
Security
SWE 432, Fall 2017

Design and Implementation of Software for the Web

LaToza GMU SWE 432 Fall 2017

Today

• Security
• What is it?
• Most important types of attacks

• Authorization
• oAuth

2

LaToza GMU SWE 432 Fall 2017

Security
• Why is it important?

• Users’ data is on the
web
• Blog comments, FB,

Email, Banking, …
• Can others steal it?

• or who already has
access?

• Can others impersonate
the user?
• e.g., post on FB on

the user’s behalf

3

LaToza GMU SWE 432 Fall 2017

Security Requirements for Web Apps
1. Authentication

•Verify the identify of the parties involved
•Who is it?

2. Authorization
• Grant access to resources only to allowed users
• Are you allowed?

3. Confidentiality
• Ensure that information is given only to authenticated

parties
• Can you see it?

4. Integrity
• Ensure that information is not changed or tampered with
• Can you change it?

4

LaToza GMU SWE 432 Fall 2017

Threat Models
• What is being defended?

• What resources are important to defend?
• What malicious actors exist and what attacks might

they employ?

• Who do we trust?
• What entities or parts of system can be considered

secure and trusted
• Have to trust something!

5

LaToza GMU SWE 432 Fall 2017

Web Threat Models: Big Picture

6

client page
(the “user”) server

HTTP Request

HTTP Response

LaToza GMU SWE 432 Fall 2017

Web Threat Models: Big Picture

7

client page
(the “user”) server

HTTP Request

HTTP Response

Do I trust that this request really
came from the user?

LaToza GMU SWE 432 Fall 2017

Web Threat Models: Big Picture

8

client page
(the “user”) server

HTTP Request

HTTP Response

Do I trust that this request really
came from the user?Do I trust that this response

really came from the server?

LaToza GMU SWE 432 Fall 2017

Web Threat Models: Big Picture

9

client page
(the “user”) server

HTTP Request

HTTP Response

Do I trust that this request really
came from the user?Do I trust that this response

really came from the server?

HTTP Request

HTTP Response

malicious actor
“black hat”

LaToza GMU SWE 432 Fall 2017

Web Threat Models: Big Picture

10

client page
(the “user”) server

HTTP Request

HTTP Response

Do I trust that this request really
came from the user?Do I trust that this response

really came from the server?

HTTP Request

HTTP Response

malicious actor
“black hat”

Might be “man in the middle”
that intercepts requests and
impersonates user or server.

LaToza GMU SWE 432 Fall 2017

Security Requirements for Web Apps
1. Authentication

•Verify the identify of the parties involved
•Threat: Impersonation. A person pretends to be
someone they are not.

2. Authorization
3. Confidentiality

• Ensure that information is given only to authenticated
parties

• Threat: Eavesdropping. Information leaks to someone
that should not have it.

4. Integrity
• Ensure that information is not changed or tampered with
• Threat: Tampering.

11

LaToza GMU SWE 432 Fall 2017

Integrity and Confidentiality

12

client page
(the “user”) server

HTTP Request

HTTP Response

What if malicious actor
impersonates server?

HTTP Request

HTTP Response

malicious actor
“black hat”

LaToza GMU SWE 432 Fall 2017

Man in the middle
• Requests to server intercepted by man in the

middle
• Requests forwarded
• But… response containing code edited, inserting

malicious code
• Or could

• Intercept and steal sensitive user data

13

LaToza GMU SWE 432 Fall 2017

HTTPS: HTTP over SSL
• Establishes secure connection from client to server

• Uses SSL to encrypt traffic
• Ensures that others can’t impersonate server by establishing

certificate authorities that vouch for server.
• Server trusts an HTTPS connection iff

• The user trusts that the browser software correctly implements
HTTPS with correctly pre-installed certificate authorities.

• The user trusts the certificate authority to vouch only for
legitimate websites.

• The website provides a valid certificate, which means it was
signed by a trusted authority.

• The certificate correctly identifies the website (e.g., certificate
received for “https://example.com" is for "example.com" and
not other entity).

14

LaToza GMU SWE 432 Fall 2017

Using HTTPS
• If using HTTPS, important that all scripts are

loaded through HTTPS
• If mixed script from untrusted source served

through HTTP, attacker could still modify this
script, defeating benefits of HTTPS

• Example attack:
• Banking website loads jQuery through HTTP

from a CDN rather than HTTPS
• Attacker intercepts request for jQuery script,

replaces with malicious script that steals user
data or executes malicious action

15

LaToza GMU SWE 432 Fall 2017

Authentication
• How can we know the identify of the parties involved
• Want to customize experience based on identity

• But need to determine identity first!
• Options

• Ask user to create a new username and password
• Lots of work to manage (password resets, storing

passwords securely, …)
• Hard to get right (#2 on the OWASP Top 10

Vulnerability List)
• User does not really want another password…

• Use an authentication provider to authenticate user
• Google, FB, Twitter, Github, …

16

LaToza GMU SWE 432 Fall 2017

Authentication Provider
• Creates and tracks the identity of the user

• Instead of signing in directly to website, user signs
in to authentication provider
• Authentication provider issues token that

uniquely proves identity of user
• Talk more next lecture about how these tokens

work

17

LaToza/Bell GMU SWE 432 Fall 2016

Microservices & Authentication
• If using microservices, how do we decide who is

logged in?
• Typical solution: Sign-on gateway

18

Our Cool App

Frontend

“Dumb”
Backend

Mod 1

REST service

Database

Mod 2

REST service

Database

Mod 3

REST service

Database

Mod 4

REST service

Database

Mod 5

REST service

Database

Mod 6

REST service

Database

AJAX

Todos

NodeJS, Firebase

Mailer

Java, MySQL

Accounts

Google Service

Search Engine

Java, Neo4J

Analytics

C#, SQLServer

Facebook

Python, Firebase

LaToza/Bell GMU SWE 432 Fall 2016

Microservices & Authentication
• If using microservices, how do we decide who is

logged in?
• Typical solution: Sign-on gateway

19

Our Cool App

Frontend
“Dumb”
Backend

Mod 1

REST service

Database

Mod 2

REST service

Database

Mod 3

REST service

Database

Mod 4

REST service

Database

Mod 5

REST service

Database

Mod 6

REST service

Database

AJAX

Todos

NodeJS, Firebase

Mailer

Java, MySQL

Accounts

Google Service

Search Engine

Java, Neo4J

Analytics

C#, SQLServer

Facebook

Python, Firebase

Sign-on
gateway

Unauthenticated
request Authenticated

request

LaToza/Bell GMU SWE 432 Fall 2016

Authentication & Authorization
• Putting this sign on gateway will ensure that people

are signed in
• But how do we ensure that someone is authorized

to view some given data or make some request?
• Role of individual services to check back (either

with authorization service, or some other service)

20

LaToza/Bell GMU SWE 432 Fall 2016

Bigger picture - authentication with
multiple service providers

• Let’s consider updating a Todos app so that it can
automatically put calendar events on a Google
Calendar

21

Mod 1

REST
service

Database

Todos

Prof LaToza

Logs into,
posts new todo

Google
Calendar
API

Connects as user,
creates new event

How does Todos tell Google that it’s posting something for Prof LaToza?
Should Prof LaToza tell the Todos app his Google password?

LaToza/Bell GMU SWE 432 Fall 2016 22

We’ve got something for that…

LaToza/Bell GMU SWE 432 Fall 2016

OAuth
• OAuth is a standard protocol for sharing information

about users from a “service provider” to a “consumer
app” without them disclosing their password to the
consumer app

• 3 key actors:
• User, consumer app, service provider app
• E.x. “Prof LaToza,” “Todos App,” “Google Calendar”

• Service provider issues a token on the user’s behalf that
the consumer can use

• Consumer holds onto this token on behalf of the user
• Protocol could be considered a conversation…

23

LaToza/Bell GMU SWE 432 Fall 2016 24

An OAuth Conversation

TodosApp

Google Calendar

User

1: intent

2: permission
(to ask)

3: re
direct

to provider

4: permission to share
5:

 to
ke

n
cr

ea
te

d

6: Access resource

Goal: TodosApp can post events to User’s calendar.
TodosApp never finds out User’s email or password

LaToza/Bell GMU SWE 432 Fall 2016 25

Tokens?

Example token:
eyJhbGciOiJSUzI1NiIsImtpZCI6ImU3Yjg2NjFjMGUwM2Y3ZTk3NjQyNGUxZWFiMzI5OWIxNzRhNGVlNWUifQ.eyJpc3MiOiJodHRwczovL3NlY3VyZXRva
2VuLmdvb2dsZS5jb20vYXV0aGRlbW8tNzJhNDIiLCJuYW1lIjoiSm9uYXRoYW4gQmVsbCIsInBpY3R1cmUiOiJodHRwczovL2xoNS5nb29nbGV1c2VyY29ud
GVudC5jb20vLW0tT29jRlU1R0x3L0FBQUFBQUFBQUFJL0FBQUFBQUFBQUgwL0JVV2tONkRtTVJrL3Bob3RvLmpwZyIsImF1ZCI6ImF1dGhkZW1vLTcyYTQyI
iwiYXV0aF90aW1lIjoxNDc3NTI5MzcxLCJ1c2VyX2lkIjoiSk1RclFpdTlTUlRkeDY0YlR5Z0EzeHhEY3VIMiIsInN1YiI6IkpNUXJRaXU5U1JUZHg2NGJUe
WdBM3h4RGN1SDIiLCJpYXQiOjE0Nzc1MzA4ODUsImV4cCI6MTQ3NzUzNDQ4NSwiZW1haWwiOiJqb25iZWxsd2l0aG5vaEBnbWFpbC5jb20iLCJlbWFpbF92Z
XJpZmllZCI6dHJ1ZSwiZmlyZWJhc2UiOnsiaWRlbnRpdGllcyI6eyJnb29nbGUuY29tIjpbIjEwOTA0MDM1MjU3NDMxMjE1NDIxNiJdLCJlbWFpbCI6WyJqb
25iZWxsd2l0aG5vaEBnbWFpbC5jb20iXX0sInNpZ25faW5fcHJvdmlkZXIiOiJnb29nbGUuY29tIn19.rw1pPK377hDGmSaX31uKRphKt4i79aHjceepnA8A
2MppBQnPJlCqmgSapxs-Pwmp-1Jk382VooRwc8TfL6E1UQUl65yi2aYYzSx3mWMTWtPTHTkMN4E-GNprp7hX-
pqD3PncBh1bq1dThPNyjHLp3CUlPPO_QwaAeSuG5xALhzfYkvLSINty4FguD9vLHydpVHWscBNCDHACOqSeV5MzUs6ZYMnBIitFhbkak6z5OClvxGTGMhvI8
m11hIHdWgNGnDQNNoosiifzlwMqDHiF5t3KOL-mxtcNq33TvMAc43JElxnyB4g7qV2hJIOy4MLtLxphAfCeQZA3sxGf7vDXBQ

A token is a secret value. Holding it gives us access to some
privileged data. The token identifies our users and app.

{  
 "iss": "https://securetoken.google.com/authdemo-72a42",  
 "name": “Thomas LaToza",  
 "picture": "https://lh5.googleusercontent.com/-m-OocFU5GLw/AAAAAAAAAAI/AAAAAAAAAH0/BUWkN6DmMRk/photo.jpg",  
 "aud": "authdemo-72a42",  
 "auth_time": 1477529371,  
 "user_id": "JMQrQiu9SRTdx64bTygA3xxDcuH2",  
 "sub": "JMQrQiu9SRTdx64bTygA3xxDcuH2",  
 "iat": 1477530885,  
 "exp": 1477534485,  
 "email": "latoza@gmail.com",  
 "email_verified": true,  
 "firebase": { 
 "identities": { 
 "google.com": ["109040352574312154216"], 
 "email": ["latoza@gmail.com"]  
 }, 
 "sign_in_provider": "google.com" 
},  
 "uid": "JMQrQiu9SRTdx64bTygA3xxDcuH2" 
}

Decoded:

LaToza/Bell GMU SWE 432 Fall 2016

Trust in OAuth
• How does the Service

provider (Google calendar)
know what the TodosApp
is?

• Solution: When you set up
OAuth for the first time, you
must register your
consumer app with the
service provider

• Let the user decide
• … they were the one who

clicked the link after all

26

TodosApp Google CalendarUser

Evil TodosApp

LaToza/Bell GMU SWE 432 Fall 2016

Authentication as a Service
• Whether we are building “microservices” or not,

might make sense to farm out our authentication
(user registration/logins) to another service

• Why?
• Security
• Reliability
• Convenience

• We can use OAuth for this!
• We’re going to use Firebase’s authentication API in

our homework this week

27

LaToza/Bell GMU SWE 432 Fall 2016 28

Using an Authentication Service

Firebase

User

1: intent

2: permission
(to ask)

3: re
direct

to provider

4: permission to share
5:

 to
ke

n
cr

ea
te

d
6: Access resource

LaToza/Bell GMU SWE 432 Fall 2016

Firebase Authentication
• Firebase provides an entire suite of authentication

services you can use to build into your app
• Can either use “federated” logins (e.g. login with

google, facebook, GitHub credentials) or simple email/
password logins. Use whichever you want.

• Getting started guide: https://github.com/firebase/
FirebaseUI-Web

• For backend: https://firebase.google.com/docs/auth/
server/verify-id-tokens

• Firebase handles browser local storage to track that the
user is logged in across pages (woo)

29

https://github.com/firebase/FirebaseUI-Web
https://github.com/firebase/FirebaseUI-Web
https://firebase.google.com/docs/auth/server/verify-id-tokens
https://firebase.google.com/docs/auth/server/verify-id-tokens

LaToza GMU SWE 432 Fall 2017

Authentication: Sharing data between
pages

• Browser loads many pages at the same time.
• Might want to share data between pages

• Popup that wants to show details for data on
main page

• Cookies that let user login once for a page and
still be logged in when visiting page in separate
tab

• Attack: malicious page
• User visits a malicious page in a second tab
• Malicious page steals data from page or its

cookies, modifies data, or impersonates user

30

LaToza GMU SWE 432 Fall 2017

Solution: Same-Origin Policy
• Browser needs to differentiate pages that are part

of same application from unrelated pages
• What makes a page similar to another page?

• Origin: the protocol, host, and port

31

https://en.wikipedia.org/wiki/Same-origin_policy

http://www.example.com/dir/page.html

https://www.example.com/dir/page.html
• Different origins:

http://www.example.com:80/dir/page.html

http://en.example.com:80/dir/page.html

https://en.wikipedia.org/wiki/Same-origin_policy

LaToza GMU SWE 432 Fall 2017

Same-Origin Policy
• “Origin” refers to the page that is executing it, NOT where

the data comes from
• Example:

• In one HTML file, I directly include 3 JS scripts, each
loaded from a different server

• -> All have same “origin”
• Example:

• One of those scripts makes an AJAX call to yet another
server

• -> AJAX call not allowed
• Scripts contained in a page may access data in a second

web page (e.g., its DOM) if they come from the same origin

32

LaToza GMU SWE 432 Fall 2017

Cross Origin Requests

33

https://developer.mozilla.org/en-US/docs/Web/HTTP/Access_control_CORS

https://developer.mozilla.org/en-US/docs/Web/HTTP/Access_control_CORS

LaToza GMU SWE 432 Fall 2017

CORS: Cross Origin Resource Sharing

• Same-Origin might be safer, but not really usable:
• How do we make AJAX calls to other servers?

• Solution: Cross Origin Resource Sharing (CORS)
• HTTP header:
								
						Access-Control-Allow-Origin:	<server	or	wildcard>	

• In Express:

34

res.header("Access-Control-Allow-Origin", "*");

LaToza GMU SWE 432 Fall 2017

Takeaways

• Think about all potential threat models
• Which do you care about
• Which do you not care about

• What user data are you retaining
• Who are you sharing it with, and what might they

do with it

35

LaToza GMU SWE 432 Fall 2017

Readings for next time
• Intro to microservices

• https://www.martinfowler.com/articles/
microservices.html

36

https://www.martinfowler.com/articles/microservices.html
https://www.martinfowler.com/articles/microservices.html

