RSIT

JavaScript

SWE 432, Fall 2017
Design and Implementation of Software for the Web

Next two lectures: JavaScript

e Joday
e Brief history of JavaScript/ECMAScript
* Qverview of core syntax and language semantics
 Qverview of key libraries
* |n class activity working with JavaScript
o Next Tuesday

* Qverview of approaches for organizing code with web
apps
o (Constructs for organizing code: closures, class

LaToza GMU SWE 432 Fall 2017

JavaScript: Some History

o JavaScript: 1995 at Netscape (supposedly in only 10
days)

* No relation to Java (maybe a little syntax, that's all)
 Naming was marketing ploy

« ECMAScript -> International standard for the
language

19951997 1998 1999 2005 2006 2009 2015

ES1 ES2 ES3 “AJAX"|Query ES5 ES6
I\/Iocha/L|veSCr|pt/JavaScnpt 1.0

GMU SWE 432 Fall 2017

LaToza

Reference materials

Not any “ofticial” LD o
documentation

< Standard built-in objects

Most definitive

source for
JavaScript, DOM, e
HTML, CSS:

Array.length

|]
I\/l OZ | | | a Array.prototype

Array.prototype[@@unscopables]

Development
Network (MDN) oo

StackOverflow

Array.prototype.copyWithin()

posts, blogs
often have good

Array

Technologies ¥ References & Guides ~ Feedback ~ Q

R Languages o

In This Article 4

The JavaScript Array object is a global object that is used in the construction of arrays; which are high-level, list-like
objects.

Create an Array

var fruits ‘Apple', 'Banana’

console. log(fruits.length
/] 2

Access (index into) an Array item

var first fruits/o
// Apple

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array

examples

GMU SWE 432 Fall 2017

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array

Pastebins

()) History (? Share ‘l Users P8 Chat @ Help & Contact Us © Abou

JS HTML CSS Output Debug

1l var a = 5;
2 var b = 10; Hello,

3 console.log(Fifteen is ${a + b} and
4 not ${2 * a + b}.);

S // "Fifteen is 15 and not 20."

6 |

7

‘"Fifteen 1s 15 and not 20."

* Code snippet hosted on the web with an in-browser
editor

 Used to share code and experiment with small code
snippets

 Examples: JSFiddle, JSBin, seeCode.run

* We'll often use seeCode.run to try out examples

LaToza GMU SWE 432 Fall 2017

http://jsfiddle.net
http://jsbin.com/
http://seeCode.run
https://seecode.run/

Variables

e Variables are loosely typed
e String:
var strVar = 'Hello';
e Number:
var num = 10;

e Boolean:
var bool = true;

 Undefined:

var undefined;

e Null;
var nulled = null;

* Objects (includes arrays):
var intArray = [1,2,3];

« Symbols (named magic strings):
var sym = Symbol(‘Description of the symbol’);
« Functions (We'll get back to this)

« Names start with letters, $ or _
e (Case sensitive

LaToza GMU SWE 432 Fall 2017

LaToza

Const

» Can define a variable that cannot be assigned
again using const

const numConst = 10; //numConst can’t be
changed

 [or objects, properties may change, but object
identify may not.

GMU SWE 432 Fall 2017

LaToza

More Variables

Loose typing means that JS figures out the type based on

the value
let x; //Type: Undefined
X = 2; //Type: Number

x = 'Hi'; //Type: String

Variables defined with let (but not var) have block scope
e |f defined in a function, can only be seen in that function

e |f defined outside of a function, then global. Can also
make arbitrary blocks:

{
}

//a is undefined

let a = 3;

GMU SWE 432 Fall 2017

Loops and Control Structures

if - pretty standard

if (myVar >= 35) {

[/,
} else if(myVar >= 25){

7y
} else {

[/
}

Also get while, for, and break as you might expect
while(myVar > 30){

[/ e
I
for(var i = 0; i < myVar; i++){
[/
if(someOtherVar == 0)
break;

LaToza GMU SWE 432 Fall 2017

Operators

var age = 20;
Operator Meaning Examples
Equality
Inequality age = 21 I
Greater than age > 19

Greater or Equal age >= 20

Less than age < 21
Less or equal age <= 20
Strict equal age === 20

Strict Inequality age !== "20°

LaToza/Bell GMU SWE 432 Fall 2016 10

LaToza

Functions

At a high level, syntax should be tamiliar:

function add(numl, num2) {
return numl + num2;
s

Calling syntax should be tamiliar too:
var num = add(4,6);

Can also assign functions to variables!

var magic = function(numl, num2){
return numl+num?2;
s

var myNum = magic(4,6);

Why Is this cool?

GMU SWE 432 Fall 2017

11

LaToza

Default Values

function add€uml=10, num2=45)2{

return numl + num

}
var r = add(); // 55
var r = add(40); //85
var r = add(2,4); //6

GMU SWE 432 Fall 2017

12

LaToza

Rest Parameters

function add(numl€_ ... morenums)

var ret = numl;

for(var 1 = 0; 1 < morenums.length; i++)
ret += morenums[i];

return ret;

add(40,10,20); //70

GMU SWE 432 Fall 2017

13

=> Arrow Functions

e Simple syntax to define short functions inline

 Several ways to use Parameters

/

var add = (a,b) => {
return a+b:
+
var add = (a,b) => a+b;

If your arrow function only has one expression, JavaScript
will automatically add the word “return”

LaToza GMU SWE 432 Fall 2017 14

Objects

 \What are objects like in other languages” How are
they written and organized”

e Traditionally in JS, no classes

« Remember - JS is not really typed... if it doesn't
care between a number and a string, why care
between two kinds of objects”

var profLaToza = {
firstName: "Thomas",
lastName: "LaToza",
teaches: "SWE 432",
office: "ENGR 44431",
fullName: function(){
return this.firstName + " " + this. lastName;
I3

b

LaToza GMU SWE 432 Fall 2017 15

Working with Objects

var proflon = {
firstName: "Thomas",
lastName: '"LaToza",
teaches: "SWE 432",
office: "ENGR 4431",
fullName: function(){
return this.firstName + " " + this.lastName;
¥

};

L — R

Our Object

console. log(profLaToza.firstName); //Thomas
console.log(profLaTozal[“firstName”]); //Thomas

Accessing Fields

console.log(profLaToza.fullName()); // Thomas LaToza

Calling Methods

console.log(nrofl aToza. fullName) ;//function. .

GMU SWE 432 Fall 2017 16

LaToza

LaToza

Destructuring

// What you write
let { firstName, lastName } = Zell

// ES6 does this automatically
let firstName = Zell.firstName
let lastName = Zell. lastName

[a, bl = [b, al
* Convenient syntax for extracting property values

INto a variable

* Works with objects and arrays

GMU SWE 432 Fall 2017

17

LaToza

JSON: JavaScript Object Notation

Open standard format for transmitting data objects.
No functions, only key / value pairs

Values may be other objects or arrays

var profJon = { var profJon = {
firstName: "Thomas", firstName: "Thomas",
lastName: '"LaToza", lastName: '"LaToza",
teaches: "SWE 432", teaches: "SWE 432",
office: "ENGR 4431", office: "ENGR 4431",
fullName: function(){ fullName: {
return this.firstName + " " + this.lastName; firstName: “Thomas”,
I lastName: “LaToza”}
b b
Our Object JSON Object
GMU SWE 432 Fall 2017 18

LaToza

Interacting w/ JSON

Important functions

JSON.parse(jsonString)

o Takes a String in JSON format, creates an Object
JSON.stringify(obj)

» Takes a Javascript object, creates a JSON String

Useftul for persistence, interacting with files,
debugging, etc.

* ¢e.g., console.log(JSON.stringify(obj)),

GMU SWE 432 Fall 2017

19

Arrays

« Syntax similar to C/Java/Ruby/Python etc.

 Because JS is loosely typed, can mix types of
elements in an array

* Arrays automatically grow/shrink in size to fit the
contents

var students = ["Alice", "Bob", "Carol"];
var faculty = [profLaTozal;
var classMembers = students.concat(faculty);

Arrays are actually objects... and come with a bunch of “free”
functions

LaToza GMU SWE 432 Fall 2017 20

LaToza

Some Array Functions

Length

var numberOfStudents = students. length;
Join

var classMembers = students.concat(faculty);
Sort

var sortedStudents = students.sort():

Reverse

var backwardsStudents = sortedStudents.reverse();

Map
var capitalizedStudents = students.map(x =>

Xx.toUpperCase());
//[“ALICE","BOB","CAROL"]

GMU SWE 432 Fall 2017

21

LaToza

For Each

« JavaScript offers two constructs for looping over
arrays and objects

* [or of (iterates over values):
for(var student of students)
{
console. log(student);
} //Prints out all student names

* [Forin (iterates over keys):
for(var prop in profLaToza){
console.log(prop + ": " + profLaTozalpropl);
I3

Output:
firstName: Thomas
lastName: Laloza
teaches: SWE 432
office: ENGR 4431

T—

GMU SWE 432 Fall 2017

22

LaToza

Arrays vs Objects

Arrays are Objects

Can access elements of both using syntax
var val = array[idx];

Indexes of arrays must be integers

Don't find out what happens when you make an
array and add an element with a non-integer key :)

GMU SWE 432 Fall 2017

23

LaToza

String Functions

* |Includes many of the same String processing functions
as Java

e Some examples
* var stringVal = ‘George Mason University’;
* stringVal.endsWith(‘University’) // returns true
e stringVal.match(....) // matches a regular expression

* stringVal.split(* *) // returns three separate words

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/
Global Objects/String

GMU SWE 432 Fall 2017

24

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/String
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/String

Template Literals

var a = 5
var b = 10

console.log(Fifteen 1s a + b} and
not 2 *a+ bj.

// "Fifteen 1s 15 and not 20."

 Enable embedding expressions inside strings

 Denoted by a back tick grave accent ', not a
single quote

GMU SWE 432 Fall 2017

Set Collection

var mySet = new Set();

mySet

mySet.
mySet.
mySet.

var o

mySet.
mySet.

mySet.
mySet.
mySet.
mySet.
.has('Some Text'.tolLowerCase()); // true

mySet

mySet.

mySet.

mySet

mySet

.add(1); // Set { 1}

add(5); // Set { 1, 5 }
add(5); // Set {1, 5}
add('some text'); // Set { 1, 5, 'some text' }
= {a: 1, b: 2};

add(o);

5
5

add({a: 1, b: 2}); // o is referencing a different object so this is okay

has(1); // true

has(3); // false, 3 has not been added to the set
has(5); // true

has(Math.sqrt(25)); // true

has(o); // true

size; // 5

.delete(5); // removes 5 from the set
mySet.

has(5); // false, 5 has been removed

size; // 4, we just removed one value

console.log(mySet);// Set {1, "some text", Object {a: 1, b: 2}, Object {a: 1, b: 2}}

LaToza

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Set

GMU SWE 432 Fall 2017

26

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Set

Map

var myMap = new Map();

var keyString = 'a string’,

keyObj = {},
keyFunc = function() {};

// setting the values
myMap.set(keyString, "value

Collection

associated with 'a string'");

myMap.set(keyObj, 'value associated with keyObj');
myMap.set(keyFunc, 'value associated with keyFunc');

myMap.size; // 3

// getting the values
myMap.get(keyString) ; //

myMap.get (keyObj); //
myMap.get (keyFunc) ; //
myMap.get('a string'); //

//
myMap.get({}); //

myMap.get(function() {}) //

"value associated with 'a string'"
"value associated with keyObj"
"value associated with keyFunc”

"value associated with 'a string'"

because keyString === 'a string’
undefined, because keyObj !== {}
undefined, because keyFunc !== function ()

hitps://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Map

LaToza

GMU SWE 432 Fall 2017

1}

27

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Map

LaToza

Demo

Primitives: equality
Objects: literals, JSON, stringity / parse,

Arrays: literals, accessing, length, sort, push, pop,
map

Strings: template literals
Collections: Map, Set

Functions: first class, anonymous, arrow

GMU SWE 432 Fall 2017

28

Exerclse

hitps://|stiddle.net/4sgz8dn3/

https://jsfiddle.net/4sgz8dn3/
http://www.apple.com

LaToza

Next time

* Organizing code in web apps

 Required Readings:

» Closures: https://medium.freecodecamp.org/lets-
learn-javascript-closures-6c6feb44f6a44

» Classes: https://developer.mozilla.org/en-US/docs/
Web/JavaScript/Reference/Classes

GMU SWE 432 Fall 2017

30

https://medium.freecodecamp.org/lets-learn-javascript-closures-66feb44f6a44
https://medium.freecodecamp.org/lets-learn-javascript-closures-66feb44f6a44
https://medium.freecodecamp.org/lets-learn-javascript-closures-66feb44f6a44
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Classes
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Classes
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Classes

