Making HTTP Requests

SWE 432, Fall 2017
Design and Implementation of Software for the Web

2\

UNIVERSIT

<

LaToza

Today

Building responsive layouts with CSS grids
Making HTTP requests

Events in frontend JavaScript

Next time: making and responding to HT TP
requests

GMU SWE 432 Fall 2017

div>One</div

- div>Two</div
div>Three</div

CSS Grids

div>Five</div

div

.wrapper
display: grid
grid-template-columns: repeat(3, 1fr
grid-auto-rows: 200px

https://developer.mozilla.org/en-US/docs/Web/CSS/
CSS_Grid Layout/Basic_Concepts of Grid Layout

LaToza GMU SWE 432 Fall 2017

https://developer.mozilla.org/en-US/docs/Web/CSS/CSS_Grid_Layout/Basic_Concepts_of_Grid_Layout
https://developer.mozilla.org/en-US/docs/Web/CSS/CSS_Grid_Layout/Basic_Concepts_of_Grid_Layout

DOM Manipulation

Multiply two numbers

3 * 4 =12

Mumpwl

document.getElementhId('compute')

<h3>Multiply two numbers</h3> .addEventListener("click", multiply);

<div> _ '
<input id=unum1u type="number" /> * IUnCtlon mUltlply()

<input id="num2" type="number" /> =

 var x = document. getElementById(numl').value;

var y = document.getElementB .value;

 |
<button id="compute">Multiply</button> var productElem = getElementById(product');
</div> produ innerHTML = ‘’ + x *x y + ‘";

\

“Get the current value of the “Set the HTML between the tags of
num1 element” productElem to the value of x * y”

Manipulates the DOM by programmatically
updating the value of the HTML content. DOM offers
accessors for updating all of the DOM state.

LaToza GMU SWE 432 Fall 2017 4

LaToza

Activity: Build an interactive page

 |[ngroupsof?2or3

« Build a 4 function calculator page that lets users add,
delete, multiply, and divide

 Key code snippets
e document.getElementByld('compute')
e elem.addEventListener("click", handler);
e Inputklem.value

e elem.innerHTML

GMU SWE 432 Fall 2017

AJAX: Asynchronous JavaScript and XML

« Set of technologies to send and
receive data from server

asynchronously without interfering scer et
with behavior of page sapaaii]
¢ HTML+(|ZSSdaLa
o HTMI_ & CSS user interface Ajax engine
A A
« DOM Manipulation TP eques TP oaues
« JSON or XML for data interchange A |
web server web and/or XML server
 XMLHttpRequest for v A v A
asynchronous communication processing lgacy Systems processing, legacy Systems
. .
Javascr pt classic Ajax
» Originally defined for XML. But web application model | - web application model

representation independent, and
now used mostly for JSON.

LaToza GMU SWE 432 Fall 2017 6

History

e 1998: Microsoft Outlook Web App
implements first XMLHttp script

Ajax: A New Approach to Web Applications

o 2004: Google releases Gmail with

If anything about current interaction design can be called “glamorous,” it's creating Web
AJ AX applications. After all, when was the last time you heard someane rave about the interaction
design of a product that wasn't on the Web? (Okay, besides the iPod.) All the cool, innovative

new projects are online.

Directions

o 2005: "AJAX: A New Approach to cmgle P)
Web Applications” by Jesse | E—
%J Canada S0 _map__[Sateiie_J{_hyono_J ?T—':"qffﬁp;::r'::::\ e
James Garrett [1] L . - D [RS

Drag the map with your mou
A double-click to center.
. . WA mMT | ND "v'/\\ ";r\e"‘,'_pg Example searches:
() N ‘ 1 AT MEW/ NS
. " O O g a p S W I U OR ‘D [wy SO o= o | M'J/,»"JNY .i\’::(\n' Go to a location
NV A { 1L [INJOHL_PA {3 “'\,\;:yuRNH “kansas city" iry it
5 5 UT| CO | ks |mo ,('y‘('N\,‘.«':\\\}ET Rl "10 market st, san francisco” try it
e A / ; NNDENY
Az nm ! LK MRS "\ <sdiioenmo Find a business
< V
. .: B A p—7° TX Pl GA "hotels near lax try it
P LA North " . &
® . re e aS e S ra O W oo & e ucean ey nt
Mexico i Mexico Get directions
Cuba o “ifk to 350 5th ave, new york™ fry it
XMLHttpRequest standard © L Pl
North Guateraa
Paciic Ocean Nicaraguo Take a tour »
Venezuela
| 1000 mi] Guyana
1000 km 2005 Google - Mop data S2006NAMTEQ™ -1 1) Somriarmm

[1] http://adaptivepath.org/ideas/ajax-new-approach-web-applications

LaToza GMU SWE 432 Fall 2017 7/

http://adaptivepath.org/ideas/ajax-new-approach-web-applications/

Synchronous vs. Asynchronous Requests

classic web application model (synchronous)

user activity user activity

>

 (Classic web apps
require user to wait
for response to
server

system processing system processing

 Asynchronous
requests enable
user to continue to
iInteract with app

Ajax web application model (asynchronous)

dient-side processing

UOSSRUSUR A €Vep
data transmission

server-side
processing

server-sde
processing

Jesse James Garrett / adaptivepath.com

LaToza GMU SWE 432 Fall 2017

Example - Lazy Content Loading

« User changes visible viewport

e JS code renders new area of
map based on updated
viewport

e Check tile cache

e |fin cache, load tile from
cache e et

e [f notin cache,

e request tile from Google
Maps Server

LaToza GMU SWE 432 Fall 2017

LaToza

Lazy Content Loading

 Advantages:

e (Can have vast dataset that the user feels as if
they are interacting with in real time

* Only need to download content that user actually
needs

 Can (sometimes) do computation on client with
really simple server that just fetches appropriate
part of large data set

GMU SWE 432 Fall 2017

10

Some Uses for AJAX

* Lazily load content only when requested
* e.g., FB newsfeed, Google Maps tile loading
 |Load parts of web page from different hosts

* e.9g., advertisements, embedded Twitter widget, ...

e Persist user data
* |In some cases, can do all computation client side
 Enables building web app without dedicated backend

e Submit form data to server

LaToza GMU SWE 432 Fall 2017

11

Single Page Application Site

I 1
'I':;T:E o e helloWorld();
</:::i TR a8 e e Ve n tS function helloWorld() {
Browser e s var message = "<hl>Hello, world!</hl>":
e $C"body").html();
4 }
HTML HTML elements Javascript

HTTP
Response
(JSON)

HTTP
Request

Web Server

Database

LaToza GMU SWE 432 Fall 2017

LaToza

Sing

le Page Application (SPA)

Client-side logic sends messages to server,

recelives response

 Logic

IS associated with a single HTML pages,

written in Javascript

HTML elements dynamically added and removed

through DOM manipulation

entire
respo

Processing that does not require server may occur

y client side, dramatically increasing
nsiveness & reducing needed server

resources

Classic example: Gmail

GMU SWE 432 Fall 2017 13

LaToza

Making HTTP Requests

Fetch works on the frontend

Part of browser APIl, no need to install

e Some minor differences

var myImage = document.querySelector(' img

fetch('flowers.jpg').then(function(response
return response.blob
then(function(myBlob
var objectURL = URL.createObjectURL(myBlob
myImage.src = objectURL

https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API/Using_Fetch

GMU SWE 432 Fall 2017

14

https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API/Using_Fetch

LaToza

Posting user data

// Retrieve data from controls on page
var userInput = document.getElementById('userInput').value;

// Send data to remote service
fetch("/apiEndpoint",

{
headers: {
'Content-Type': 'application/json’
s
method: "POST",
body: JSON.stringify({ "dataProp": userInput })
})

.then(function(res){ console.log(res) })
.catch(function(res){ console.log(res) });

GMU SWE 432 Fall 2017

15

Demo: Simple todo app

22222222222222222

16

LaToza

Loading pages
» \What is the output of the following”

<script>
document.getElementById('elem').innerHTML
= 'New content';
</script>

<div 1id="elem">0riginal content</div>

GMU SWE 432 Fall 2017

17

LaToza

Loading pages

* Code in script tags will run in the order in which it
IS contained In the page

* Solution: should put script tags at the bottom of the
body after elements in the document.

<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="UTF-8">
<title>Title</title>
</head>
<body>
<div id="container'"></div>

<script src="client.js"></script>

</body>
</html>

GMU SWE 432 Fall 2017

18

LaToza

The Event Loop

fetch('https://api.wmata.com/Incidents.svc/json/
ElevatorIncidents',
{ headers: { api_key:
"eleee2b5677f408da40af8480a5fd5a8"} })
.then(function(res) {
return res.json();
}).then(function(json) {
global = json;
1)

 Event loop is responsible tfor dispatching events when they
occur

« Simplified main thread for event loop:

while(queue.waitForMessage()){
queue.processNextMessage();

}

GMU SWE 432 Fall 2017

19

How do you write a "good” ev

* Run-to-completion

ent handler?

* The JS engine will not handle the next event until

your event handler finishes

* (Good news: no other code will run until you finish (no

worries about other threads overwriti

ng your data)

e Bad/OK news: Event handlers must not block
* Blocking -> Stall/wait for input (e.g. alert(), non-

async network requests)

* |f you "must* do something that takes a long time
(e.g. computation), split it up into multiple events

using Promises (just like on backe

LaToza/Bell GMU SWE 432 Fall 2016

nd)

20

LaToza

Event Dispatching

 Each event target can have (0...n) listeners
registered for any given event type, called In
arbitrary order

 What happens with nested elements?

Listener3: button onClick

What happens when we click button?

N

GMU SWE 432 Fall 2017

21

Event Bubbling

What happens when we click in button?

 Each event target can have (0...n) listeners registered for
any given event type, called in arbitrary order

 \What happens with nested elements?

Calle(=———p| istener3: button onClick

This Is the default behavior

LaToza GMU SWE 432 Fall 2017

22

LaToza

Event Bubbling

* An individual listener can stop bubbling by calling

. event.stopPropagation();

 Assuming that event is the name of your

handler's parameter

Listener3: button onClick

GMU SWE 432 Fall 2017 23

Web Workers

Main JavaScript
task
Create worker
> Worker

>

<

<
>

<

Web Workers represent new threads of execution

., -

LaToza GMU SWE 432 Fall 2017

LaToza

Web Workers

 Web Workers allow you to run arbitrary code in the
background, without affecting the performance ot your

Page
Web Workers:

Must be defined in separate files

Can not access document, window, or parent
objects (so no DOM manipulation)

Can use fetch

Should mainly be used for performing long, intensive
computation (text parsing, image processing, big data)

Communicate with the rest of your app with messages

GMU SWE 432 Fall 2017 25

LaToza

Web Worker API

e Defining a new worker

var worker = new Worker('worker.js');

* Registering a listener to hear results from the worker

worker.addEventListener("message", function(e){
console. log("Message from worker: <" + e.data + ">");
1)

worker.addEventListener("error", function(e){
console. log(“Uh oh");
1)

e Sending data to the worker

worker.postMessage("Hello");

* In the worker: registering for messages from the main thread,
sending responses

self.addEventListener('message', function(e) { doSomething(); });
self.postMessage(“Greetings from the Worker");

* |ncluding additional scripts:

importScripts('script2.js');

e Kill a worker:

worker.terminate():

GMU SWE 432 Fall 2017

26

LaToza

Passing Messages with Web Workers

e (Can pass string or object
 (Objects are passed by value

« (Good news: reduces concurrency programming errors

 Bad news: passing a big (10’s of MB’s) object will be
slow

o Alternative: transfer an object
 No longer exists in the original thread
o Syntax:

worker.postMessage(myObject, [myObject]);

GMU SWE 432 Fall 2017

27

Web Workers: Example

Defining a web worker in worketr.|s

self.addEventListener('message’', function(e) <
self.postMessage("Worker is sending back the text:" + e.data);

}, false);

Using a web worker in our web app

<script language="javascript'>
"use strict";
var worker = new Worker('worker.js');
worker.addEventListener("message", function(e){
console. log("Message from worker: <" + e.data + ">");
1)

worker.postMessage("Hello");
worker.postMessage("How's 1t going over there, worker?");

worker.terminate()
</script>

LaToza GMU SWE 432 Fall 2017

28

LaToza

When should you use web workers?

 Mainly for computational stuft:
* |Image manipulation
* Map routing (without going off to server)
 Numerical methods

e Remember: can *not* interact with DOM in web
worker

GMU SWE 432 Fall 2017

29

Web Workers Demo

Calculating Pi iteratively

function CalculatePi(loop)

{

var n=1;

var ¢ = parselnt(loop);

console. Log(loop);

for (var i=0,Pi=0;i<=c;i++) {
Pi=Pi+(4/n)-(4/(n+2));
n=n+4;

¥

return Pi;

}

https://gmu-swe432.qgithub.io/lecture8demos/public/
WebWorkerDemoFinished.html

https://github.com/gmu-swe432/lecture8demos/tree/master/
public

LaToza GMU SWE 432 Fall 2017

https://gmu-swe432.github.io/lecture8demos/public/WebWorkerDemoFinished.html
https://gmu-swe432.github.io/lecture8demos/public/WebWorkerDemoFinished.html
https://github.com/gmu-swe432/lecture8demos/tree/master/public
https://github.com/gmu-swe432/lecture8demos/tree/master/public

LaToza

Readings for next time

 React Quick Start:

https://react|s.org/docs/hello-world.html

https://react|s.org/docs/introducing-jsx.html

https://react|s.org/docs/rendering-elements.html

https://react]s.org/docs/components-and-

props.html

https://react]s.org/docs/handling-events.html

GMU SWE 432 Fall 2017

31

https://reactjs.org/docs/hello-world.html
https://reactjs.org/docs/introducing-jsx.html
https://reactjs.org/docs/rendering-elements.html
https://reactjs.org/docs/components-and-props.html
https://reactjs.org/docs/components-and-props.html
https://reactjs.org/docs/handling-events.html

