
JavaScript
SWE 432, Fall 2017

Design and Implementation of Software for the Web

LaToza GMU SWE 432 Fall 2017

Next two lectures: JavaScript

• Today
• Brief history of JavaScript/ECMAScript
• Overview of core syntax and language semantics
• Overview of key libraries
• In class activity working with JavaScript

• Next Tuesday
• Overview of approaches for organizing code with web

apps
• Constructs for organizing code: closures, class

2

LaToza GMU SWE 432 Fall 2017

JavaScript: Some History
• JavaScript: 1995 at Netscape (supposedly in only 10

days)
• No relation to Java (maybe a little syntax, that’s all)
• Naming was marketing ploy

• ECMAScript -> International standard for the
language

3

1995

Mocha/LiveScript/JavaScript 1.0

1997

ES1

1998

ES2

1999

ES3

2009

ES5

2015

ES6

2005

“AJAX”

2006

jQuery

LaToza GMU SWE 432 Fall 2017

Reference materials
• Not any “official”

documentation
• Most definitive

source for
JavaScript, DOM,
HTML, CSS:
Mozilla
Development
Network (MDN)

• StackOverflow
posts, blogs
often have good
examples

4

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array

LaToza GMU SWE 432 Fall 2017

Pastebins

• Code snippet hosted on the web with an in-browser
editor

• Used to share code and experiment with small code
snippets

• Examples: JSFiddle, JSBin, seeCode.run
• We’ll often use seeCode.run to try out examples

5

http://jsfiddle.net
http://jsbin.com/
http://seeCode.run
https://seecode.run/

LaToza GMU SWE 432 Fall 2017

Variables
• Variables are loosely typed

• String:
var strVar = 'Hello';

• Number:
var num = 10;

• Boolean:
var bool = true;

• Undefined:
var undefined;

• Null:
var nulled = null;

• Objects (includes arrays):
var intArray = [1,2,3];

• Symbols (named magic strings):
var sym = Symbol(‘Description of the symbol’);

• Functions (We’ll get back to this)
• Names start with letters, $ or _
• Case sensitive

6

LaToza GMU SWE 432 Fall 2017

Const
• Can define a variable that cannot be assigned

again using const

const numConst = 10; //numConst can’t be
changed

• For objects, properties may change, but object
identify may not.

7

LaToza GMU SWE 432 Fall 2017

More Variables
• Loose typing means that JS figures out the type based on

the value
 let x; //Type: Undefined

 x = 2; //Type: Number
 x = 'Hi'; //Type: String

• Variables defined with let (but not var) have block scope
• If defined in a function, can only be seen in that function
• If defined outside of a function, then global. Can also

make arbitrary blocks:

 {
 let a = 3;
 }
 //a is undefined

8

LaToza GMU SWE 432 Fall 2017

Loops and Control Structures
• if - pretty standard
 if (myVar >= 35) {
 //...
 } else if(myVar >= 25){
 //...
 } else {
 //...
 }

• Also get while, for, and break as you might expect
while(myVar > 30){
 //...
}

for(var i = 0; i < myVar; i++){

 //...
 if(someOtherVar == 0)

 break;
}

9

LaToza/Bell GMU SWE 432 Fall 2016 10

Operators

Operator Meaning Examples

== Equality age == 20
age == '20'

!= Inequality age != 21
> Greater than age > 19

>= Greater or Equal age >= 20

< Less than age < 21

<= Less or equal age <= 20

=== Strict equal age === 20

!== Strict Inequality age !== '20'

var age = 20;

Annoying

LaToza GMU SWE 432 Fall 2017

Functions

• At a high level, syntax should be familiar:
 function add(num1, num2) {
 return num1 + num2;
 }

• Calling syntax should be familiar too:
var num = add(4,6);

• Can also assign functions to variables!
 var magic = function(num1, num2){
 return num1+num2;
 }
 var myNum = magic(4,6);

• Why is this cool?

11

LaToza GMU SWE 432 Fall 2017

Default Values

12

 function add(num1=10, num2=45) {
 return num1 + num2;
 }

var r = add(2,4); //6

var r = add(); // 55
var r = add(40); //85

LaToza GMU SWE 432 Fall 2017

Rest Parameters

13

function add(num1, ... morenums) {
 var ret = num1;
 for(var i = 0; i < morenums.length; i++)
 ret += morenums[i];
 return ret;
}

add(40,10,20); //70

LaToza GMU SWE 432 Fall 2017

=> Arrow Functions
• Simple syntax to define short functions inline
• Several ways to use

14

var add = (a,b) => {
 return a+b;
}

var add = (a,b) => a+b;

If your arrow function only has one expression, JavaScript
will automatically add the word “return”

Parameters

LaToza GMU SWE 432 Fall 2017

Objects
• What are objects like in other languages? How are

they written and organized?
• Traditionally in JS, no classes
• Remember - JS is not really typed… if it doesn’t

care between a number and a string, why care
between two kinds of objects?

15

var profLaToza = {
 firstName: "Thomas",
 lastName: "LaToza",
 teaches: "SWE 432",
 office: "ENGR 44431”,
 fullName: function(){
 return this.firstName + " " + this.lastName;
 }
};

LaToza GMU SWE 432 Fall 2017

Working with Objects

16

var profJon = {
 firstName: "Thomas",
 lastName: "LaToza",
 teaches: "SWE 432",
 office: "ENGR 4431”,
 fullName: function(){
 return this.firstName + " " + this.lastName;
 }
};

Our Object

console.log(profLaToza.firstName); //Thomas
console.log(profLaToza[“firstName”]); //Thomas

Accessing Fields

console.log(profLaToza.fullName()); // Thomas LaToza

Calling Methods

console.log(profLaToza.fullName);//function...

LaToza GMU SWE 432 Fall 2017

Destructuring

• Convenient syntax for extracting property values
into a variable

• Works with objects and arrays

17

// What you write
let { firstName, lastName } = Zell

// ES6 does this automatically
let firstName = Zell.firstName
let lastName = Zell.lastName

[a, b] = [b, a]

LaToza GMU SWE 432 Fall 2017

JSON: JavaScript Object Notation

18

var profJon = {
 firstName: "Thomas",
 lastName: "LaToza",
 teaches: "SWE 432",
 office: "ENGR 4431",
 fullName: {
 firstName: “Thomas”,
 lastName: “LaToza”}
};

JSON Object

Open standard format for transmitting data objects.
No functions, only key / value pairs
Values may be other objects or arrays

var profJon = {
 firstName: "Thomas",
 lastName: "LaToza",
 teaches: "SWE 432",
 office: "ENGR 4431”,
 fullName: function(){
 return this.firstName + " " + this.lastName;
 }
};

Our Object

LaToza GMU SWE 432 Fall 2017

Interacting w/ JSON

• Important functions
• JSON.parse(jsonString)

• Takes a String in JSON format, creates an Object
• JSON.stringify(obj)

• Takes a Javascript object, creates a JSON String
• Useful for persistence, interacting with files,

debugging, etc.
• e.g., console.log(JSON.stringify(obj));

19

LaToza GMU SWE 432 Fall 2017

Arrays
• Syntax similar to C/Java/Ruby/Python etc.
• Because JS is loosely typed, can mix types of

elements in an array
• Arrays automatically grow/shrink in size to fit the

contents

20

var students = ["Alice", "Bob", "Carol"];
var faculty = [profLaToza];
var classMembers = students.concat(faculty);

Arrays are actually objects… and come with a bunch of “free”
functions

LaToza GMU SWE 432 Fall 2017

Some Array Functions

• Length
var numberOfStudents = students.length;

• Join
var classMembers = students.concat(faculty);

• Sort
var sortedStudents = students.sort();

• Reverse
var backwardsStudents = sortedStudents.reverse();

• Map
var capitalizedStudents = students.map(x =>  
 x.toUpperCase());
//["ALICE","BOB","CAROL"]

21

LaToza GMU SWE 432 Fall 2017

For Each
• JavaScript offers two constructs for looping over

arrays and objects
• For of (iterates over values):

for(var student of students)
{
 console.log(student);

} //Prints out all student names

• For in (iterates over keys):
for(var prop in profLaToza){
 console.log(prop + ": " + profLaToza[prop]);

}

22

Output:
firstName: Thomas
lastName: LaToza
teaches: SWE 432
office: ENGR 4431

LaToza GMU SWE 432 Fall 2017

Arrays vs Objects

• Arrays are Objects
• Can access elements of both using syntax

var val = array[idx];

• Indexes of arrays must be integers
• Don’t find out what happens when you make an

array and add an element with a non-integer key :)

23

LaToza GMU SWE 432 Fall 2017

String Functions

• Includes many of the same String processing functions
as Java

• Some examples
• var stringVal = ‘George Mason University’;
• stringVal.endsWith(‘University’) // returns true
• stringVal.match(….) // matches a regular expression
• stringVal.split(‘ ‘) // returns three separate words

• https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/
Global_Objects/String

24

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/String
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/String

LaToza GMU SWE 432 Fall 2017

Template Literals

• Enable embedding expressions inside strings
• Denoted by a back tick grave accent `, not a

single quote

25

var	a	=	5;	
var	b	=	10;	
console.log(`Fifteen	is	${a	+	b}	and	
not	${2	*	a	+	b}.`);	
//	"Fifteen	is	15	and	not	20."	

LaToza GMU SWE 432 Fall 2017

Set Collection

26

var	mySet	=	new	Set();	

mySet.add(1);	//	Set	{	1	}	
mySet.add(5);	//	Set	{	1,	5	}	
mySet.add(5);	//	Set	{	1,	5	}	
mySet.add('some	text');	//	Set	{	1,	5,	'some	text'	}	
var	o	=	{a:	1,	b:	2};	
mySet.add(o);	

mySet.add({a:	1,	b:	2});	//	o	is	referencing	a	different	object	so	this	is	okay	

mySet.has(1);	//	true	
mySet.has(3);	//	false,	3	has	not	been	added	to	the	set	
mySet.has(5);														//	true	
mySet.has(Math.sqrt(25));		//	true	
mySet.has('Some	Text'.toLowerCase());	//	true	
mySet.has(o);	//	true	

mySet.size;	//	5	

mySet.delete(5);	//	removes	5	from	the	set	
mySet.has(5);				//	false,	5	has	been	removed	

mySet.size;	//	4,	we	just	removed	one	value	
console.log(mySet);//	Set	{1,	"some	text",	Object	{a:	1,	b:	2},	Object	{a:	1,	b:	2}}	

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Set

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Set

LaToza GMU SWE 432 Fall 2017

Map Collection

27

var	myMap	=	new	Map();	

var	keyString	=	'a	string',	
				keyObj	=	{},	
				keyFunc	=	function()	{};	

//	setting	the	values	
myMap.set(keyString,	"value	associated	with	'a	string'");	
myMap.set(keyObj,	'value	associated	with	keyObj');	
myMap.set(keyFunc,	'value	associated	with	keyFunc');	

myMap.size;	//	3	

//	getting	the	values	
myMap.get(keyString);				//	"value	associated	with	'a	string'"	
myMap.get(keyObj);							//	"value	associated	with	keyObj"	
myMap.get(keyFunc);						//	"value	associated	with	keyFunc"	

myMap.get('a	string');			//	"value	associated	with	'a	string'"	
																									//	because	keyString	===	'a	string'	
myMap.get({});											//	undefined,	because	keyObj	!==	{}	
myMap.get(function()	{})	//	undefined,	because	keyFunc	!==	function	()	{}	

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Map

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Map

LaToza GMU SWE 432 Fall 2017

Demo

• Primitives: equality
• Objects: literals, JSON, stringify / parse,
• Arrays: literals, accessing, length, sort, push, pop,

map
• Strings: template literals
• Collections: Map, Set
• Functions: first class, anonymous, arrow

28

Exercise

https://jsfiddle.net/4sgz8dn3/

https://jsfiddle.net/4sgz8dn3/
http://www.apple.com

LaToza GMU SWE 432 Fall 2017

Next time

• Organizing code in web apps

• Required Readings:
• Closures: https://medium.freecodecamp.org/lets-

learn-javascript-closures-66feb44f6a44
• Classes: https://developer.mozilla.org/en-US/docs/

Web/JavaScript/Reference/Classes

30

https://medium.freecodecamp.org/lets-learn-javascript-closures-66feb44f6a44
https://medium.freecodecamp.org/lets-learn-javascript-closures-66feb44f6a44
https://medium.freecodecamp.org/lets-learn-javascript-closures-66feb44f6a44
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Classes
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Classes
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Classes

