
Making HTTP Requests
SWE 432, Fall 2017

Design and Implementation of Software for the Web

LaToza GMU SWE 432 Fall 2017

Today

• Building responsive layouts with CSS grids
• Making HTTP requests
• Events in frontend JavaScript

• Next time: making and responding to HTTP
requests

2

LaToza GMU SWE 432 Fall 2017

CSS Grids

3

https://developer.mozilla.org/en-US/docs/Web/CSS/
CSS_Grid_Layout/Basic_Concepts_of_Grid_Layout

https://developer.mozilla.org/en-US/docs/Web/CSS/CSS_Grid_Layout/Basic_Concepts_of_Grid_Layout
https://developer.mozilla.org/en-US/docs/Web/CSS/CSS_Grid_Layout/Basic_Concepts_of_Grid_Layout

LaToza GMU SWE 432 Fall 2017

DOM Manipulation

4

document.getElementById('compute')  
 .addEventListener("click", multiply);
function multiply() 
{  
 var x = document.getElementById('num1').value;  
 var y = document.getElementById('num2').value;  
 var productElem = document.getElementById('product'); 
 productElem.innerHTML = ‘’ + x * y + ‘’; 
}

<h3>Multiply two numbers</h3>  
<div>  
 <input id="num1" type="number" /> * 
 <input id="num2" type="number" /> = 
  

 
 <button id="compute">Multiply</button>  
</div>

“Get the current value of the
num1 element”

“Set the HTML between the tags of
productElem to the value of x * y”
Manipulates the DOM by programmatically
updating the value of the HTML content. DOM offers
accessors for updating all of the DOM state.

LaToza GMU SWE 432 Fall 2017

Activity: Build an interactive page

• In groups of 2 or 3
• Build a 4 function calculator page that lets users add,

delete, multiply, and divide

• Key code snippets
• document.getElementById('compute')
• elem.addEventListener("click", handler);
• inputElem.value
• elem.innerHTML

5

LaToza GMU SWE 432 Fall 2017

AJAX: Asynchronous JavaScript and XML

• Set of technologies to send and
receive data from server
asynchronously without interfering
with behavior of page
• HTML & CSS
• DOM Manipulation
• JSON or XML for data interchange
• XMLHttpRequest for

asynchronous communication
• JavaScript

• Originally defined for XML. But
representation independent, and
now used mostly for JSON.

6

LaToza GMU SWE 432 Fall 2017

History
• 1998: Microsoft Outlook Web App

implements first XMLHttp script
• 2004: Google releases Gmail with

AJAX
• 2005: “AJAX: A New Approach to

Web Applications” by Jesse
James Garrett [1]

• 2005: Google Maps with AJAX
• 2006: W3C releases draft of

XMLHttpRequest standard

7

[1] http://adaptivepath.org/ideas/ajax-new-approach-web-applications/

http://adaptivepath.org/ideas/ajax-new-approach-web-applications/

LaToza GMU SWE 432 Fall 2017

Synchronous vs. Asynchronous Requests

• Classic web apps
require user to wait
for response to
server

• Asynchronous
requests enable
user to continue to
interact with app

8

LaToza GMU SWE 432 Fall 2017

Example - Lazy Content Loading
• User changes visible viewport

• JS code renders new area of
map based on updated
viewport

• Check tile cache
• If in cache, load tile from

cache
• If not in cache,

• request tile from Google
Maps Server

9

LaToza GMU SWE 432 Fall 2017

Lazy Content Loading
• Advantages:

• Can have vast dataset that the user feels as if
they are interacting with in real time

• Only need to download content that user actually
needs

• Can (sometimes) do computation on client with
really simple server that just fetches appropriate
part of large data set

10

LaToza GMU SWE 432 Fall 2017

Some Uses for AJAX
• Lazily load content only when requested

• e.g., FB newsfeed, Google Maps tile loading
• Load parts of web page from different hosts

• e.g., advertisements, embedded Twitter widget, …
• Persist user data

• In some cases, can do all computation client side
• Enables building web app without dedicated backend

• Submit form data to server

11

LaToza GMU SWE 432 Fall 2017

Single Page Application Site

12

Browser

HTML

Web Server

Database

HTTP  
Request

HTTP  
Response

(JSON)

Presentation tier

Domain logic tier

Persistence tier

Javascript

events

HTML elements

LaToza GMU SWE 432 Fall 2017

Single Page Application (SPA)
• Client-side logic sends messages to server,

receives response
• Logic is associated with a single HTML pages,

written in Javascript
• HTML elements dynamically added and removed

through DOM manipulation
• Processing that does not require server may occur

entirely client side, dramatically increasing
responsiveness & reducing needed server
resources

• Classic example: Gmail

13

LaToza GMU SWE 432 Fall 2017

Making HTTP Requests
• Fetch works on the frontend
• Part of browser API, no need to install
• Some minor differences

14

var	myImage	=	document.querySelector('img');	

fetch('flowers.jpg').then(function(response)	{	
		return	response.blob();	
}).then(function(myBlob)	{	
		var	objectURL	=	URL.createObjectURL(myBlob);	
		myImage.src	=	objectURL;	
});	

https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API/Using_Fetch

https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API/Using_Fetch

LaToza GMU SWE 432 Fall 2017

Posting user data

15

//	Retrieve	data	from	controls	on	page	
var	userInput	=	document.getElementById('userInput').value;	

//	Send	data	to	remote	service	
fetch("/apiEndpoint",	
{	
				headers:	{	
					'Content-Type':	'application/json'	
				},	
				method:	"POST",	
				body:	JSON.stringify({	"dataProp":	userInput	})	
})	
.then(function(res){	console.log(res)	})	
.catch(function(res){	console.log(res)	});	

LaToza GMU SWE 432 Fall 2017

Demo: Simple todo app

16

LaToza GMU SWE 432 Fall 2017

Loading pages
• What is the output of the following?

<script>  
 document.getElementById('elem').innerHTML  
 = 'New content'; 
</script>  
 
<div id="elem">Original content</div>

17

LaToza GMU SWE 432 Fall 2017

Loading pages
• Code in script tags will run in the order in which it

is contained in the page
• Solution: should put script tags at the bottom of the

body after elements in the document.

18

<!DOCTYPE html>
<html lang="en">
<head>
 <meta charset="UTF-8">
 <title>Title</title>
</head>
<body>
 <div id="container"></div>

 <script src="client.js"></script>
</body>
</html>

LaToza GMU SWE 432 Fall 2017

The Event Loop
fetch('https://api.wmata.com/Incidents.svc/json/
ElevatorIncidents',
 { headers: { api_key:
"e1eee2b5677f408da40af8480a5fd5a8"} })
 .then(function(res) {
 return res.json();
 }).then(function(json) {
 global = json;
});

• Event loop is responsible for dispatching events when they
occur

• Simplified main thread for event loop:

while(queue.waitForMessage()){	
		queue.processNextMessage();	
}

19

LaToza/Bell GMU SWE 432 Fall 2016

How do you write a “good” event handler?

• Run-to-completion
• The JS engine will not handle the next event until

your event handler finishes
• Good news: no other code will run until you finish (no

worries about other threads overwriting your data)
• Bad/OK news: Event handlers must not block

• Blocking -> Stall/wait for input (e.g. alert(), non-
async network requests)

• If you *must* do something that takes a long time
(e.g. computation), split it up into multiple events
using Promises (just like on backend)

20

LaToza GMU SWE 432 Fall 2017

Event Dispatching
• Each event target can have (0…n) listeners

registered for any given event type, called in
arbitrary order

• What happens with nested elements?

21

body
form

button
Listener3: button onClick

Listener1: body onClick
Listener2: form onClick

What happens when we click button?

LaToza GMU SWE 432 Fall 2017

Event Bubbling

• Each event target can have (0…n) listeners registered for
any given event type, called in arbitrary order

• What happens with nested elements?

22

body
form

button

Listener3: button onClick

Listener1: body onClick
Listener2: form onClick

What happens when we click in button?

This is the default behavior

Called

LaToza GMU SWE 432 Fall 2017

Event Bubbling
• An individual listener can stop bubbling by calling
• event.stopPropagation();

• Assuming that event is the name of your
handler’s parameter

23

body
form

button
Listener3: button onClick

Listener1: body onClick
Listener2: form onClick

LaToza GMU SWE 432 Fall 2017

Web Workers

24

Web Workers represent new threads of execution

LaToza GMU SWE 432 Fall 2017

Web Workers
• Web Workers allow you to run arbitrary code in the

background, without affecting the performance of your
page

• Web Workers:
• Must be defined in separate files
• Can not access document, window, or parent

objects (so no DOM manipulation)
• Can use fetch
• Should mainly be used for performing long, intensive

computation (text parsing, image processing, big data)
• Communicate with the rest of your app with messages

25

LaToza GMU SWE 432 Fall 2017

Web Worker API
• Defining a new worker
var worker = new Worker('worker.js');

• Registering a listener to hear results from the worker
worker.addEventListener("message", function(e){ 
 console.log("Message from worker: <" + e.data + ">"); 
});
worker.addEventListener("error", function(e){ 
 console.log(“Uh oh");  
});

• Sending data to the worker
worker.postMessage("Hello");

• In the worker: registering for messages from the main thread,
sending responses

self.addEventListener('message', function(e) { doSomething(); }); 
self.postMessage(“Greetings from the Worker");

• Including additional scripts:
importScripts('script2.js');

• Kill a worker:
worker.terminate();

26

LaToza GMU SWE 432 Fall 2017

Passing Messages with Web Workers

• Can pass string or object
• Objects are passed by value

• Good news: reduces concurrency programming errors
• Bad news: passing a big (10’s of MB’s) object will be

slow
• Alternative: transfer an object

• No longer exists in the original thread
• Syntax:

worker.postMessage(myObject, [myObject]);

27

LaToza GMU SWE 432 Fall 2017

Web Workers: Example

28

self.addEventListener('message', function(e) { 
 self.postMessage("Worker is sending back the text:" + e.data); 
}, false);

<script language="javascript">  
 "use strict";  
 var worker = new Worker('worker.js');  
 worker.addEventListener("message", function(e){ 
 console.log("Message from worker: <" + e.data + ">"); 
 }); 
 worker.postMessage("Hello"); 
 worker.postMessage("How's it going over there, worker?"); 
 worker.terminate(); 
</script>

Defining a web worker in worker.js

Using a web worker in our web app

LaToza GMU SWE 432 Fall 2017

When should you use web workers?

• Mainly for computational stuff:
• Image manipulation
• Map routing (without going off to server)
• Numerical methods

• Remember: can *not* interact with DOM in web
worker

29

LaToza GMU SWE 432 Fall 2017

Web Workers Demo

30

Calculating Pi iteratively
function CalculatePi(loop) 
{  
 var n=1;  
 var c = parseInt(loop); 
 console.log(loop); 
 for (var i=0,Pi=0;i<=c;i++) { 
 Pi=Pi+(4/n)-(4/(n+2)); 
 n=n+4;  
 } 
 return Pi;  
}

https://gmu-swe432.github.io/lecture8demos/public/
WebWorkerDemoFinished.html

https://github.com/gmu-swe432/lecture8demos/tree/master/
public

https://gmu-swe432.github.io/lecture8demos/public/WebWorkerDemoFinished.html
https://gmu-swe432.github.io/lecture8demos/public/WebWorkerDemoFinished.html
https://github.com/gmu-swe432/lecture8demos/tree/master/public
https://github.com/gmu-swe432/lecture8demos/tree/master/public

LaToza GMU SWE 432 Fall 2017

Readings for next time

• React Quick Start:
• https://reactjs.org/docs/hello-world.html
• https://reactjs.org/docs/introducing-jsx.html
• https://reactjs.org/docs/rendering-elements.html
• https://reactjs.org/docs/components-and-

props.html
• https://reactjs.org/docs/handling-events.html

31

https://reactjs.org/docs/hello-world.html
https://reactjs.org/docs/introducing-jsx.html
https://reactjs.org/docs/rendering-elements.html
https://reactjs.org/docs/components-and-props.html
https://reactjs.org/docs/components-and-props.html
https://reactjs.org/docs/handling-events.html

