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Today
• Big picture: from ideas to great products 

• How do we structure the process that gets us 
those products? 

• Buzzwords: 
• DevOps, Continuous Integration, Continuous 

Deployment, Continuous Delivery, and how we 
got there 

• No specific technologies!
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What is a software process?
• A structured set of activities required to develop a 

software product 
• Specification 
• Design and implementation 
• Validation 
• Evolution (operation and maintenance) 

• Goal: Minimize Risk 
• Falling behind schedule 
• Changes to requirements 
• Bugs/unintended effects of changes
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Software Specification
• The process of establishing what features and 

services are required, as well as the constraints on 
the system’s operation and development. 

• Requirements engineering process 
• Feasibility study; 
• Requirements elicitation and analysis; 
• Requirements specification; 
• Requirements validation.
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Software Design & Implementation

• The process of converting the system specification 
into an executable system. 

• Software design 
• Design a software structure that realizes the 

specification; 
• Implementation 

• Translate this structure into an executable 
program; 

• The activities of design and implementation are 
closely related and may be inter-leaved.
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Software Validation
• Verification and validation (V & V) is intended to show 

that a system conforms to its specification and meets 
the requirements of the customer(s). 

• Involves checking and review processes, and 
acceptance or beta testing. 

• Custom software: Acceptance testing involves 
executing the system with test cases that are derived 
from the real data to be processed by the system in 
the customer’s environment. 

• Generic software: Beta testing executes the system in 
many customers’ environments under real use.
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Software Evolution
• Software is inherently flexible and can change.  
• As requirements change due to changing business 

circumstances, the software that supports the 
business must also evolve and change. 

• Although there has historically been a demarcation 
between development and evolution, this is 
increasingly irrelevant as fewer and fewer systems 
are completely new.
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Process Models
• If we say that building software requires: 

• Specification 
• Design/Implementation 
• Validation 
• Evolution 

• How do we structure our organization/development 
teams/tasks to do this most efficiently?
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Waterfall Model

• Widely used today 
• Advantages 

• Measurable progress 
• Experience applying steps in past projects can be used in 

estimating duration of “similar” steps in future projects 
• Produces software artifacts that can be re-used in other projects 

• Disadvantages 
• Difficulty of accommodating change after the process is underway: 

One phase has to be complete before moving onto the next phase.
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Agile Model

• Agile results in an iterative model, where each iteration is 
several weeks long and results in several features being built 

• Recognize that requirements ALWAYS evolve as you are 
trying to build something 

• Plus, maybe you can get useful feedback by delivering a 
partial app early
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Continuous Development
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• Like agile, but… 
• We are always working on different features 
• We have a formal mechanism for deploying new 

versions of code and validating (test/staging/
production)
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The value of the Staging Environment

• As software gets more complex with more 
dependencies, it's impossible to simulate the 
whole thing when testing 

• Idea: Deploy to a complete production-like 
environment, but don't have everyone use it 
• Examples: 

• “Eat your own dogfood” 
• Beta/Alpha testers 

• Lower risk if a problem occurs in staging than in 
production
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Test-Stage-Production
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Operations Responsibility 
• Once we deploy, someone has to monitor 

software, make sure it’s running OK, no bugs, etc 
• Assume 3 environments: 

• Test, Staging, Production 
• Whose job is it?
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DevOps Values
• No silos, no walls, no responsibility "pipelines" 
• One team owns changes "from cradle to grave" 
• You are the support person for your changes, regardless 

of platform 
• Example: Facebook mobile teams
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Continuous X
• Continuous Integration: 

• A practice where developers automatically build, test, and 
analyze a software change in response to every software 
change committed to the source repository. 

• Continuous Delivery: 
• A practice that ensures that a software change can be 

delivered and ready for use by a customer by testing in 
production-like environments. 

• Continuous Deployment: 
• A practice where incremental software changes are 

automatically tested, vetted, and deployed to production 
environments.
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Continuous Integration
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Continuous Integration
• Commit Code Frequently 
• Don’t commit broken code 
• Fix broken builds immediately 
• Write automated developer tools 
• All tests and inspections must pass 
• Run private builds 
• Avoid getting broken code
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Deployment Pipeline
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Deployment Pipeline
• Even if you are deploying every day, you still have 

some latency 
• A new feature I develop today won't be released 

today 
• But, a new feature I develop today can begin the 

release pipeline today (minimizes risk) 
• Release Engineer: gatekeeper who decides when 

something is ready to go out, oversees the actual 
deployment process
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Deployment Example: Facebook.com

~1 week of development

Twice Daily

Stabilize

release branch
Weekly

3 days

All changes from week 
that are ready for release

Release Branch
4 days

All changes that survived stabilizing

Developers working in their own branch

Your change doesn’t go out 
unless you’re there that day at 

that time to support it!

~1 week of development

master branch

When feature is ready, push as 1 change to master branch

production

“When in doubt back out”
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Continuous Integration & Continuous 
Deployment

• Thousands of changes coming together at once 
• To isolate problems: 

• Every time that every change is potentially going 
to be introduced, the entire system is integrated 
and tested 

• Facebook does 20,000-30,000 complete 
integrations PER DAY for mobile alone 

• General rule: 
• Cost of compute time to run tests more often is 

way less than the cost of a failure

23



LaToza GMU SWE 432 Fall 2017

Blue-Green Deployment
• Always have 2 complete environments ready: 

• One that you’re using now 
• One that you’re just about ready to use 

• Easily switch which is handling requests
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A/B Testing
• Ways to test new features for usability, popularity, 

performance 
• Show 50% of your site visitors version A, 50% 

version B, collect metrics on each, decide which is 
better
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Monitoring
• Hardware 

• Voltages, temperatures, fan speeds, component health 
• OS 

• Memory usage, swap usage, disk space, CPU load 
• Middleware 

• Memory, thread/db connection pools, connections, 
response time 

• Applications 
• Business transactions, conversion rate, status of 3rd 

party components
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When things go wrong
• Automated monitoring systems can notify “on-call” 

staff of a problem 
• Triage & escalation
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Monitoring Dashboards
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Canaries

29

Monitor both: 
But minimize impact of problems in new version
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Making it happen
• Build Tools 
• Test Automation 
• Build Servers 
• Deployment Tools
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Build Tools
• Need to be able to automate construction of our 

executable software… Example: 
• “Install d3 with bower with grunt with npm with 

brew.” *phew* 
• We'd like a general method for describing and 

executing build tasks: 
• Minify my code 
• Run my tests 
• Generate some documentation 
• Deploy to staging 

• Ensure that builds are repeatable, reproducible 
and standard
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Build Servers
• Once we have a standard mechanism for describing how 

to build our code, no reason to only build it on our own 
machine 

• Continuous Integration servers run these builds in the 
cloud 
• Bamboo, Hudson/Jenkins, TravisCI 

• Easy to use - typically monitors your source repository for 
changes, then runs a build 

• Really helps with organizing tests and results 
• Can scale the build server independently of the rest of 

your processes
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TravisCI
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TravisCI
• Can see history and status of each branch
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TravisCI
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• Can also see status per-commit
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Summary
• DevOps: Developers as Operators 
• Continuous Integration & Deployment: Techniques 

for reducing time to get features out the door 
• Staging environments reduce risk 
• Build Systems and Services help automate CI
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Readings for next time

• How CSS works 
• https://developer.mozilla.org/en-US/docs/Learn/

CSS/Introduction_to_CSS/How_CSS_works 
• Selectors 

• https://developer.mozilla.org/en-US/docs/Learn/
CSS/Introduction_to_CSS/Selectors
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