
Microservices
SWE 432, Fall 2017

Design and Implementation of Software for the Web



LaToza GMU SWE 432 Fall 2017

Today
• How is a being a microservice different than simply 

being RESTful? 
• What are the advantages of a microservice 

backend architecture over a monolithic 
architecture? 

• Next time: what additional infrastructure is required 
to realize these advantages?

2



LaToza GMU SWE 432 Fall 2017

The “good” old days of backends

3

HTTP Request
GET	/myApplicationEndpoint	HTTP/1.1	
Host:	cs.gmu.edu	
Accept:	text/html

web server

HTTP Response
HTTP/1.1	200	OK	
Content-Type:	text/html;	charset=UTF-8	

<html><head>...

Runs a program

Web Server 
Application

My 
Application 
Backend

Give	me	/myApplicationEndpoint

Here’s	some	text	to	send	back

Does whatever it wants



LaToza GMU SWE 432 Fall 2017

History of Backend Development

• In the beginning, you wrote whatever you wanted 
using whatever language you wanted and whatever 
framework you wanted 

• Then… PHP and ASP 
• Languages “designed” for writing backends 
• Encouraged spaghetti code 
• A lot of the web was built on this 

• A whole lot of other languages were also springing 
up in the 90’s… 
• Ruby, Python, JSP

4



LaToza GMU SWE 432 Fall 2017

Monolothic backend

5

Browser

Web Server

Database

HTTP  
Request

HTTP  
Response 

(JSON)

Presentation tier

Domain logic tier

Persistence tier

Front end framework

Component logic Component logic Component logic 

Component presentation Component presentation Component presentation



LaToza GMU SWE 432 Fall 2017

Microservices backend

6

Browser

Web Servers

Database

HTTP  
Request

HTTP  
Response 

(JSON)

Front end framework

Component logic Component logic Component logic 

Component presentation Component presentation Component presentation

HTTP  
Request

HTTP  
Response 

(JSON)

HTTP  
Request

HTTP  
Response 

(JSON)

Microservice Microservice

HTTP  
Request

HTTP  
Response 

(JSON)



LaToza GMU SWE 432 Fall 2017

RESTful APIs
• Recall guidelines for RESTful APIs from Lecture 6: 

Handling HTTP Requests 
• Support scaling 

• Use HTTP actions to support intermediaries (e.g., 
caches) 

• Support change 
• Leave anything out of URI that might change 
• Ensure any URI changes are backwards compatible 

• Support reuse 
• Design URIs around resources that are expressive 

abstractions that support a range of client interactions 
• Resources are nouns; use HTTP actions to signal verbs

7



LaToza GMU SWE 432 Fall 2017

Challenges building a RESTful monolith

8



LaToza GMU SWE 432 Fall 2017

Microservices vs. Monoliths
• Advantages of microservices over monoliths include 

• Support for scaling 
• Scale vertically rather than horizontally 

• Support for change 
• Support hot deployment of updates 

• Support for reuse 
• Use same web service in multiple apps 
• Swap out internally developed web service for 

externally developed web service 
• Support for separate team development 

• Pick boundaries that match team responsibilities 
• Support for failure

9



LaToza GMU SWE 432 Fall 2017

Support for scaling

10

Our Cool App

Frontend

Backend Server

Database

Mod 1 Mod 2

Mod 3 Mod 4

Mod 5 Mod 6



LaToza GMU SWE 432 Fall 2017

Now how do we scale it?

11

Our Cool App

Backend Server

Database

Backend Server Backend Server

Mod 1 Mod 2

Mod 3 Mod 4

Mod 5 Mod 6

Mod 1 Mod 2

Mod 3 Mod 4

Mod 5 Mod 6

Mod 1 Mod 2

Mod 3 Mod 4

Mod 5 Mod 6

We run multiple copies of the backend, each with each of 
the modules

Frontend



LaToza GMU SWE 432 Fall 2017

What's wrong with this picture?
• This is called the 

“monolithic” app 
• If we need 100 servers… 
• Each server will have to 

run EACH module 
• What if we need more of 

some modules than 
others?

12

Our Cool App

Backend Server

Database

Backend Server Backend Server
Mod 1 Mod 2

Mod 3 Mod 4

Mod 5 Mod 6

Mod 1 Mod 2

Mod 3 Mod 4

Mod 5 Mod 6

Mod 1 Mod 2

Mod 3 Mod 4

Mod 5 Mod 6

Frontend



LaToza GMU SWE 432 Fall 2017

Microservices

13

Our Cool App

Frontend

“Dumb” 
Backend

Mod 1

REST 
service

Database

Mod 2

REST 
service

Database

Mod 3

REST 
service

Database

Mod 4

REST 
service

Database

Mod 5

REST 
service

Database

Mod 6

REST 
service

Database

AJAX

Todos
NodeJS, Firebase

Mailer
Java, MySQL

Accounts
Google Service

Search Engine

Java, Neo4J

Analytics

C#, SQLServer

Facebook Crawler

Python, Firebase



LaToza GMU SWE 432 Fall 2017

Support for change: hot swapping

• In a large organization (e.g., Facebook, Amazon, 
AirBnb), will constantly have new features being 
finished and rolled out to production 

• Traditional model: releases  
• Finish next version of software, test, release as a 

unit once every year or two 
• Web enables frequent updates 

• Could update every night or even every hour 
• But.... if updating every hour, really do not want 

website to be down

14



LaToza GMU SWE 432 Fall 2017

Support for change in a monolith

15

Our Cool App

Backend Server

Database

Backend Server Backend Server

Mod 1 Mod 2

Mod 3 Mod 4

Mod 5 Mod 6

Mod 1 Mod 2

Mod 3 Mod 4

Mod 5 Mod 6

Mod 1 Mod 2

Mod 3 Mod 4

Mod 5 Mod 6

Frontend



LaToza GMU SWE 432 Fall 2017

Microservices

16

Our Cool App

Frontend

“Dumb” 
Backend

Mod 1

REST 
service

Database

Mod 2

REST 
service

Database

Mod 3

REST 
service

Database

Mod 4

REST 
service

Database

Mod 5

REST 
service

Database

Mod 6

REST 
service

Database

AJAX

Todos
NodeJS, Firebase

Mailer
Java, MySQL

Accounts
Google Service

Search Engine

Java, Neo4J

Analytics

C#, SQLServer

Facebook Crawler

Python, Firebase



LaToza GMU SWE 432 Fall 2017

Support for reuse
• In a large organization (e.g., Facebook, Amazon, AirBnb), 

may have many internal products that all depend on a 
similar core service (e.g., user account storage, serving 
static assets) 

• Would like to  
• be able to build functionality once, reuse in many place 
• swap out an old implementation for a new 

implementation with a new technology or 
implementation 

• swap out an internal service for a similar external 
service

17



LaToza GMU SWE 432 Fall 2017

Support for reuse in a monolith

18

Our Cool App

Backend Server

Database

Backend Server Backend Server

Mod 1 Mod 2

Mod 3 Mod 4

Mod 5 Mod 6

Mod 1 Mod 2

Mod 3 Mod 4

Mod 5 Mod 6

Mod 1 Mod 2

Mod 3 Mod 4

Mod 5 Mod 6

Frontend



LaToza GMU SWE 432 Fall 2017

Microservices

19

Our Cool App

Frontend

“Dumb” 
Backend

Mod 1

REST 
service

Database

Mod 2

REST 
service

Database

Mod 3

REST 
service

Database

Mod 4

REST 
service

Database

Mod 5

REST 
service

Database

Mod 6

REST 
service

Database

AJAX

Todos
NodeJS, Firebase

Mailer
Java, MySQL

Accounts
Google Service

Search Engine

Java, Neo4J

Analytics

C#, SQLServer

Facebook Crawler

Python, Firebase



LaToza GMU SWE 432 Fall 2017

Conway's Law
• The structure of an organization mirrors the structure of a 

product. 

• Building a car. 
• Have a team for tires 
• Have a team for drivetrain 
• Have a team for seating 
• Have a team for paint 
• Have a team for ... 

• Could pick a product structure and design team around it. 
• Or could pick a desired team structure and design product 

around it.

20



LaToza GMU SWE 432 Fall 2017

Organization in a monolith

21

Frontend

Backend

Database

Classic teams:
1 team per “tier”Orders, shipping, catalog

Orders, shipping, catalog

Orders, shipping, catalog



LaToza GMU SWE 432 Fall 2017

Organization around business capabilities 
in microservices

22

Orders

Shipping

Catalog

Example: Amazon

Teams can focus on one 
business task 

And be responsible 
directly to users

“Full Stack”

“2 pizza teams”



LaToza GMU SWE 432 Fall 2017

How big is a microservice?
• Metaphor: Building a stereo system 
• Components are independently replaceable 
• Components are independently updatable 
• This means that they can be also independently 

developed, tested, etc 
• Components can be built as: 

• Library (e.g. module) 
• Service (e.g. web service)

23



LaToza GMU SWE 432 Fall 2017

Goals of microservices
• Add them independently 
• Upgrade the independently 
• Reuse them independently 
• Develop them independently 

• ==> Have ZERO coupling between 
microservices, aside from their shared interface

24



LaToza GMU SWE 432 Fall 2017

Exercise: Design a restaurant review site

• In groups of 2 or 3, build diagram depicting a set of 
microservices, their connections, and a list of important 
endpoints 

• Requirements 
• Restaurant owners can create restaurant pages, add links 

to website, add food keywords, update address and 
business info 

• Restaurant reviewers can post reviews of a restaurant, see 
reviews they've written, comment on other reviews. 

• All users can search for a restaurant based on its food 
keywords and address. 

• Users have accounts, with profile information and settings.

25



LaToza GMU SWE 432 Fall 2017

Design for Failure
• Each of the many microservices might fail 

• Services might have bugs 
• Services might be slow to respond 
• Entire servers might go down 

• If I have 60,000 hard disks, 3 fail a day 
• The more microservices there are, the higher the 

likelihood at least one is currently failing 
• Key: design every service assuming that at some 

point, everything it depends on might disappear - 
must fail “gracefully” 

• Netflix simulates this constantly with “ChaosMonkey”

26



LaToza GMU SWE 432 Fall 2017

Support for failure
• Goal: Support graceful degradation with service 

failures 

• Design for idempotency 
• Should be able to retry requests without 

introducing bad data 
• Design for data locality 

• Transactions across microservices are hard to 
manage 

• Design for eventual consistency

27



LaToza GMU SWE 432 Fall 2017

Design for idempotency
• Want to design APIs so that executing an action 

multiple times leads to same resulting state 

• Prefer state changes on existing entity rather than 
creating new entities

28



LaToza GMU SWE 432 Fall 2017

Design for data locality
• If datastore server fails or is slow, do not want 

entire site to go down. 
• Decentralizes implementation decisions. 
• Allows each service to manage data in the way that 

makes the most sense for that service 
• Also performance benefit: caching data locally in 

microservices enables faster response 

• Rule: Services exchange data ONLY through their 
exposed APIs - NO shared databases

29



LaToza GMU SWE 432 Fall 2017

Consistency
• One of our rules was “no shared 

database” 
• But surely some state will be 

shared 
• Updates are sent via HTTP 

request 
• No guarantee that those updates 

occur immediately 
• Instead, guarantee that they occur 
eventually

• Can force some ordering, but 
that’s expensive

30

Our Cool App

Frontend

“Dumb” 
Backend

Mod 1

REST service

Database

Mod 2

REST service

Database

Mod 3

REST service

Database

Mod 4

REST service

Database

Mod 5

REST service

Database

Mod 6

REST service

Database

AJAX

Todos

NodeJS, Firebase

Mailer

Java, MySQL

Accounts

Google Service

Search Engine

Java, Neo4J

Analytics

C#, SQLServer

Facebook Crawler

Python, Firebase



LaToza GMU SWE 432 Fall 2017

Maintaining Consistency

• Core problem: different services may respond to requests at different 
times. 
• What if a request results in change to resource in one service, but 

other service has not yet processed corresponding request? 
• May end up with different states in different resources. 
• Logic needs to be written to correctly handle such situations.

31

Our Cool App

Frontend

“Dumb” 
Backend

Mod 1

REST service

Database

Mod 2

REST service

Database

Mod 3

REST service

Database

Mod 4

REST service

Database

Mod 5

REST service

Database

Mod 6

REST service

Database

AJAX

Todos

NodeJS, Firebase

Mailer

Java, MySQL

Accounts

Google Service

Search Engine

Java, Neo4J

Analytics

C#, SQLServer

Facebook Crawler

Python, Firebase



LaToza GMU SWE 432 Fall 2017

Eventual Consistency: Example

32



LaToza GMU SWE 432 Fall 2017

Reading for next time

• Fundamentals of DevOps: 
• https://blogs.oracle.com/developers/getting-

started-with-microservices-part-four

33

https://blogs.oracle.com/developers/getting-started-with-microservices-part-four
https://blogs.oracle.com/developers/getting-started-with-microservices-part-four

