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Today
• How is a being a microservice different than simply 

being RESTful? 
• What are the advantages of a microservice 

backend architecture over a monolithic 
architecture? 

• Next time: what additional infrastructure is required 
to realize these advantages?
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The “good” old days of backends
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HTTP Request
GET	/myApplicationEndpoint	HTTP/1.1	
Host:	cs.gmu.edu	
Accept:	text/html

web server

HTTP Response
HTTP/1.1	200	OK	
Content-Type:	text/html;	charset=UTF-8	

<html><head>...

Runs a program

Web Server 
Application

My 
Application 
Backend

Give	me	/myApplicationEndpoint

Here’s	some	text	to	send	back

Does whatever it wants
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History of Backend Development

• In the beginning, you wrote whatever you wanted 
using whatever language you wanted and whatever 
framework you wanted 

• Then… PHP and ASP 
• Languages “designed” for writing backends 
• Encouraged spaghetti code 
• A lot of the web was built on this 

• A whole lot of other languages were also springing 
up in the 90’s… 
• Ruby, Python, JSP
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Monolothic backend
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Microservices backend
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RESTful APIs
• Recall guidelines for RESTful APIs from Lecture 6: 

Handling HTTP Requests 
• Support scaling 

• Use HTTP actions to support intermediaries (e.g., 
caches) 

• Support change 
• Leave anything out of URI that might change 
• Ensure any URI changes are backwards compatible 

• Support reuse 
• Design URIs around resources that are expressive 

abstractions that support a range of client interactions 
• Resources are nouns; use HTTP actions to signal verbs
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Challenges building a RESTful monolith
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Microservices vs. Monoliths
• Advantages of microservices over monoliths include 

• Support for scaling 
• Scale vertically rather than horizontally 

• Support for change 
• Support hot deployment of updates 

• Support for reuse 
• Use same web service in multiple apps 
• Swap out internally developed web service for 

externally developed web service 
• Support for separate team development 

• Pick boundaries that match team responsibilities 
• Support for failure
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Support for scaling
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Our Cool App

Frontend

Backend Server

Database

Mod 1 Mod 2

Mod 3 Mod 4

Mod 5 Mod 6
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Now how do we scale it?
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Our Cool App

Backend Server

Database

Backend Server Backend Server

Mod 1 Mod 2

Mod 3 Mod 4

Mod 5 Mod 6

Mod 1 Mod 2

Mod 3 Mod 4

Mod 5 Mod 6

Mod 1 Mod 2

Mod 3 Mod 4

Mod 5 Mod 6

We run multiple copies of the backend, each with each of 
the modules

Frontend
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What's wrong with this picture?
• This is called the 

“monolithic” app 
• If we need 100 servers… 
• Each server will have to 

run EACH module 
• What if we need more of 

some modules than 
others?
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Our Cool App

Backend Server

Database

Backend Server Backend Server
Mod 1 Mod 2
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Microservices
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Support for change: hot swapping

• In a large organization (e.g., Facebook, Amazon, 
AirBnb), will constantly have new features being 
finished and rolled out to production 

• Traditional model: releases  
• Finish next version of software, test, release as a 

unit once every year or two 
• Web enables frequent updates 

• Could update every night or even every hour 
• But.... if updating every hour, really do not want 

website to be down
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Support for change in a monolith
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Microservices
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Support for reuse
• In a large organization (e.g., Facebook, Amazon, AirBnb), 

may have many internal products that all depend on a 
similar core service (e.g., user account storage, serving 
static assets) 

• Would like to  
• be able to build functionality once, reuse in many place 
• swap out an old implementation for a new 

implementation with a new technology or 
implementation 

• swap out an internal service for a similar external 
service
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Support for reuse in a monolith
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Microservices
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Conway's Law
• The structure of an organization mirrors the structure of a 

product. 

• Building a car. 
• Have a team for tires 
• Have a team for drivetrain 
• Have a team for seating 
• Have a team for paint 
• Have a team for ... 

• Could pick a product structure and design team around it. 
• Or could pick a desired team structure and design product 

around it.
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Organization in a monolith
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Backend
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Organization around business capabilities 
in microservices
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Orders

Shipping

Catalog

Example: Amazon

Teams can focus on one 
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“Full Stack”
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How big is a microservice?
• Metaphor: Building a stereo system 
• Components are independently replaceable 
• Components are independently updatable 
• This means that they can be also independently 

developed, tested, etc 
• Components can be built as: 

• Library (e.g. module) 
• Service (e.g. web service)
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Goals of microservices
• Add them independently 
• Upgrade the independently 
• Reuse them independently 
• Develop them independently 

• ==> Have ZERO coupling between 
microservices, aside from their shared interface
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Exercise: Design a restaurant review site

• In groups of 2 or 3, build diagram depicting a set of 
microservices, their connections, and a list of important 
endpoints 

• Requirements 
• Restaurant owners can create restaurant pages, add links 

to website, add food keywords, update address and 
business info 

• Restaurant reviewers can post reviews of a restaurant, see 
reviews they've written, comment on other reviews. 

• All users can search for a restaurant based on its food 
keywords and address. 

• Users have accounts, with profile information and settings.
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Design for Failure
• Each of the many microservices might fail 

• Services might have bugs 
• Services might be slow to respond 
• Entire servers might go down 

• If I have 60,000 hard disks, 3 fail a day 
• The more microservices there are, the higher the 

likelihood at least one is currently failing 
• Key: design every service assuming that at some 

point, everything it depends on might disappear - 
must fail “gracefully” 

• Netflix simulates this constantly with “ChaosMonkey”
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Support for failure
• Goal: Support graceful degradation with service 

failures 

• Design for idempotency 
• Should be able to retry requests without 

introducing bad data 
• Design for data locality 

• Transactions across microservices are hard to 
manage 

• Design for eventual consistency
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Design for idempotency
• Want to design APIs so that executing an action 

multiple times leads to same resulting state 

• Prefer state changes on existing entity rather than 
creating new entities
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Design for data locality
• If datastore server fails or is slow, do not want 

entire site to go down. 
• Decentralizes implementation decisions. 
• Allows each service to manage data in the way that 

makes the most sense for that service 
• Also performance benefit: caching data locally in 

microservices enables faster response 

• Rule: Services exchange data ONLY through their 
exposed APIs - NO shared databases
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Consistency
• One of our rules was “no shared 

database” 
• But surely some state will be 

shared 
• Updates are sent via HTTP 

request 
• No guarantee that those updates 

occur immediately 
• Instead, guarantee that they occur 
eventually

• Can force some ordering, but 
that’s expensive
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Maintaining Consistency

• Core problem: different services may respond to requests at different 
times. 
• What if a request results in change to resource in one service, but 

other service has not yet processed corresponding request? 
• May end up with different states in different resources. 
• Logic needs to be written to correctly handle such situations.
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Eventual Consistency: Example
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Reading for next time

• Fundamentals of DevOps: 
• https://blogs.oracle.com/developers/getting-

started-with-microservices-part-four
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https://blogs.oracle.com/developers/getting-started-with-microservices-part-four
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