
Dynamic Webpages
SWE 432, Fall 2017

Design and Implementation of Software for the Web

LaToza GMU SWE 432 Fall 2017

Today

• How to layout elements using CSS

• How to interact with HTML and CSS using frontend
JavaScript

• Next time: making and responding to HTTP requests

2

LaToza GMU SWE 432 Fall 2017

CSS "Box" Model

• Boxes, by default, are sized just large enough to fit their contents.

• Can specify sizes using px or %

• % values are relative to the container dimensions

• margin: 10px 5px 10px 5px; (clockwise order - [top] [right] [bottom] [left])

• border: 3px dotted #0088dd; ([width] [style] [color])

• style may be solid, dotted,dashed, double, groove, ridge, inset, outset, hidden / none

3

margin

padding

width height border-radius

LaToza GMU SWE 432 Fall 2017

Centering content

• How do you center an element inside a container?

• Step 1: Must first ensure that element is narrower than
container.

• By default, element will expand to fill entire container.

• So must usually explicitly set width for element.

• Step 2: Use auto value for left and right to create equal gaps

4

LaToza GMU SWE 432 Fall 2017

Visibility and layout
• Can force elements to be inline or

block element.

• display: inline

• display: block

• Can cause element to not be laid out
or take up any space

• display: none

• Very useful for content that is
dynamically added and removed.

• Can cause boxes to be invisible, but
still take up space

• visibility: hidden;

5

LaToza GMU SWE 432 Fall 2017

Positioning schemes

6

Normal flow (default)

Block level elements appear
on a new line. Even if there
is space, boxes will not
appear next to each other.

Absolute positioning

Element taken out of normal
flow and does not affect
position of other elements.
Moves as user scrolls.

Fixed positioning

Element taken out of normal flow and does not
affect position of other elements. Fixed in
window position as user scrolls.

Floating elements

Element taken out of normal flow and position to
far left or right of container. Element becomes
block element that others flow around.

Relative positioning

Element shifted from normal
flow. Position of other
elements is not affected.

LaToza GMU SWE 432 Fall 2017

Stacking elements

• Elements taken out of normal flow may be stacked on top
of each other

• Can set order with z-index property

• Higher numbers appear in front

• Can set opacity of element, making occluded elements
partially visible

7

LaToza GMU SWE 432 Fall 2017

Transform - examples

• Can modify coordinate space of element to rotate, skew,
distort

8

LaToza GMU SWE 432 Fall 2017

Transitions

• transition: [property time], …, [property time]

• When new class is applied, specifies the time it
will take for each property to change

• Can use all to select all changed properties

9

LaToza GMU SWE 432 Fall 2017

Fixed width vs. liquid layouts
• Fixed width

• Use width=“[num]px” to force specific sizes

• Allows for tightest control of look and feel

• But can end up with extra whitespace around edge of web page

• Liquid layout

• Use width=“[num]%” to size relative to container sizes

• Pages expand to fill the entire container size

• Problems

• Wide windows may create long lines of text can be difficult to read

• Very narrow windows may squash words, breaking text onto many lines

• (Partial) solution

• Can use min-width, min-height, max-width, max-height to set bounds on sizes

10

LaToza GMU SWE 432 Fall 2017

Designing for mobile devices

• Different devices have different aspect
ratios.

• Important to test for different device
sizes.

• May sometimes build alternative
layouts for different device sizes.

• Using specialized controls important.

• Enables mobile browsers to use
custom device-specific widgets that
may be much easier to use.

11

LaToza GMU SWE 432 Fall 2017

CSS Best Practices
• When possible, use CSS to declaratively describe behavior

rather than code

• Easier to read, can be optimized more effectively by browser

• Don’t repeat yourself (DRY)

• Rather than duplicating rules, create selectors to style all
related elements with single rule

• CSS should be readable

• Use organization, indentation, meaningful identifiers, etc.

12

LaToza GMU SWE 432 Fall 2017

Activity: Build a simple homepage

• In groups of 2
• Build a simple static homepage

• Should have
• A title
• Tags: <table><div><a>
• Use CSS selectors to apply styles

13

LaToza GMU SWE 432 Fall 2017

Deployment: serving static content from
Node

• Usually have specific directory where static content is located
• ONLY want content in the folder to be directly visible to clients
• Security vulnerability to enable clients to download server side

scripts, as it makes it possible to build targeted attacks
• Directory can be called anything. Often called public or client

14

const express = require('express');
const app = express();

app.use(express.static('public'));

app.listen(3000, function () {});

LaToza GMU SWE 432 Fall 2017

Demo: Hello world static content

15

LaToza GMU SWE 432 Fall 2017

Frontend JavaScript
• Static page

• Completely described by HTML & CSS
• May have interactivity (e.g., CSS transforms,

hover pseudo-classes)
• But described in HTML & CSS

• Dynamic page
• Adds interactivity, updating HTML based on user

interactions

16

LaToza GMU SWE 432 Fall 2017

Strict mode
• In order to use ES6 features, need to force browser to

use current version of JS
• "use strict";

• Should be first statement in every script tag.
• ES6 modules are always in strict mode

• Turns mistakes into errors
• Code that is illegal but tolerated by browser now

throws an exception
• Goal: if a typo creates behavior that is never

reasonable, throw an error

17

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Strict_mode

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Strict_mode

LaToza GMU SWE 432 Fall 2017

DOM: Document Object Model

• API for interacting with HTML browser
• Contains objects corresponding to every HTML

element
• Contains global objects for using other browser

features

18

Reference and tutorials
https://developer.mozilla.org/en-US/docs/Web/API/Document_Object_Model

https://developer.mozilla.org/en-US/docs/Web/API/Document_Object_Model

LaToza GMU SWE 432 Fall 2017

Global DOM objects
• window - the browser window

• Has properties for following objects (e.g.,
window.document)

• Or can refer to them directly (e.g., document)
• document - the current web page
• history - the list of pages the user has visited previously
• location - URL of current web page
• navigator - web browser being used
• screen - the area occupied by the browser & page

19

LaToza GMU SWE 432 Fall 2017

Working with popups

• alert, confirm, prompt
• Create modal

popups
• User cannot interact

with web page until
clears the popups

• Only good style for
messages that are
really important

20

LaToza GMU SWE 432 Fall 2017

Working with location
• Some properties

• location.href - full URL of
current location

• location.protocol - protocol
being used

• location.host - hostname
• location.port
• location.pathname

• Can navigate to new page by
updating the current location
• location.href = ‘[new URL]’;

21

LaToza GMU SWE 432 Fall 2017

Traveling through history
• history.back(), history.forward(),

history.go(delta)
• What if you have an SPA & user

navigates through different
views?
• Want to be able to jump

between different views within
a single URL

• Solution: manipulate history
state
• Add entries to history stack

describing past views
• Store and retrieve object

using history.pushState() and
history.state

22

LaToza GMU SWE 432 Fall 2017

DOM Manipulation

23

document.getElementById('compute')  
 .addEventListener("click", multiply);
function multiply() 
{  
 var x = document.getElementById('num1').value;  
 var y = document.getElementById('num2').value;  
 var productElem = document.getElementById('product'); 
 productElem.innerHTML = x * y;  
}

<h3>Multiply two numbers</h3>  
<div>  
 <input id="num1" type="number" /> * 
 <input id="num2" type="number" /> = 
  

 
 <button id="compute">Multiply</button>  
</div>

May choose any event that the compute
element produces. May pass the name of a
function or define an anonymous function
inline.

“Get compute element” “When compute is clicked, call
multiply”

LaToza GMU SWE 432 Fall 2017

DOM Manipulation

24

document.getElementById('compute')  
 .addEventListener("click", multiply);
function multiply() 
{  
 var x = document.getElementById('num1').value;  
 var y = document.getElementById('num2').value;  
 var productElem = document.getElementById('product'); 
 productElem.innerHTML = ‘’ + x * y + ‘’; 
}

<h3>Multiply two numbers</h3>  
<div>  
 <input id="num1" type="number" /> * 
 <input id="num2" type="number" /> = 
  

 
 <button id="compute">Multiply</button>  
</div>

“Get the current value of the
num1 element”

“Set the HTML between the tags of
productElem to the value of x * y”
Manipulates the DOM by programmatically
updating the value of the HTML content. DOM offers
accessors for updating all of the DOM state.

LaToza GMU SWE 432 Fall 2017

DOM Manipulation Pattern

• Wait for some event
• click, hover, focus, keypress, …

• Do some computation
• Read data from event, controls, and/or previous

application state
• Update application state based on what happened

• Update the DOM
• Generate HTML based on new application state

25

LaToza GMU SWE 432 Fall 2017

Examples of events
• Form element events

• change, focus, blur
• Network events

• online, offline
• View events

• resize, scroll
• Clipboard events

• cut, copy, paste
• Keyboard events

• keydown, keypress, keypup
• Mouse events

• mouseenter, mouseleave, mousemove, mousedown, mouseup,
click, dblclick, select

26

LaToza GMU SWE 432 Fall 2017

Loading pages
• What is the output of the following?

<script>  
 document.getElementById('elem').innerHTML
= 'New content'; 
</script>  
 
<div id="elem">Original content</div>

27

LaToza GMU SWE 432 Fall 2017

Loading pages

• Code in script tags will run in the order in which it
is contained in the page

• Solution: should put script tags at the bottom of the
body after elements in the document.

28

LaToza/Bell GMU SWE 432 Fall 2016

The Event Loop
• Remember that JS is event-driven

$(window).on('hashchange', function () {
 show(location.hash);
});

• Event loop is responsible for dispatching events
when they occur

• Main thread for event loop:
while(queue.waitForMessage()){	
		queue.processNextMessage();	
}

29

LaToza/Bell GMU SWE 432 Fall 2016

Event Dispatching
• Each event target can have (0…n) listeners

registered for any given event type, called in
arbitrary order

• What happens with nested elements?

30

body
form

button
Listener3: button onClick

Listener1: body onClick
Listener2: form onClick

What happens when we click in button?

LaToza/Bell GMU SWE 432 Fall 2016

Event Bubbling

31

body
form

button

Listener3: button onClick

Listener1: body onClick
Listener2: form onClick

What happens when we click in button?

This is the default behavior

Called

LaToza/Bell GMU SWE 432 Fall 2016

Event Capturing

32

body
form

button

Listener3: button onClick

Listener1: body onClick
Listener2: form onClick

What happens when we click in button?

Enable event capturing when you register your listener:
element.addListener(‘click’, myListener, true);

Called

LaToza/Bell GMU SWE 432 Fall 2016

Event Dispatching
• An individual listener can stop bubbling/capturing by calling
• event.stopPropagation();

• Assuming that event is the name of your handler’s parameter
• Or in jQuery, simply return false;

33

body
form

button
Listener3: button onClick

Listener1: body onClick
Listener2: form onClick

LaToza GMU SWE 432 Fall 2017

Activity: Build an interactive page

• In groups of 2 or 3
• Build a 4 function calculator page that lets users

add, delete, multiply divide

34

