
Templates and
Databinding

SWE 432, Fall 2017
Design and Implementation of Software for the Web

LaToza GMU SWE 432 Fall 2017

Today
• What are templates?
• What are frontend components?
• How can I use these with React?

2

LaToza GMU SWE 432 Fall 2017

What’s wrong with this code?

3

				function	createItem(value,	key)	
				{	
								document.getElementById('todoItems').innerHTML	+=	
																'<div	class="todoItem"	data-index="'	+	key		
																+	'"><input	type="text"	onchange="itemChanged(this)"	value='	
							+	value	+	'"><button	onclick="deleteItem(this.parentElement)">✖</button></div>'	
								;	
				}	

LaToza GMU SWE 432 Fall 2017

What’s wrong with this code?

4

				function	createItem(value,	key)	
				{	
								document.getElementById('todoItems').innerHTML	+=	
																'<div	class="todoItem"	data-index="'	+	key		
																+	'"><input	type="text"	onchange="itemChanged(this)"	value="'	
							+	value	+	'"><button	onclick="deleteItem(this.parentElement)">✖</button></div>'	
								;	
				}	

No syntax checking

LaToza GMU SWE 432 Fall 2017

Anatomy of a Non-Trivial Web App

5

User profile widget

Who to follow
widget

Follow widget

Feed widget

Feed item widget

LaToza GMU SWE 432 Fall 2017

Typical properties of web app UIs
• Each widget has both visual presentation & logic

• e.g., clicking on follow button executes some logic related to the
containing widget

• Logic and presentation of individual widget strongly related,
loosely related to other widgets

• Some widgets occur more than once
• e.g., Follow widget occurs multiple times in Who to Follow

Widget
• Need to generate a copy of widget based on data

• Changes to data should cause changes to widget
• e.g., following person should update UI to show that the person

is followed. Should work even if person becomes followed
through other UI

• Widgets are hierarchical, with parent and child
• Seen this already with container elements in HTML…

6

LaToza GMU SWE 432 Fall 2017

Idea 1: Templates

• Templates describe repeated HTML through a single
common representation
• May have variables that describe variations in the

template
• May have logic that describes what values are used or

when to instantiate template
• Template may be instantiated by binding variables to

values, creating HTML that can be used to update DOM

7

								document.getElementById('todoItems').innerHTML	+=		
																'<div	class="todoItem"	data-index="'	+	key		
																+	'"><input	type="text"	onchange="itemChanged(this)"	value="'	
							+	value	+	'"><button	onclick="deleteItem(this.parentElement)">✖</button></div>';

LaToza GMU SWE 432 Fall 2017

Templates with template literals

• Template literals reduce confusion of nested
strings

8

								document.getElementById('todoItems').innerHTML	+=		
																`<div	class="todoItem"	data-index="${key}">	
																						<input	type="text"	onchange="itemChanged(this)"	value="${value}">	
																						<button	onclick="deleteItem(this.parentElement)">✖</button>	
																	</div>`;

LaToza GMU SWE 432 Fall 2017

Server side vs. client side
• Where should template be instantiated?

• Server-side frameworks: Template
instantiated on server
• Examples: JSP, ColdFusion, PHP,

ASP.NET
• Logic executes on server, generating

HTML that is served to browser
• Front-end framework: Template runs in

web browser
• Examples: React, Angular, Meteor,

Ember, Aurelia, …
• Server passes template to browser,

browser generates HTML on demand

9

LaToza GMU SWE 432 Fall 2017

Server side vs. client side
• Server side

• Oldest solution.
• True when “real” code ran on server, Javascript

• Client side
• Enables presentation logic to exist entirely in

browser
• e.g., can make call to remote web service, no

need for server to be involved
• (What we’ve looked at in this course).

10

LaToza GMU SWE 432 Fall 2017

Logic
• Templates require combining logic with HTML

• Conditionals - only display presentation if some
expression is true

• Loops - repeat this template once for every item
in collection

• How should this be expressed?
• Embed code in HTML (ColdFusion, JSP,

Angular)
• Embed HTML in code (React)

11

LaToza GMU SWE 432 Fall 2017

Embed code in HTML

• Template takes the form of an HTML file, with extensions
• Custom tags (e.g., <% %>) enable logic to be embedded

in HTML
• Uses another language (e.g., Java, C) or custom language

to express logic
• Found in frameworks such as PHP, Angular, ColdFusion,

ASP, ...

12

LaToza GMU SWE 432 Fall 2017

Embed HTML in code

• Template takes the form of an HTML fragment, embedded
in a code file
• HTML instantiated as part of an expression, becomes a

value that can be stored to variables
• Uses another language (e.g., Javascript) to express

logic
• This course: React

13

LaToza GMU SWE 432 Fall 2017

Templates enable HTML to be rendered
multiple times

• Rendering takes a template, instantiates the
template, outputs HTML

• Logic determines which part(s) of templates are
rendered

• Expressions are evaluated to instantiate values
• e.g., { this.props.name }
• Different variable values ==> different HTML

output

14

LaToza GMU SWE 432 Fall 2017

Idea 2: Components
• Web pages are complex,

with lots of logic and
presentation

• How can we organize web
page to maximize
modularity?

• Solution: Components
• Templates that correspond

to a specific widget
• Encapsulates related logic

& presentation using
language construct (e.g.,
class)

15

LaToza GMU SWE 432 Fall 2017

Components
• Organize related logic and presentation into a single unit

• Includes necessary state and the logic for updating this
state

• Includes presentation for rendering this state into HTML
• Outside world must interact with state through accessors,

enabling access to be controlled

• Synchronizes state and visual presentation
• Whenever state changes, HTML should be rendered again

• Components instantiated through custom HTML tag

16

LaToza GMU SWE 432 Fall 2017

React: Front End Framework for
Components

• Originally build by Facebook
• Opensource frontend framework
• Powerful abstractions for describing frontend UI

components
• Official documentation & tutorials

• https://reactjs.org/

17

https://reactjs.org/

LaToza GMU SWE 432 Fall 2017

class HelloMessage extends React.Component {
 render() {
 return (
 <div>
 Hello world!
 </div>
);
 }
}

ReactDOM.render(
 <HelloMessage/>, mountNode
);

Example

18

<div id=“mountNode”></div>
“Declare a HelloMessage
component”
Declares a new component with the
provided functions.

“Return the following HTML  
whenever the component is
rendered”
Render generates the HTML for the
component. The HTML is dynamically
generated by the library.

“Render HelloMessage and
insert in mountNode”
Instantiates component, replaces
mountNode innerHTML with
rendered HTML. Second parameter
should always be a DOM element.

LaToza GMU SWE 432 Fall 2017

class HelloMessage extends React.Component {
 render() {
 return (
 <div>
 Hello {this.props.name}
 </div>
);
 }
}

ReactDOM.render(
 <HelloMessage name="John" />,
 mountNode
);

Example - Properties

19

“Read this.props.name
and output the value”
Evaluates the expression to a value.

“Set the name property of
HelloMessage to John”
Components have a this.props collection
that contains a set of properties instantiated
for each component.

LaToza GMU SWE 432 Fall 2017

Embedding HTML in Javascript

• HTML embedded in JavaScript
• HTML can be used as an expression
• HTML is checked for correct syntax

• Can use { expr } to evaluate an expression and
return a value
• e.g., { 5 + 2 }, { foo() }

• Output of expression is HTML

20

return <div>Hello {this.props.name}</div>;

LaToza GMU SWE 432 Fall 2017

JSX
• How do you embed HTML in JavaScript and get

syntax checking??
• Idea: extend the language: JSX

• Javascript language, with additional feature that
expressions may be HTML

• Can be used with ES6 or traditional JS (ES5)
• It’s a new language

• Browsers do not natively run JSX
• If you include a JSX file as source, you will get an

error

21

LaToza GMU SWE 432 Fall 2017

Transpiling
• Need to take JSX code and trans-compile

(“transpile”) to Javascript code
• Take code in one language, output source code in

a second language
• Where to transpile?

• Serverside, as part of build process
• Fastest, least work for client. Only have to

execute transpiring once.
• Clientside, through library.

• Include library that takes JSX, outputs JS.
• Easy. Just need to include a script.

22

LaToza GMU SWE 432 Fall 2017

Babel

• Transpiler for Javascript
• Takes JSX (or ES6) and outputs traditional Javascript (a.k.a ES5)
• Can use server side or client side
• Using Babel serverside: https://facebook.github.io/react/docs/

language-tooling.html

23

https://babeljs.io/

<script	src=“https://cdnjs.com/libraries/babel-core/
5.8.34">	</script>	

<script	type=“text/babel”>	
//JSX	here	
</script>

Babel client side

https://facebook.github.io/react/docs/language-tooling.html
https://facebook.github.io/react/docs/language-tooling.html
https://babeljs.io/
https://cdnjs.com/libraries/babel-core/5.8.34
https://cdnjs.com/libraries/babel-core/5.8.34

LaToza/Bell GMU SWE 432 Fall 2016 25

• Pastebin sites such as JSFiddle and codepen.io work with React
• Just need to include React first

http://codepen.io

LaToza GMU SWE 432 Fall 2017

Create React App

• Sets up Babel as well as other tools.
• Should create an app as a subfolder of your

express backend.
• Will now have two package.json files: one for

your frontend, one for your backend

26

https://github.com/facebookincubator/create-react-app

https://github.com/facebookincubator/create-react-app

LaToza GMU SWE 432 Fall 2017

Proxy Server for Dev
• Will use a proxy server to have two separate web servers

running, one for front end one for back end
• Add to your client package.json

 "eject": "react-scripts eject"
 },
 "proxy": "http://localhost:5000"
}

• Update server port in server.js to 5000
app.listen(5000, function () {
 console.log('Example app listening on port 5000!')
});

• https://daveceddia.com/create-react-app-express-backend/
• This won't work in deployment, need a different approach

(See next slide)

27

https://daveceddia.com/create-react-app-express-backend/

LaToza GMU SWE 432 Fall 2017

Deploying to heroku

• Need to add a build command
• https://daveceddia.com/create-react-app-express-

production/
• Start with "Create the React App" section

28

https://daveceddia.com/create-react-app-express-production/
https://daveceddia.com/create-react-app-express-production/

LaToza GMU SWE 432 Fall 2017

Setting Language in Webstorm

29

LaToza GMU SWE 432 Fall 2017

Demo: Create React App

• Example of create react app
• Overview of default files and folder structure

30

LaToza GMU SWE 432 Fall 2017

Demo: Generating lists from fetched data

31

LaToza GMU SWE 432 Fall 2017

Readings for next time

• More on React
• https://reactjs.org/docs/conditional-

rendering.html
• https://reactjs.org/docs/lists-and-keys.html
• https://reactjs.org/docs/forms.html

32

https://reactjs.org/docs/conditional-rendering.html
https://reactjs.org/docs/conditional-rendering.html
https://reactjs.org/docs/lists-and-keys.html
https://reactjs.org/docs/forms.html

