Organizing Code in
Web Apps

SWE 432, Fall 2017
Design and Implementation of Software for the Web

IIIIIIIIII



LaToza

Today

« HW1 assigned today. Due in 1 week

* |ecture: Organizing code in web apps
* Some basics on how and why to organize code
e Closures
 Classes
 Modules

GMU SWE 432 Fall 2017



JavaScript Files

 (Can create a plain text
file with .Jjs extension
that contains
JavaScript code.

 (Can contain whatever
expressions and code
you'd like.

e We'll look at how to run
these next lecture.

 For now, use a
pastebin.

LaToza GMU SWE 432 F¢

C | @ file:///Users/tlatoza/Downloads/classes/constructors.js

// The MIT License (MIT)

// Copyright (c) 2016 Training 4 Developers, Inc.

/7

// Permission is hereby granted, free of charge, to any person obtaining a copy of thi
deal in the Software without restriction, including without limitation the rights to u
copies of the Software, and to permit persons to whom the Software is furnished to do
//

// The above copyright notice and this permission notice shall be included in all copi
/7

// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINCEMENT. IN NO EVENT SHALL THE AUTHORS OF
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF (C
SOFTWARE.

// Instructions: to run the following code demonstration,
// install Node.js 4 (https://nodejs.org/en/) or later,
// make sure node.exe is in your path, then execute the
// file from the terminal with the following command:

//

// > node constructors.js

"use strict";

// ES5 Constructor Function
// function Person(firstName, lastName) {

/7 this.firstName = firstName;
/7 this.lastName = lastName;
/71 }

// the name of the ES5 constructor
// function is name of the ES6 class
class Person {

// observe there is no "function" keyword
// also, the word "constructor" is used, not "Person'
constructor(firstName, lastName) {

// this represents the new object being
// created and initialized
this.firstName = firstName;
this.lastName = lastName;

}

var person = new Person("Bob", "Smith");

// outputs "Bob"
console.log(person.firstName);

// outputs "Smith"
console. log(person.lastName);



Combining files

* What happens when there are two or more places
where JavaScript code is declared?

 Java: each has it's own scope (e.g., Class)
e JavaScript: code is concatenated together

e (Can reference variables declared in a different
file

e Sounds great! So convenient...

e Butis there a downside here?

LaToza GMU SWE 432 Fall 2017



Spaghetti Code

Brian Foote and Joe Yoder
LaToza/Bell GMU SWE 432 Fall 2016



eqCtl.innerHTML = val;
Iy

function clearNumbers() {
lastNumber = null;
equalsPressed = operatorSet = false;
setVal('e');
setEquation('"');

}

function setOperator(newOperator) {
if (newOperator == '="') {
equalsPressed = true;
calculate();
setEquation('"');
return;

}

if ('equalsPressed) calculate();

equalsPressed = false;

operator = newOperator;

operatorSet = true;

lastNumber = parseFloat(currNumberCtl.innerHTML);

var eqText = (eqCtl.innerHTML == '') ?
lastNumber + ' ' + operator + ' ' :
eqCtl.innerHTML + ' ' + operator + ' ';

setEquation(eqText);
+

function numberClick(e) {
var button = (e.target) ? e.target : e.srcElement;
if (operatorSet == true || currNumberCtl.innerHTML == 'Q"') {
setVal('"');
operatorSet = false;
}
setVal(currNumberCtl.innerHTML + button.innerHTML);
setEquation(eqCtl.innerHTML + button.innerHTML);
}

function calculate() {
if ('operator || lastNumber == null) return;
var currNumber = parseFloat(currNumberCtl.innerHTML),
newVal = 0;
switch (operator) {
case '+':
newVal = add(lastNumber, currNumber);

break;
LaToza/Bell case '—-': GSMU SWE 432 Fall 2016



...aka big ball of mud aka shanty town
;ode

-

SRy . Y -
Brian Foote and Joe Yoder

LaToza/Bell GMU SWE 432 Fall 2016



LaToza

ons of

Bad Code "Smells”

No/uni

A

not-very related functions in the same file

formative comments
ard to understand

GMU SWE 432 Fall 2017



Design Goals

e Within a component
 Cohesive
« Complete
e Convenient
o Clear
» (Consistent
 Between components
 Low coupling

GMU SWE 432 Fall 2017



Cohesion and Coupling

 (Cohesion is a property or characteristic of an
individual unit

 Coupling is a property of a collection of units
* High cohesion GOOD, high coupling BAD
e Design for change:

 Reduce interdependency (coupling): You don't
want a change in one unit to ripple throughout
your system

* Group functionality (cohesion): Easier to find
things, intuitive metaphor aids understanding

LaToza GMU SWE 432 Fall 2017 10



LaToza

Design for Reuse

o Why?
 Don't duplicate existing functionality
* Avoid repeated effort
o How?"

 Make it easy to extract a single component:
* Low coupling between components
* Have high cohesion witt

GMU SWE 432 Fall 20 hate




Design for Change

o Why?

 \Want to be able to add new features
 Want to be able to easily maintain existing

software

e Adapt to new environments

e Support new configurations

e How?
 Low coupling - prevents u
 High cohesion - easier to-

NiNnte

iNnd t

LaToza GMU SWE 432 Fall 2017

nded side effects_

= 4

g f: ‘ k ! .
LE B - —]

Wgics

-
‘s

12



Closures

* (Closures are expressions that work with variables
IN a specific context

 (Closures contain a function, and its needed state

e Closure is that function and a stack frame that is
allocated when a function starts executing and
not freed after the function returns

LaToza GMU SWE 432 Fall 2017 13



LaToza

Closures & Stack Frames

 What is a stack frame?
* Variables created by function in its execution
 Maintained by environment executing code

function a() {
var Xx =5, z = 3;

b(x);
} (y)
function b(y . .
console.log(y); a:  Xi O
/ z: 3

al); g
Stack frame

Function called: stack frame created

Contents of memory:

14



LaToza

Closures & Stack Frames

 What is a stack frame?
* Variables created by function in its execution
 Maintained by environment executing code

function a() {
var Xx =5, z = 3;

b(x); b V!

+
function b(y) ’T”’//”//”//*

console. log(y);
I3
a();

5
a: 5
3

N X

Stack frame
Function called: new stack frame created

Contents of memory:

15



LaToza

Closures & Stack Frames

 What is a stack frame?
* Variables created by function in its execution
 Maintained by environment executing code

function a() { Contents of memory:

var Xx =5, z = 3;

b(x);
} .
function b(y) <

console. log(y);
I3

a();

d. X.
Z.

5
3

Stack frame

Function returned: stack frame popped .




Closures

* Closures are expressions that work with variables in a specific context
* (Closures contain a function, and its needed state

e Closure is a stack frame that is allocated when a function starts
executing and not freed after the function returns

e That state just refers to that state by name (sees updates)

var | X 1;

func™Nion\f() {
vaRy|= 2;
retyrpn function() {

console. log(x + y).

This function attaches itself to x and y
so that it can continue to access them.

I

y++,
¥; It “closes up”’ those references
}
var g = f();
g(); // 1+2 is 3

g(); // 143 is 4

LaToza GMU SWE 432 Fall 2017



Closures

retyrp function() {
console.log(x + y);

y++;
¥
}
var g = f(); _
g(); // 142 1is 3 Global
g(); // 1+3 is 4

varx | 1

/

vary | 2 | Closure

/

function

LaToza/Bell GMU SWE 432 Fall 2016



Closures

retyrp function() {
console.log(x + y);

y++,
¥
}
var g = f();
g(); // 1+2 1s 3_
g(); // 1+3 1is 4 Global

varx | 1

/

vary | 3 | Closure

/

function

LaToza/Bell GMU SWE 432 Fall 2016



Closures

retyrp function() {
console.log(x + y);

y++;
Fs
s
var g = T();
g(); // 1+2 is 3 Global

g(), // 1+3 1is 4ﬁ
varx | 1

vary | 4 | Closure

/

/

function

LaToza/Bell GMU SWE 432 Fall 2016



LaToza

Modules

e We can do it with closures!
e Define a function

e \ariables/functions defined in that function are
‘private”

* Return an object - every member of that object is
public!

e Remember: Closures have access to the outer
function’s variables even after it returns

GMU SWE 432 Fall 2017

21



Modules with Closures

var facultyAPI = (function(){

var faculty = [{name:"Prof Bell", section: 2}, {name:"Prof
LaToza", section:1}];

return {
getFaculty : function(i)

{
return faculty[i].name + " ("+facultyl[i].section +")";

}

F)();

console. log(facultyAPI.getFaculty(0));

This works because inner functions have visibility to all
variables of outer functions!

- =

LaToza/Bell GMU SWE 432 Fall 2016 22




LaToza/Bell

Closures gone awry

var funcs = [
for (var| i
[

l;
= 0;\1 < 5; i++) {
i] =| function() { return 1i;| };

funcs
I3
What is the output of funcs[0]()?
>5
Why?

Closures retain a pointer to their needed state!

GMU SWE 432 Fall 2016 23



Closures under control

Solution: IIFE - Immediately-Invoked Function Expression
function makeFunction(n)]

{
return function(){ [ceturn n} };
¥
for (var i = 03 i < 5; i++) {
funcs[i] = makeFunction(i):
b

Why does it work?

Each time the anonymous function is called, it will create a new

variable n, rather than reusing the same variable i

SIOPECUL SY TG e
var funcs = [];
for (var 1 = 0; i < 5; i++) {
funcs[i] = (functlon(n) {
return function() { [return nj; }
F)(i);
s

LaToza/Bell GMU SWE 432 Fall 2016 24




Exercise: Closures

var facultyAPI = (function(){
var faculty = [{name:"Prof LaToza", section: 1},
{name:"Prof Bell”, section:2}];

return {
getFaculty : function(i)

{

return faculty[i]l.name + " ("+faculty[i].section +")";

}

b
F)();

console. log(facultyAPI.getFaculty(0));

https://jsfiddle.net/hkca5vpa/

Here's our simple closure. Add a new function to create a new
faculty, then call getFaculty to view their formatted name.

LaToza/Bell GMU SWE 432 Fall 2016 25



https://jsfiddle.net/hkcq5vpa/

Classes

 ES6 introduces the class keyword

* Mainly just syntax

function Faculty(first, last, teaches, office)

{
this.firstName = first;
this. lastName = last;
Old this.teaches = teaches;

this.office = office;
this.fullName = function(){

return this.firstName + " " + this. lastName;
}

¥
var profLaToza = new Faculty("Thomas", '"LaToza", "SWE432", "ENGR 4431");

class Faculty A{
constructor(first, last, teaches, office)
{
this.firstName = first;
pi this.lastName = last;
W this.teaches = teaches;
€ this.office = office;

}
fullname() {

return this.firstName + " " + this. lastName;
}

}

var profJon = new FaculRy(“Thomas", "LaToza", "SWE432", "ENGR 4431");
LaToza GMU SWE 432 Fall 2017



“Member” variables

 Can'’t declare member variables explicitly like in
Java.

* |nstead, create them implicitly by referencing “this”

class Faculty A
constructor(first, last, teaches, office)
{
this.firstName = first;
this. lastName = last;
this.teaches = teaches;
this.office = office;

¥
fullname() {

return this.firstName + " " + this. lastName;
¥

¥
var proflon = new Faculty("Thomas", "LaToza", "SWE432", "ENGR 4431");

LaToza GMU SWE 432 Fall 2017



Classes - Extends

extends allows an object created by a class to be linked to
a “super” class. Can (but dont have to) add parent
constructor.

class Faculty {
constructor(first, last, teaches, office)

{
this.firstName = first;
this.lastName = last;
this.teaches = teaches;
this.office = office;

}

fullname() {
return this.firstName +
}

+ this. lastName;

}

class CoolFaculty extends Faculty A{
fullname() {
return "The really cool " + super.fullname();
+

LaToza GMU SWE 432 Fall 2017

28



LaToza

Classes - static

static declarations in a class work like in Java

class Faculty {
constructor(first, last, teaches, office)

{

this.firstName = first;

this. lastName = last;

this.teaches = teaches:

this.office = office:
¥
fullname() {

return this.firstName + " " + this.lastName;
¥
static formatFacultyName(f) {

return f.firstName + " " + f.lastName;
¥

GMU SWE 432 Fall 2017

29



Demo: Classes

22222222222222222

30



Modules

With ESGE, there is finally language support for
modules

Module must be defined in its own JS file
Modules export declarations

* Publicly exposes functions as part of module
iINntertface

Code imports modules (and optionally only parts
of them)

* Specify module by path to the file

GMU SWE 432 Fall 2017



Modules (ES6) - Export Syntax

var faculty = [{name:"Prof Bell", section: 2}, {name:"Prof
| ATnza'", section:1}];

export function getFaculty(i) {  Label each declaration with
\ Ay “export”

export var someVar = [1,2,3];

var faculty = [{name:"Prof Bell", section: 2}, {name:"Prof
LaToza", section:1}];

var someVar = [1,2,3];
function getFaculty(i) {
/] s Or name all of the exports at

L, once
export {getFaculty, someVar}; — S

export {getFaculty as aliasForFunction, someVar};

| ———

Can rename exports too

| ——— S

export default function getFaculty(i){...

Default export

LaToza GMU SWE 432 Fall 32



LaToza

Modules (ES6) - Import Syntax

e Import specitic exports, binding them to the same

name

import { getFaculty, someVar } from "myModule";
getFaculty()...

* |Import specitic exports, binding them to a new name

import { getFaculty as aliasForFaculty } from
""myModu le";
aliasForFaculty()...

* |mport default export, binding to specified name
import theThing from "myModule",
theThing()... —> calls getFaculty()

* |mport all exports, binding to specitied name

import * as facModule from "myModule";
facModule.getFaculty()...

GMU SWE 432 Fall 2017

33



LaToza

Classes Exercise

e Build a Course Class

« Should have following member variables:
o students (Array of objects with firstname and lasthname)
e instructor (object with firstname, lastname, office #)

 meeting times (Array of objects with string of meeting
time)

e classroom (String)
e Public functions:
o (Constructor
 Add a student to the class
(et an Array of meeting times for a course

GMU SWE 432 Fall 2017

34


https://jsfiddle.net/hkcq5vpa/3/

Readings for next time

 |ntro to Git: https://try.github.io

* |ntro to Node Package Manager (NPM): https://
nodesource.com/blog/an-absolute-beginners-
guide-to-using-npm/

LaToza GMU SWE 432 Fall 2017 35


https://try.github.io
https://nodesource.com/blog/an-absolute-beginners-guide-to-using-npm/
https://nodesource.com/blog/an-absolute-beginners-guide-to-using-npm/
https://nodesource.com/blog/an-absolute-beginners-guide-to-using-npm/
https://nodesource.com/blog/an-absolute-beginners-guide-to-using-npm/

