Microservices

SWE 432, Fall 2017
Design and Implementation of Software for the Web

2\

UNIVERSIT

<



LaToza

Today

« How is a being a microservice different than simply
being RESTful?

 \What are the advantages of a microservice
backend architecture over a monolithic
architecture?

 Nexttime: what additional infrastructure is required
to realize these advantages?

GMU SWE 432 Fall 2017



The "good” old days of backends

HTTP Request
GET /myApplicationEndpoint HTTP/1.1

Host: cs.gmu.edu
Accept: text/html +

web server

=== 1 RUns a program

Give me /myApplicationEndpoint

>

Web Server @whatever it wants My .
el Application

Here’s some text to send back Backend

Application

HTTP Response
HTTP/1.1 200 OK

Content-Type: text/html; charset=UTF-8

<html><head>...

LaToza GMU SWE 432 Fall 2017



LaToza

History of Backend Development

In the beginning, you wrote whatever you wanted

using whatever language you wanted and whatever

framewor
e Then... P

K YOou wanted

HP and ASP

 Languages “designed” for writing backends
 Encouraged spaghetti code

-
=

e A lot o

the web was built on this

A whole lot of other languages were also springing

up in the 90's...
 Ruby, Python, JSP

GMU SWE 432 Fall 2017



Monolothic backend
Component presertaion  Gomponent presentation  Component presention
| Componentlogic  Comporentlogic  Componentiogic

Browser
HTTP HTTP
Request Response
(JSON)
Web Server
Database

LaToza GMU SWE 432 Fall 2017



Microservices backend
Componentpresetaton  Gomponent preseriaton
~ Componentlogc  Componentlogic

Browser
HTTP HTTP
HITP Response HITP Response
' HTTP HTTP
> >
HTTP HTTP
R R
Web Servers (ejé’g/’;’/ j e (?/?gﬁlje
< <

Database

LaToza GMU SWE 432 Fall 2017 6



LaToza

RESTful APIs

Recall guidelines for RESTful APls from Lecture 6:
Handling HTTP Requests

Support scaling

 Use HTTP actions to support intermediaries (e.q.,
caches)

Support change

 |eave anything out of URI that might change
 Ensure any URI changes are backwards compatible
Support reuse

 Design URIs around resources that are expressive
abstractions that support a range of client interactions

 Resources are nouns; use HITP actions to signal verbs

GMU SWE 432 Fall 2017



Challenges building a RESTful monolith



LaToza

Microservices vs. Monoliths

Advantages of microservices over monoliths include
e Support for scaling

o Scale vertically rather than horizontally
e Support for change

e Support hot deployment of updates
e Support for reuse

o Use same web service in multiple apps

o Swap out internally developed web service for
externally developed web service

e Support for separate team development
 Pick boundaries that match team responsibilities
o Support for failure

GMU SWE 432 Fall 2017



Support for scaling

Our Cool App

Frontend

Backend Server

Mod 1 Mod 2
Mod 3 Mod 4
Mod 5 Mod 6

Database

LaToza GMU SWE 432 Fall 2017



Now how do we scale it?

Our Cool App

Frontend

Backend Server Backend Server Backend Server

Mod 1 Mod 2 Mod 1 Mod 2 Mod 1 Mod 2
Mod 3 Mod 4 Mod 3 Mod 4 Mod 3 Mod 4
Mod 5 Mod 6 Mod 5 Mod 6 Mod 5 Mod 6

Database

We run multiple copies of the backend, each with each of
the modules

LaToza GMU SWE 432 Fall 2017

11



LaToza

e This Is called the

What's wrong with this picture?

Our Cool App

Backend Server

“monolithic™ app

Mod 3 Mod 4

e |f we need 100 servers... JLuess oo
e Each server will have to

run EACH module

e \What if we need more of

some modules than
others?

GMU SWE 432 Fall 2017

Frontend

Backend Server

Mod 1
Mod 3
Mod 5

Mod 2
Mod 4
Mod 6

Backend Server

Mod 1
Mod 3
Mod 5

Mod 2
Mod 4
Mod 6

12



Microservices

NodedS, Firebase

Todos

REST
service

Our Cool App

Frontend Database

“Dumb AJAX

Google Service

Accounts

REST
service

Database

Java, MySQL
Mailer

REST
service

Database

Backend

Search Engine

REST
service

Database

Java, Neo4J

Analytics

REST
service

Database

C#, SQLServer

LaToza GMU SWE 432 Fall 2017

Facebook Crawler

REST
service

Database

Python, Firebase
13



LaToza

Support for change: hot swapping

* |n alarge organization (e.qg., Facebook, Amazon,
AirBnb), will constantly have new features being
finished and rolled out to production

e T[raditional model: releases

 Finish next version of software, test, release as a
unit once every year or two

 \Web enables frequent u
 Could update every n

e But.... If updating every
website to be down

ndates

ight or even every hour

nour, really do not want

GMU SWE 432 Fall 2017

14



Support for change in a monolith

Our Cool App

Frontend

Backend Server Backend Server Backend Server

Mod 1 Mod 2 Mod 1 Mod 2 Mod 1 Mod 2
Mod 3 Mod 4 Mod 3 Mod 4 Mod 3 Mod 4
Mod 5 Mod 6 Mod 5 Mod 6 Mod 5 Mod 6

Database

LaToza GMU SWE 432 Fall 2017 15



Microservices

NodedS, Firebase

Todos

REST
service

Our Cool App

Frontend Database

“Dumb AJAX

Google Service

Accounts

REST
service

Database

Java, MySQL
Mailer

REST
service

Database

Backend

Search Engine

REST
service

Database

Java, Neo4J

Analytics

REST
service

Database

C#, SQLServer

LaToza GMU SWE 432 Fall 2017

Facebook Crawler

REST
service

Database

Python, Firebase
16



Support for reuse

* |n alarge organization (e.g., Facebook, Amazon, AirBnb),
may have many internal products that all depend on a
similar core service (e.g., user account storage, serving
static assets)

 Would like to
e pe able to build functionality once, reuse in many place

e swap out an old implementation for a new
implementation with a new technology or
implementation

e swap out an internal service for a similar external
service

LaToza GMU SWE 432 Fall 2017 17



Support for reuse in a monolith

Our Cool App

Frontend

Backend Server Backend Server Backend Server

Mod 1 Mod 2 Mod 1 Mod 2 Mod 1 Mod 2
Mod 3 Mod 4 Mod 3 Mod 4 Mod 3 Mod 4
Mod 5 Mod 6 Mod 5 Mod 6 Mod 5 Mod 6

Database

LaToza GMU SWE 432 Fall 2017 18



Microservices

NodedS, Firebase

Todos

REST
service

Our Cool App

Frontend Database

“Dumb AJAX

Google Service

Accounts

REST
service

Database

Java, MySQL
Mailer

REST
service

Database

Backend

Search Engine

REST
service

Database

Java, Neo4J

Analytics

REST
service

Database

C#, SQLServer

LaToza GMU SWE 432 Fall 2017

Facebook Crawler

REST
service

Database

Python, Firebase
19



Conway's Law

* The structure of an organization mirrors the structure of a
product.

* Building a car.
* Have a team for tires
 Have a team for drivetrain
e Have ateam for seating
* Have a team for paint

e Have a team for ...

* Could pick a product structure and design team around it.

* Or could pick a desired team structure and design product
around it.

LaToza GMU SWE 432 Fall 2017



Organization in a monolith

Frontend Classic teams:

/H\/H\/ﬂ\ Orders, shipping, catalog 1 team per “tier”

O Backend
4 € Orders, shipping, catalog

‘0 5"

Database

O
.H. Orders, shipping, catalog

LaToza GMU SWE 432 Fall 2017




LaToza

Organization around business capabilities
IN MIcroservices

O O
O
/H\ 1 Orders Example: Amazon
O @ Teams can focus on one
5l ‘ﬂ\ business task
01\0 Shipping And be responsible
/[ directly to users
ii “Full Stack”
O Catalog

“2 pizza teams”

GMU SWE 432 Fall 2017

22



LaToza

How big is a microservice?

Metaphor: Building a stereo system
Components are independently replaceable
Components are independently updatable

his means that they can be also independently
developed, tested, etc

Components can be built as:
* Library (e.g. module)
* Service (e.g. web service)

GMU SWE 432 Fall 2017

23



LaToza

Goals of microservices

Add them independently
Jpgrade the independently
Reuse them independently
Develop them independently

==> Have ZERO coupling between
microservices, aside from their shared interface

GMU SWE 432 Fall 2017

24



Exercise: Design a restaurant review site

* |[n groups of 2 or 3, build diagram depicting a set of
microservices, their connections, and a list of important
endpoints

* Requirements

* Restaurant owners can create restaurant pages, add links
to website, add food keywords, update address and
DUSINESS INfo

* Restaurant reviewers can post reviews of a restaurant, see
reviews they've written, comment on other reviews.

 All users can search for a restaurant based on its food
keywords and address.

* Users have accounts, with protile information and settings.

LaToza GMU SWE 432 Fall 2017 25



Design for Failure

 Each of the many

microservices might fail

e Services might have bugs
* Services might be slow to respond
* Entire servers might go down
* |f | have 60,000 hard disks, 3 tail a day

 The more microservices there are, the higher the
ikelihood at least one is currently tailing

e Key: design every service assuming that at some
point, everything it depends on might disappear -

must fail “gracetu
* Netflix simulates t

LaToza

ly”

nis constantly with “ChaosMonkey”

GMU SWE 432 Fall 2017 26



LaToza

Support for failure

Goal: Support graceful degradation with service
failures

Design for idempotency

* Should be able to retry requests without
iIntroducing bad data

Design for data locality

e Jransactions across microservices are hard to
manage

Design for eventual consistency

GMU SWE 432 Fall 2017

27



LaToza

Design for idempotency

 Want to design APls so that executing an action
multiple times leads to same resulting state

* Prefer state changes on existing entity rather than
creating new entities

GMU SWE 432 Fall 2017

28



LaToza

Design for data locality

If datastore server fails or is slow, do not want

entire site to go down.

Decentralizes implementation decisions.
Allows each service to manage data in the way that

makes the most sense fo

rthat service

Also performance benetr
microservices enabples fa

Rule: Services exchange

. caching data locally In
ster response

data ONLY through their

exposed APls - NO shared databases

GMU SWE 43

2 Fall 2017

29



LaToza

Consistency

One of our rules was “no shared
database”

But surely some state will be
shared

Updates are sent via HT TP
request

No guarantee that those updates
occur immediately

Instead, guarantee that they occur
eventually

Can force some ordering, but
that's expensive

GMU SWE 432 Fall 2017 30



AJAX

Analytics

REST service

e Core problem: different services may respond to requests at different
times.

 What it a request results in change to resource in one service, but
other service has not yet processed corresponding request?

 May end up with different states in different resources.
* Logic needs to be written to correctly handle such situations.

LaToza GMU SWE 432 Fall 2017

31



Eventual Consistency: Example

32



LaToza

FU

Reading for next time

ndamentals of DevOps:

nttps://blogs.oracle.com/developers/getting-
started-with-microservices-part-tour

GMU SWE 432 Fall 2017

33


https://blogs.oracle.com/developers/getting-started-with-microservices-part-four
https://blogs.oracle.com/developers/getting-started-with-microservices-part-four

