Frontend Frameworks
Part 2

SWE 432, Fall 2017
Design and Implementation of Software for the Web

IIIIIIIIII

LaToza

Today

 How to make React apps interactive

 Handling events, state, nesting components,
reconciliation, controlled components

* |[n class activity

GMU SWE 432 Fall 2017

LaToza

Reacting to change

 What happens when state of component changes”
* e.g., user adds a new item to list
* |dea

1. Your code updates this.state of component
when event(s) occur (e.g., user enters data, get
data from network) using this.setState(newState)

2. Calls to this.setState automatically cause render
to be invoked by framework

3. Reconciliation: Framework diffs output of render

with previous call to render, updating only part
of DOM that changed

GMU SWE 432 Fall 2017

LaToza

What is state?

* All internal component data that, when changed,
should trigger Ul update

o Stored as single JSON object this.state
 What isn't state?

* Anything that could be computed from state
(redundant)

e Other components - should build them in render
 Data duplicated from properties.

GMU SWE 432 Fall 2017

Properties vs. State

* Properties should be immutable.
* (Created through attributes when component is instantiated.
* Should never update within component

* Parent may create a new instance of component with new
properties

class Welcome extends React.Component {
render() {

return <hl>Hello, {this.props.name}</hl>;

}

}
* State changes to reflect the current state of the component.

* Can (and should) change based on the current internal data of
your component.

LaToza GMU SWE 432 Fall 2017

Working with state

e (Constructor should initialize state of object

constructor(props) {
super(props);

this.state = {date: new Date()}:

* Use this.setState to update state

this.setState({
date: new Date()

) ;

e Doing this will (asynchronously) eventually result in render
being invoked

 Multiple state updates may be batched together and
result in a single render call

LaToza GMU SWE 432 Fall 2017

Partial state updates

o State is an object, may contain whatever properties
you add

 (Can use setState to update only parts of state
yvou'd like to update

fetchPosts().then(response => {
this.setState({

posts: response.posts

1)

1)

fetchComments().then(response => {
this.setState({

comments: response.comments

1)

1)

LaToza GMU SWE 432 Fall 2017

Handling events

class Toggle extends React.Component {
constructor(props) {
super(props);
this.state = {isToggleOn: true};

// This binding is necessary to make "this work in the callback
this.handleClick = this.handleClick.bind(this);
+

handleClick() {
this.setState(prevState => ({ isToggleOn: !prevState.isToggleOn }));

}

render() {
return (

<button onClick={this.handleClick}>
{this.state.isToggleOn ? 'ON' : 'OFF'}

</button>

);
}

}

ReactDOM. render (
<Toggle />, document.getElementById('root"')

)

react|s.org/docs/handling-events.html

GMU SWE 432 Fall 2017

https://reactjs.org/docs/handling-events.html

Functional components

 What happens it you have a simple component that
only has properties and no state.

e (Can use the function syntax to create a
component.

« Component that is only a render method.

function Square(props) {
return (

<button className="square" onClick={props.onClick}>
iprops.value}

</button>
);

}

LaToza GMU SWE 432 Fall 2017

Nesting

components

* Ul Is often composed of nested components
* Like containers in HTML, corresponds to

nierarchy of HTM

 But...now each e
that Is generated

e Parent owns instance of child

- elements

ement Is a React component

* (Occurs whenever component instantiates other
component in render function

* Parent configures child by passing in properties
through attributes

LaToza

GMU SWE 432 Fall 2017

10

Nesting components

render() {
return (
<div>
<PagePic pagename={this.props.pagename} />
<PagelLink pagename={this.props.pagename} />
</diy>

);

Sets pagename property of child
to value of pagename property of
parent

Establishes ownership by
creating in render function.

LaToza GMU SWE 432 Fall 2017

11

LaToza

The data flows down

o State that is common to multiple components

should be owned by a co

MMOoN ancestor

o State can be passed in
properties

'O descendants as

 \When this state can manipulated by descendants
(e.g., a control), change events should invoke a

handler on common ance

stor

 Handler function should be passed to

descendents

https://react]s.org/docs/state-and-lifecycle.html#the-data-flows-down

GMU SWE 432

Fall 2017

12

https://reactjs.org/docs/state-and-lifecycle.html#the-data-flows-down

The data flows down

class Calculator extends React.Component {
constructor(props) {
super(props);
this.handleCelsiusChange = this.handleCelsiusChange.bind(this);
this.state = {temperature: '', scale: 'c'};

}

handleCelsiusChange(temperature) A
this.setState({scale: 'c', temperature});

}

render() A{
const scale = this.state.scale;
const temperature = this.state.temperature;
const celsius = scale === 'f' ? tryConvert(temperature, toCelsius) : temperature;

return (
<div>

onTemperaturt -t is.handleCelsiusChange} }/>

</div>

);

GMU SWE 432 Fall 2017

Single page app

* |n asingle page app, there is only one single
HTML page loaded by browser.

 When new views are opened by user or data

arrives from server, client side JavaScript code
generates new views.

 How could you build a single page app using
React?

LaToza GMU SWE 432 Fall 2017

14

Activity: Tab widget

* |n groups of 2

 Build a tab widget in React
* Should have buttons or links to change the tab

 Should show and hide content based on which
tab Is active

GMU SWE 432 Fall 2017

LaToza

What's wrong with this code?

class Timer extends React.Component {
constructor(props) {
super(props);
this.state = { seconds: 0 };
this.interval = setInterval(() => this.tick(), 1000);

}

tick() {
this.setState(prevState => ({
seconds: prevState.seconds + 1
}));
+

render() {
return (
<div> Seconds: {this.state.seconds} </div>

ReactDOM. render(<Timer />, mountNode);

GMU SWE 432 Fall 2017

16

LaToza

Component lifecycle

class Timer extends React.Component {
constructor(props) {
super(props);
this.state = { seconds: 0 };

tick() {
this.setState(prevState => ({
seconds: prevState.seconds + 1
1))
I3

componentDidMount() {
this.interval = setInterval(() => this.tick(), 1000);
}

componentWillUnmount() {
clearInterval(this.interval);

}

render() {
return (
<div>
Seconds: {this.state.seconds}
</div>

ReactDOM. render(<Timer />, mountNode);

GMU SWE 432 Fall 2017

17

Component lifecycle

class Timer extends React.Component {

canstructar (props) { ReactDOM.render(...)
} this.state = { seconds: 0 }; [COmpOnent Created]
k) o constructor(...)
this.setState(prevState => ({ render()
seconds: prevState.seconds + 1]
et componentDidMount()
componentDidMount() {
this.interval = setInterval(() => this.tick(), 1000); t|Ck()
}
componentWillUnmount() { render()
clearInterval(this.interval);
}
render() {
return [component rendered
econds: {this.state.seconds} .
Seconds: {this. stat d again by pare_‘nt]
)3 componentWillUnmount()
} [component created]

ReactDOM. render(<Timer />, mountNode);

LaToza GMU SWE 432 Fall 2017 18

Controlled Components

class EssayForm extends React.Component {
constructor(props) {
super(props);
this.state = {
value: 'Please write an essay about your favorite DOM element.'

&

this.handleChange = this.handleChange.bind(this);
this.handleSubmit = this.handleSubmit.bind(this);

}

handleChange(event) {
this.setState({value: event.target.value});
I3

handleSubmit(event) {
alert('An essay was submitted:
event.preventDefault();

+ this.state.value);

}

render() {
return (
<form onSubmit={this.handleSubmit}>
<label>
Name: <textarea value={this.state.value} onChange={this.handleChange} />
</label>
<input type="submit" value="Submit" />
</form>

react|s.or

GMU SWE 432 Fall 2017

https://reactjs.org/docs/forms.html

Controlled Components

* Single source of truth
 Whenever a control changes its value
* React is notified
o State is updated
 \Whenever state Is updated

e [f necessary, render function executes and
generates control with new value

GMU SWE 432 Fall 2017

LaToza

Reconciliation

<Card> <Card>
<p>Paragraph 1</p> <p>Paragraph 2</p>
<p>Paragraph 2</p> </Card>

</Card>

Process by which React updates the DOM with each
new render pass

Occurs based on order of components
« Second child of Card is destroyed.
* First child of Card has text mutated.

https://reactjs.org/docs/reconciliation.html

GMU SWE 432 Fall 2017

21

https://reactjs.org/docs/reconciliation.html

Reconciliation with Keys

* Problem: what if children are dynamically
generated and have their own state that must be
persisted across render passes?

 Don’t want children to be randomly transformed
iNto other child with different state

» Solution: give children identity using keys

e Children with keys will always keep identity, as
updates will reorder them or destroy them it gone

LaToza GMU SWE 432 Fall 2017

22

LaToza

function NumberList(props) {
const numbers = props.numbers;
const listItems = numbers.map((number) =>
<1li key={number.toString() }>
{number}
</1l1i>
);
return (
{listItems}
);
I3

const numbers = [1, 2, 3, 4, 5];
ReactDOM. render (

<NumberList numbers={numbers} />,
document.getElementById('root")

)

GMU SWE 432 Fall 2017

23

Todo in React

class TodoApp extends React.Component {
constructor(props) {
super(props);
this.state = { items: [], text: '' };

this.handleChange = this.handleChange.bind(this);
this.handleSubmit = this.handleSubmit.bind(this);

}
render() {
return (
<div>
<h3>TODO</h3>
<TodoList items={this.state.items} />
<form onSubmit={this.handleSubmit}>
<input
onChange={this.handleChange}
value={this.state.text}
/>
<button>
Add #{this.state.items.length + 1}
</button>
</form>
</div>
);
}

handleChange(e) {
this.setState({ text: e.target.value });

}

handleSubmit(e) {
e.preventDefault();
if (!this.state.text.length) {
return;
s

const newItem = {
text: this.state.text,
id: Date.now()

b

this.setState(prevState => ({
items: prevState.items.concat(newItem),
text: '

1))

¥
¥

class TodoList extends React.Component {
render() {
return (

{this.props.items.map(item => (
<li key={item.id}>{item.text}</1li>
)}

ReactDOM. render (<TodoApp />, mountNode);

GMU SWE 432 Fall 2017

https://jsfiddle.net/69z2wepo/57794/

