template
• Template may be instantiated by binding variables to

values, creating HTML that can be used to update DOM

7

								$('#todoItems').append(
																'<div	class="todoItem"	data-index="'	+	key		
																+	'"><input	type="text"	onchange="itemChanged(this)"	value="'	
							+	value	+	'"><button	onclick="deleteItem(this.parentElement)">✖</button></div>'	
);

LaToza/Bell GMU SWE 432 Fall 2016

Server side vs. client side
• Where should template be instantiated?

• Server-side frameworks: Template
instantiated on server
• Examples: JSP, ColdFusion, PHP,

ASP.NET
• Logic executes on server, generating

HTML that is served to browser
• Front-end framework: Template runs in

web browser
• Examples: React, Angular, Meteor,

Ember, Aurelia, …
• Server passes template to browser,

browser generates HTML on demand

8

LaToza/Bell GMU SWE 432 Fall 2016

Server side vs. client side
• Server side

• Oldest solution.
• True when “real” code ran on server, Javascript

• Client side
• Enables presentation logic to exist entirely in

browser
• e.g., can make call to remote web service, no

need for server to be involved
• (What we’ve looked at in this course).

9

LaToza/Bell GMU SWE 432 Fall 2016

Logic
• Templates require combining logic with HTML

• Conditionals - only display presentation if some
expression is true

• Loops - repeat this template once for every item
in collection

• How should this be expressed?
• Embed code in HTML (ColdFusion, JSP,

Angular)
• Embed HTML in code (React)

10

LaToza/Bell GMU SWE 432 Fall 2016

Embed code in HTML

• Template takes the form of an HTML file, with extensions
• Custom tags (e.g., <% %>) enable logic to be

embedded in HTML
• Uses another language (e.g., Java, C) or custom

language to express logic
• Next lecture: Angular

11

LaToza/Bell GMU SWE 432 Fall 2016

Embed HTML in code

• Template takes the form of an HTML fragment, embedded
in a code file
• HTML instantiated as part of an expression, becomes a

value that can be stored to variables
• Uses another language (e.g., Javascript) to express

logic
• This lecture: React

12

				function	createItem(value,	key)	
				{	
								$('#todoItems').append(
																'<div	class="todoItem"	data-index="'	+	key		
																+	'"><input	type="text"	onchange="itemChanged(this)"	value='	
							+	value	+	'"><button	onclick="deleteItem(this.parentElement)">✖</button></div>'	
);	
				}	

LaToza/Bell GMU SWE 432 Fall 2016

Templates enable HTML to be rendered
multiple times

• Rendering takes a template, instantiates the
template, outputs HTML

• Logic determines which part(s) of templates are
rendered

• Expressions are evaluated to instantiate values
• e.g., { this.props.name }
• Different variable values ==> different HTML

output

13

LaToza/Bell GMU SWE 432 Fall 2016

Idea 2: Components
• Web pages are complex,

with lots of logic and
presentation

• How can we organize web
page to maximize
modularity?

• Solution: Components
• Templates that correspond

to a specific widget
• Encapsulates related logic

& presentation using
language construct (e.g.,
class)

14

LaToza/Bell GMU SWE 432 Fall 2016

Components
• Organize related logic and presentation into a single unit

• Includes necessary state and the logic for updating this
state

• Includes presentation for rendering this state into HTML
• Outside world must interact with state through accessors,

enabling access to be controlled

• Synchronizes state and visual presentation
• Whenever state changes, HTML should be rendered again

• Components instantiated through custom HTML tag

15

LaToza/Bell GMU SWE 432 Fall 2016

React: Front End Framework for
Components

• Originally build by Facebook
• Opensource frontend framework
• React has a TON of features…

• We’re only going to be scratching the surface
• Official documentation & tutorials

• https://facebook.github.io/react/index.html

16

https://facebook.github.io/react/index.html

LaToza/Bell GMU SWE 432 Fall 2016

Example

17

var HelloMessage = React.createClass({
 render: function() {
 return <div>Hello {this.props.name}</div>;
 }
});

ReactDOM.render(<HelloMessage name="John" />,
 document.getElementById(‘mountNode'));

<div id=“mountNode”></div>
“Create a HelloMessage
component”
Creates a new component with the
provided functions.

“Return a div with a name as
the presentation”
Render generates the HTML for the
component. The HTML is dynamically
generated by the library.

“Replace mountNode with
rendered HelloMessage”
Instantiates component, replaces
mountNode innerHTML with
rendered HTML. Second parameter
should always be a DOM element.

LaToza/Bell GMU SWE 432 Fall 2016

Example - Properties

18

var HelloMessage = React.createClass({
 render: function() {
 return <div>Hello {this.props.name}</div>;
 }
});

ReactDOM.render(<HelloMessage name="John" />,
 document.getElementById(‘mountNode'));

<div id=“mountNode”></div>

“Create a HelloMessage
component”
Corresponding custom tag for
component.

“Set the name property of
HelloMessage to John”
Components have a this.props collection
that contains a set of properties instantiated
for each component.

LaToza/Bell GMU SWE 432 Fall 2016

Embedding HTML in Javascript

• HTML embedded in JavaScript
• HTML can be used as an expression
• HTML is checked for correct syntax

• Can use { expr } to evaluate an expression and
return a value
• e.g., { 5 + 2 }, { foo() }

• Output of expression is HTML

19

return <div>Hello {this.props.name}</div>;

LaToza/Bell GMU SWE 432 Fall 2016

JSX
• How do you embed HTML in JavaScript and get

syntax checking??
• Idea: extend the language: JSX

• Javascript language, with additional feature that
expressions may be HTML

• Can be used with ES6 or traditional JS (ES5)
• It’s a new language

• Browsers do not natively run JSX
• If you include a JSX file as source, you will get an

error

20

LaToza/Bell GMU SWE 432 Fall 2016

Transpiling
• Need to take JSX code and trans-compile

(“transpile”) to Javascript code
• Take code in one language, output source code in

a second language
• Where to transpile?

• Serverside, as part of build process
• Fastest, least work for client. Only have to

execute transpiring once.
• Clientside, through library.

• Include library that takes JSX, outputs JS.
• Easy. Just need to include a script.

21

LaToza/Bell GMU SWE 432 Fall 2016

Babel

• Transpiler for Javascript
• Takes JSX (or ES6) and outputs traditional Javascript (a.k.a ES5)
• Can use server side or client side
• Using Babel serverside: https://facebook.github.io/react/docs/

language-tooling.html

22

https://babeljs.io/

<script	src=“https://cdnjs.com/libraries/babel-core/
5.8.34">	</script>	

<script	type=“text/babel”>	
//JSX	here	
</script>

Babel client side

https://facebook.github.io/react/docs/language-tooling.html
https://facebook.github.io/react/docs/language-tooling.html
https://babeljs.io/
https://cdnjs.com/libraries/babel-core/5.8.34
https://cdnjs.com/libraries/babel-core/5.8.34

LaToza/Bell GMU SWE 432 Fall 2016 24

LaToza/Bell GMU SWE 432 Fall 2016 25

LaToza/Bell GMU SWE 432 Fall 2016

Defining Components
• Two syntax choices:

• Anonymous object module pattern
• Class

26

var HelloMessage = React.createClass({
 render: function() {
 return <div>Hello
 {this.props.name}</div>;
 }
});

class HelloMessage extends React.Component {
 render() {
 return <div>Hello {this.props.name}
 </div>;
 }
}

Module pattern Class

LaToza/Bell GMU SWE 432 Fall 2016

Module Pattern vs. Classes

• Classes are equivalent… except
• Use constructor to set up state
• Must manually bind this instance (these are not the classes

you are looking for…)
• Classes offers shorter and cleaner syntax.
• But…. most documentation still using module pattern
• In this course, you can use whichever you’d like.

27

https://facebook.github.io/react/docs/reusable-components.html

var HelloMessage = React.createClass({
 render: function() {
 return <div>Hello
 {this.props.name}</div>;
 }
});

class HelloMessage extends React.Component {
 render() {
 return <div>Hello {this.props.name}
 </div>;
 }
}

Module pattern Class

https://facebook.github.io/react/docs/reusable-components.html

LaToza/Bell GMU SWE 432 Fall 2016

Demo: Greeting App

28

https://jsfiddle.net/69z2wepo/57792/

https://jsfiddle.net/69z2wepo/57792/

LaToza/Bell GMU SWE 432 Fall 2016

Reacting to change
• What happens when state of component changes?

• e.g., user adds a new item to list
• Idea

1. Your code updates this.state of component
when event(s) occur (e.g., user enters data, get
data from network) using this.setState(newState)

2. Calls to this.setState automatically cause render
to be invoked by framework

3. Reconciliation: Framework diffs output of render
with previous call to render, updating only part
of DOM that changed

29

LaToza/Bell GMU SWE 432 Fall 2016 30

class LikeButton extends React.Component { 
 constructor() { 
 super(); 
 this.state = { liked: false };  
 this.handleClick = this.handleClick.bind(this); 
 } 
 
 handleClick() { 
 this.setState({liked: !this.state.liked}); 
 } 
 
 render() { 
 const text = this.state.liked ? 'liked' : 'haven\'t liked';  
 return ( 
 <div onClick={this.handleClick}>  
 You {text} this. Click to toggle. 
 </div>  
); 
 } 
}  
 
ReactDOM.render(<LikeButton />, document.getElementById('example'));

https://jsfiddle.net/foqdzyLf/1/

https://jsfiddle.net/foqdzyLf/1/

LaToza/Bell GMU SWE 432 Fall 2016

What is state?
• All internal component data that, when changed,

should trigger UI update
• Stored as single JSON object this.state

• What isn’t state?
• Anything that could be computed from state

(redundant)
• Other components - should build them in render
• Data duplicated from properties.

31

LaToza/Bell GMU SWE 432 Fall 2016

Properties vs. State
• Properties should be immutable.

• Created through attributes when component is
instantiated.

• Should never update
• State changes to reflect the current state of the component.

• Can (and should) change based on the current internal
data of your application.

32

var HelloMessage = React.createClass({ 
 render: function() { 
 return <div>Hello {this.props.name}</div>;  
 } 
}); 
ReactDOM.render(<HelloMessage name="John" />,  
 document.getElementById(‘mountNode'));

handleClick() { 
 this.setState({liked: !this.state.liked});
}

Property:

State:

LaToza/Bell GMU SWE 432 Fall 2016

Nesting components

33

• UI is often composed of nested components
• Like containers in HTML, corresponds to

hierarchy of HTML elements
• But…now each element is a React component

that is generated
• Parent owns instance of child

• Occurs whenever component instantiates other
component in render function

• Parent configures child by passing in properties
through attributes

LaToza/Bell GMU SWE 432 Fall 2016

Nesting components

34

render: function() {
 return (
 <div>
 <PagePic pagename={this.props.pagename} />
 <PageLink pagename={this.props.pagename} />
 </div>
);
}

Establishes ownership by
creating in render function.

Sets pagename property of child
to value of pagename property of
parent

LaToza/Bell GMU SWE 432 Fall 2016

Reconciliation

• Process by which React updates the DOM with each
new render pass

• Occurs based on order of components
• Second child of Card is destroyed.
• First child of Card has text mutated.

35

https://facebook.github.io/react/docs/multiple-components.html

<Card>
 <p>Paragraph 1</p>
 <p>Paragraph 2</p>
</Card>

<Card>
 <p>Paragraph 2</p>
</Card>

https://facebook.github.io/react/docs/multiple-components.html

LaToza/Bell GMU SWE 432 Fall 2016

Reconciliation with Keys

• Problem: what if children are dynamically
generated and have their own state that must be
persisted across render passes?
• Don’t want children to be randomly transformed

into other child with different state
• Solution: give children identity using keys

• Children with keys will always keep identity, as
updates will reorder them or destroy them if gone

36

 render: function() {
 var results = this.props.results;
 return (

 {results.map(function(result) {
 return <li key={result.id}>{result.text};
 })}

);
 }

LaToza/Bell GMU SWE 432 Fall 2016

Demo: Todo in React

37

https://jsfiddle.net/69z2wepo/57794/

https://jsfiddle.net/69z2wepo/57794/

