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Today

• Building responsive layouts with CSS grids 
• Making HTTP requests 
• Events in frontend JavaScript 

• Next time: making and responding to HTTP 
requests
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CSS Grids
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https://developer.mozilla.org/en-US/docs/Web/CSS/
CSS_Grid_Layout/Basic_Concepts_of_Grid_Layout 

https://developer.mozilla.org/en-US/docs/Web/CSS/CSS_Grid_Layout/Basic_Concepts_of_Grid_Layout
https://developer.mozilla.org/en-US/docs/Web/CSS/CSS_Grid_Layout/Basic_Concepts_of_Grid_Layout
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DOM Manipulation
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document.getElementById('compute')  
        .addEventListener("click", multiply); 
function multiply() 
{  
    var x = document.getElementById('num1').value;  
    var y = document.getElementById('num2').value;  
    var productElem = document.getElementById('product'); 
    productElem.innerHTML = ‘<b>’ + x * y + ‘</b>’; 
}

<h3>Multiply two numbers</h3>  
<div>  
    <input id="num1" type="number" /> * 
    <input id="num2" type="number" /> = 
    <span id="product"></span>  
    <br/><br/> 
    <button id="compute">Multiply</button>  
</div>

“Get the current value of the 
num1 element”

“Set the HTML between the tags of 
productElem to the value of x * y”
Manipulates the DOM by programmatically 
updating the value of the HTML content. DOM offers 
accessors for updating all of the DOM state.
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Activity: Build an interactive page

• In groups of 2 or 3 
• Build a 4 function calculator page that lets users add, 

delete, multiply, and divide 

• Key code snippets 
• document.getElementById('compute') 
• elem.addEventListener("click", handler); 
• inputElem.value 
• elem.innerHTML
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AJAX: Asynchronous JavaScript and XML

• Set of technologies to send and 
receive data from server 
asynchronously without interfering 
with behavior of page 
• HTML & CSS 
• DOM Manipulation 
• JSON or XML for data interchange 
• XMLHttpRequest for 

asynchronous communication 
• JavaScript 

• Originally defined for XML. But 
representation independent, and 
now used mostly for JSON.
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History
• 1998: Microsoft Outlook Web App 

implements first XMLHttp script 
• 2004: Google releases Gmail with 

AJAX 
• 2005: “AJAX: A New Approach to 

Web Applications” by Jesse 
James Garrett [1] 

• 2005: Google Maps with AJAX 
• 2006: W3C releases draft of 

XMLHttpRequest standard
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[1]   http://adaptivepath.org/ideas/ajax-new-approach-web-applications/ 

http://adaptivepath.org/ideas/ajax-new-approach-web-applications/


LaToza GMU SWE 432 Fall 2017

Synchronous vs. Asynchronous Requests

• Classic web apps 
require user to wait 
for response to 
server 

• Asynchronous 
requests enable 
user to continue to 
interact with app 
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Example - Lazy Content Loading
• User changes visible viewport 

• JS code renders new area of 
map based on updated 
viewport 

• Check tile cache 
• If in cache, load tile from 

cache 
• If not in cache,  

• request tile from Google 
Maps Server

9



LaToza GMU SWE 432 Fall 2017

Lazy Content Loading
• Advantages: 

• Can have vast dataset that the user feels as if 
they are interacting with in real time 

• Only need to download content that user actually 
needs 

• Can (sometimes) do computation on client with 
really simple server that just fetches appropriate 
part of large data set

10
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Some Uses for AJAX
• Lazily load content only when requested 

• e.g., FB newsfeed, Google Maps tile loading 
• Load parts of web page from different hosts 

• e.g., advertisements, embedded Twitter widget, … 
• Persist user data 

• In some cases, can do all computation client side 
• Enables building web app without dedicated backend 

• Submit form data to server

11
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Single Page Application Site
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Browser

HTML

Web Server

Database

HTTP  
Request

HTTP  
Response 

(JSON)

Presentation tier

Domain logic tier

Persistence tier

Javascript

events

HTML elements
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Single Page Application (SPA)
• Client-side logic sends messages to server, 

receives response 
• Logic is associated with a single HTML pages, 

written in Javascript 
• HTML elements dynamically added and removed 

through DOM manipulation 
• Processing that does not require server may occur 

entirely client side, dramatically increasing 
responsiveness & reducing needed server 
resources 

• Classic example: Gmail 

13
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Making HTTP Requests
• Fetch works on the frontend 
• Part of browser API, no need to install 
• Some minor differences
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var	myImage	=	document.querySelector('img');	

fetch('flowers.jpg').then(function(response)	{	
		return	response.blob();	
}).then(function(myBlob)	{	
		var	objectURL	=	URL.createObjectURL(myBlob);	
		myImage.src	=	objectURL;	
});	

https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API/Using_Fetch 

https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API/Using_Fetch
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Posting user data
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//	Retrieve	data	from	controls	on	page	
var	userInput	=	document.getElementById('userInput').value;	

//	Send	data	to	remote	service	
fetch("/apiEndpoint",	
{	
				headers:	{	
					'Content-Type':	'application/json'	
				},	
				method:	"POST",	
				body:	JSON.stringify({	"dataProp":	userInput	})	
})	
.then(function(res){	console.log(res)	})	
.catch(function(res){	console.log(res)	});	
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Demo: Simple todo app
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Loading pages
• What is the output of the following? 

<script>  
    document.getElementById('elem').innerHTML  
                 = 'New content'; 
</script>  
 
<div id="elem">Original content</div>

17
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Loading pages
• Code in script tags will run in the order in which it 

is contained in the page 
• Solution: should put script tags at the bottom of the 

body after elements in the document.
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<!DOCTYPE html> 
<html lang="en"> 
<head> 
    <meta charset="UTF-8"> 
    <title>Title</title> 
</head> 
<body> 
    <div id="container"></div> 

    <script src="client.js"></script> 
</body> 
</html>
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The Event Loop
fetch('https://api.wmata.com/Incidents.svc/json/
ElevatorIncidents', 
    { headers: { api_key: 
"e1eee2b5677f408da40af8480a5fd5a8"} }) 
    .then(function(res) { 
        return res.json(); 
    }).then(function(json) { 
    global = json; 
}); 

• Event loop is responsible for dispatching events when they 
occur 

• Simplified main thread for event loop: 

while(queue.waitForMessage()){	
		queue.processNextMessage();	
}

19
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How do you write a “good” event handler?

• Run-to-completion 
• The JS engine will not handle the next event until 

your event handler finishes 
• Good news: no other code will run until you finish (no 

worries about other threads overwriting your data) 
• Bad/OK news: Event handlers must not block 

• Blocking -> Stall/wait for input (e.g. alert(), non-
async network requests) 

• If you *must* do something that takes a long time 
(e.g. computation), split it up into multiple events 
using Promises (just like on backend)

20
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Event Dispatching
• Each event target can have (0…n) listeners 

registered for any given event type, called in 
arbitrary order 

• What happens with nested elements?

21

body
form

button
Listener3: button onClick

Listener1: body onClick
Listener2: form onClick

What happens when we click button?
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Event Bubbling

• Each event target can have (0…n) listeners registered for 
any given event type, called in arbitrary order 

• What happens with nested elements?
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body
form

button

Listener3: button onClick

Listener1: body onClick
Listener2: form onClick

What happens when we click in button?

This is the default behavior

Called
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Event Bubbling
• An individual listener can stop bubbling by calling 
• event.stopPropagation(); 

• Assuming that event is the name of your 
handler’s parameter 
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body
form

button
Listener3: button onClick

Listener1: body onClick
Listener2: form onClick
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Web Workers

24

Web Workers represent new threads of execution
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Web Workers
• Web Workers allow you to run arbitrary code in the 

background, without affecting the performance of your 
page 

• Web Workers: 
• Must be defined in separate files 
• Can not access document, window, or parent 

objects (so no DOM manipulation) 
• Can use fetch 
• Should mainly be used for performing long, intensive 

computation (text parsing, image processing, big data) 
• Communicate with the rest of your app with messages

25
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Web Worker API
• Defining a new worker 
var worker = new Worker('worker.js'); 

• Registering a listener to hear results from the worker 
worker.addEventListener("message", function(e){ 
    console.log("Message from worker: <" + e.data + ">"); 
}); 
worker.addEventListener("error", function(e){ 
    console.log(“Uh oh");  
}); 

• Sending data to the worker 
worker.postMessage("Hello"); 

• In the worker: registering for messages from the main thread, 
sending responses 

self.addEventListener('message', function(e) { doSomething(); }); 
self.postMessage(“Greetings from the Worker"); 

• Including additional scripts: 
importScripts('script2.js'); 

• Kill a worker: 
worker.terminate();

26
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Passing Messages with Web Workers

• Can pass string or object 
• Objects are passed by value 

• Good news: reduces concurrency programming errors 
• Bad news: passing a big (10’s of MB’s) object will be 

slow 
• Alternative: transfer an object 

• No longer exists in the original thread 
• Syntax: 

worker.postMessage(myObject, [myObject]);

27
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Web Workers: Example
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self.addEventListener('message', function(e) { 
    self.postMessage("Worker is sending back the text:" + e.data); 
}, false);

<script language="javascript">  
    "use strict";  
    var worker = new Worker('worker.js');  
    worker.addEventListener("message", function(e){ 
        console.log("Message from worker: <" + e.data + ">"); 
    }); 
    worker.postMessage("Hello"); 
    worker.postMessage("How's it going over there, worker?"); 
    worker.terminate(); 
</script>

Defining a web worker in worker.js

Using a web worker in our web app
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When should you use web workers?

• Mainly for computational stuff: 
• Image manipulation 
• Map routing (without going off to server) 
• Numerical methods 

• Remember: can *not* interact with DOM in web 
worker

29
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Web Workers Demo

30

Calculating Pi iteratively
function CalculatePi(loop) 
{  
    var n=1;  
    var c = parseInt(loop); 
    console.log(loop); 
    for (var i=0,Pi=0;i<=c;i++) { 
        Pi=Pi+(4/n)-(4/(n+2)); 
        n=n+4;  
    } 
    return Pi;  
}

https://gmu-swe432.github.io/lecture8demos/public/
WebWorkerDemoFinished.html

https://github.com/gmu-swe432/lecture8demos/tree/master/
public

https://gmu-swe432.github.io/lecture8demos/public/WebWorkerDemoFinished.html
https://gmu-swe432.github.io/lecture8demos/public/WebWorkerDemoFinished.html
https://github.com/gmu-swe432/lecture8demos/tree/master/public
https://github.com/gmu-swe432/lecture8demos/tree/master/public
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Readings for next time

• React Quick Start: 
• https://reactjs.org/docs/hello-world.html  
• https://reactjs.org/docs/introducing-jsx.html  
• https://reactjs.org/docs/rendering-elements.html  
• https://reactjs.org/docs/components-and-

props.html 
• https://reactjs.org/docs/handling-events.html
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https://reactjs.org/docs/hello-world.html
https://reactjs.org/docs/introducing-jsx.html
https://reactjs.org/docs/rendering-elements.html
https://reactjs.org/docs/components-and-props.html
https://reactjs.org/docs/components-and-props.html
https://reactjs.org/docs/handling-events.html

