
Deployment
SWE 432, Fall 2017

Design and Implementation of Software for the Web

LaToza GMU SWE 432 Fall 2017

Today
• Big picture: from ideas to great products

• How do we structure the process that gets us
those products?

• Buzzwords:
• DevOps, Continuous Integration, Continuous

Deployment, Continuous Delivery, and how we
got there

• No specific technologies!

2

LaToza GMU SWE 432 Fall 2017

What is a software process?
• A structured set of activities required to develop a

software product
• Specification
• Design and implementation
• Validation
• Evolution (operation and maintenance)

• Goal: Minimize Risk
• Falling behind schedule
• Changes to requirements
• Bugs/unintended effects of changes

3

LaToza GMU SWE 432 Fall 2017

Software Specification
• The process of establishing what features and

services are required, as well as the constraints on
the system’s operation and development.

• Requirements engineering process
• Feasibility study;
• Requirements elicitation and analysis;
• Requirements specification;
• Requirements validation.

4

LaToza GMU SWE 432 Fall 2017

Software Design & Implementation

• The process of converting the system specification
into an executable system.

• Software design
• Design a software structure that realizes the

specification;
• Implementation

• Translate this structure into an executable
program;

• The activities of design and implementation are
closely related and may be inter-leaved.

5

LaToza GMU SWE 432 Fall 2017

Software Validation
• Verification and validation (V & V) is intended to show

that a system conforms to its specification and meets
the requirements of the customer(s).

• Involves checking and review processes, and
acceptance or beta testing.

• Custom software: Acceptance testing involves
executing the system with test cases that are derived
from the real data to be processed by the system in
the customer’s environment.

• Generic software: Beta testing executes the system in
many customers’ environments under real use.

6

LaToza GMU SWE 432 Fall 2017

Software Evolution
• Software is inherently flexible and can change.
• As requirements change due to changing business

circumstances, the software that supports the
business must also evolve and change.

• Although there has historically been a demarcation
between development and evolution, this is
increasingly irrelevant as fewer and fewer systems
are completely new.

7

LaToza GMU SWE 432 Fall 2017

Process Models
• If we say that building software requires:

• Specification
• Design/Implementation
• Validation
• Evolution

• How do we structure our organization/development
teams/tasks to do this most efficiently?

8

LaToza GMU SWE 432 Fall 2017

Waterfall Model

• Widely used today
• Advantages

• Measurable progress
• Experience applying steps in past projects can be used in

estimating duration of “similar” steps in future projects
• Produces software artifacts that can be re-used in other projects

• Disadvantages
• Difficulty of accommodating change after the process is underway:

One phase has to be complete before moving onto the next phase.

9

Requirements

Validate

Retirement

Operations

Test

Implementation
Verify

Design

LaToza GMU SWE 432 Fall 2017

Agile Model

• Agile results in an iterative model, where each iteration is
several weeks long and results in several features being built

• Recognize that requirements ALWAYS evolve as you are
trying to build something

• Plus, maybe you can get useful feedback by delivering a
partial app early

10

Initial Concept

Operations

Acceptance
Testing

and Delivery

Requirements
and Iteration

Planning

Next Iteration

Design and
Implement

LaToza GMU SWE 432 Fall 2017

Continuous Development

11

• Like agile, but…
• We are always working on different features
• We have a formal mechanism for deploying new

versions of code and validating (test/staging/
production)

LaToza GMU SWE 432 Fall 2017

The value of the Staging Environment

• As software gets more complex with more
dependencies, it's impossible to simulate the
whole thing when testing

• Idea: Deploy to a complete production-like
environment, but don't have everyone use it
• Examples:

• “Eat your own dogfood”
• Beta/Alpha testers

• Lower risk if a problem occurs in staging than in
production

12

LaToza GMU SWE 432 Fall 2017

Test-Stage-Production

13

Testing
Environment

Staging Environment Production Environment

Beta/
Dogfooding User Requests

Developer
Environments

Revisions are “promoted” towards production

LaToza GMU SWE 432 Fall 2017

Operations Responsibility
• Once we deploy, someone has to monitor

software, make sure it’s running OK, no bugs, etc
• Assume 3 environments:

• Test, Staging, Production
• Whose job is it?

14

Developers Operators

Waterfall

Agile

DevOps

Test ProductionStaging

ProductionStagingTest

StagingTest ProductionProduction

LaToza GMU SWE 432 Fall 2017

DevOps Values
• No silos, no walls, no responsibility "pipelines"
• One team owns changes "from cradle to grave"
• You are the support person for your changes, regardless

of platform
• Example: Facebook mobile teams

15

Group messages

Chat

Upcoming Events

Birthdays

Photo Albums

Photo Picker

Android

Group messages

Chat

Upcoming Events

Birthdays

Photo Albums

Photo Picker

iOS

Messages
Events
Photos

Android

iOS

Engineering
Teams

Group messages

Chat

Upcoming Events

Birthdays

Photo Albums

Photo Picker

Desktop/Web

Product Platform Experts

Group messages

Chat

Upcoming Events

Birthdays

Photo Albums

Photo Picker

Group messages

Chat

Upcoming Events

Birthdays

Photo Albums

Photo Picker

LaToza GMU SWE 432 Fall 2017

DevOps Values
• No silos, no walls, no responsibility "pipelines"
• One team owns changes "from cradle to grave"
• You are the support person for your changes, regardless

of platform
• Example: Facebook mobile teams

16

Group messages

Chat

Upcoming Events

Birthdays

Photo Albums

Photo Picker

Android

Group messages

Chat

Upcoming Events

Birthdays

Photo Albums

Photo Picker

iOS

Messages
Events
Photos

Android

iOS

Engineering
Teams

Group messages

Chat

Upcoming Events

Birthdays

Photo Albums

Photo Picker

Desktop/Web

Product Experts

Group messages

Chat

Upcoming Events

Birthdays

Photo Albums

Photo Picker

Group messages

Chat

Upcoming Events

Birthdays

Photo Albums

Photo Picker

LaToza GMU SWE 432 Fall 2017

Continuous X
• Continuous Integration:

• A practice where developers automatically build, test, and
analyze a software change in response to every software
change committed to the source repository.

• Continuous Delivery:
• A practice that ensures that a software change can be

delivered and ready for use by a customer by testing in
production-like environments.

• Continuous Deployment:
• A practice where incremental software changes are

automatically tested, vetted, and deployed to production
environments.

17

LaToza GMU SWE 432 Fall 2017

Continuous Integration

18

LaToza GMU SWE 432 Fall 2017

Continuous Integration
• Commit Code Frequently
• Don’t commit broken code
• Fix broken builds immediately
• Write automated developer tools
• All tests and inspections must pass
• Run private builds
• Avoid getting broken code

19

LaToza GMU SWE 432 Fall 2017

Deployment Pipeline

20

Local Dev/Test Commit to
Version Control

Build & Run
Tests

Deploy to
Staging

Monitoring

Deploy to
Production

Monitoring

LaToza GMU SWE 432 Fall 2017

Deployment Pipeline
• Even if you are deploying every day, you still have

some latency
• A new feature I develop today won't be released

today
• But, a new feature I develop today can begin the

release pipeline today (minimizes risk)
• Release Engineer: gatekeeper who decides when

something is ready to go out, oversees the actual
deployment process

21

LaToza GMU SWE 432 Fall 2017

Deployment Example: Facebook.com

~1 week of development

Twice Daily

Stabilize

release branch
Weekly

3 days

All changes from week
that are ready for release

Release Branch
4 days

All changes that survived stabilizing

Developers working in their own branch

Your change doesn’t go out
unless you’re there that day at

that time to support it!

~1 week of development

master branch

When feature is ready, push as 1 change to master branch

production

“When in doubt back out”

LaToza GMU SWE 432 Fall 2017

Continuous Integration & Continuous
Deployment

• Thousands of changes coming together at once
• To isolate problems:

• Every time that every change is potentially going
to be introduced, the entire system is integrated
and tested

• Facebook does 20,000-30,000 complete
integrations PER DAY for mobile alone

• General rule:
• Cost of compute time to run tests more often is

way less than the cost of a failure

23

LaToza GMU SWE 432 Fall 2017

Blue-Green Deployment
• Always have 2 complete environments ready:

• One that you’re using now
• One that you’re just about ready to use

• Easily switch which is handling requests

24

LaToza GMU SWE 432 Fall 2017

A/B Testing
• Ways to test new features for usability, popularity,

performance
• Show 50% of your site visitors version A, 50%

version B, collect metrics on each, decide which is
better

25

LaToza GMU SWE 432 Fall 2017

Monitoring
• Hardware

• Voltages, temperatures, fan speeds, component health
• OS

• Memory usage, swap usage, disk space, CPU load
• Middleware

• Memory, thread/db connection pools, connections,
response time

• Applications
• Business transactions, conversion rate, status of 3rd

party components

26

LaToza GMU SWE 432 Fall 2017

When things go wrong
• Automated monitoring systems can notify “on-call”

staff of a problem
• Triage & escalation

27

LaToza GMU SWE 432 Fall 2017

Monitoring Dashboards

28

LaToza GMU SWE 432 Fall 2017

Canaries

29

Monitor both:
But minimize impact of problems in new version

LaToza GMU SWE 432 Fall 2017

Making it happen
• Build Tools
• Test Automation
• Build Servers
• Deployment Tools

30

LaToza GMU SWE 432 Fall 2017

Build Tools
• Need to be able to automate construction of our

executable software… Example:
• “Install d3 with bower with grunt with npm with

brew.” *phew*
• We'd like a general method for describing and

executing build tasks:
• Minify my code
• Run my tests
• Generate some documentation
• Deploy to staging

• Ensure that builds are repeatable, reproducible
and standard

31

LaToza GMU SWE 432 Fall 2017

Build Servers
• Once we have a standard mechanism for describing how

to build our code, no reason to only build it on our own
machine

• Continuous Integration servers run these builds in the
cloud
• Bamboo, Hudson/Jenkins, TravisCI

• Easy to use - typically monitors your source repository for
changes, then runs a build

• Really helps with organizing tests and results
• Can scale the build server independently of the rest of

your processes

32

LaToza GMU SWE 432 Fall 2017

TravisCI

33

Commits code to
Developer

GitHub

TravisCI

Checks for updates

Runs build for each
commit

LaToza GMU SWE 432 Fall 2017

TravisCI
• Can see history and status of each branch

34

LaToza GMU SWE 432 Fall 2017

TravisCI

35

• Can also see status per-commit

LaToza GMU SWE 432 Fall 2017

Summary
• DevOps: Developers as Operators
• Continuous Integration & Deployment: Techniques

for reducing time to get features out the door
• Staging environments reduce risk
• Build Systems and Services help automate CI

36

LaToza GMU SWE 432 Fall 2017

Readings for next time

• How CSS works
• https://developer.mozilla.org/en-US/docs/Learn/

CSS/Introduction_to_CSS/How_CSS_works
• Selectors

• https://developer.mozilla.org/en-US/docs/Learn/
CSS/Introduction_to_CSS/Selectors

37

https://developer.mozilla.org/en-US/docs/Learn/CSS/Introduction_to_CSS/How_CSS_works
https://developer.mozilla.org/en-US/docs/Learn/CSS/Introduction_to_CSS/How_CSS_works
https://developer.mozilla.org/en-US/docs/Learn/CSS/Introduction_to_CSS/Selectors
https://developer.mozilla.org/en-US/docs/Learn/CSS/Introduction_to_CSS/Selectors

