
Organizing Code in
Web Apps

SWE 432, Fall 2017
Design and Implementation of Software for the Web

LaToza GMU SWE 432 Fall 2017

Today

• HW1 assigned today. Due in 1 week

• Lecture: Organizing code in web apps
• Some basics on how and why to organize code
• Closures
• Classes
• Modules

2

LaToza GMU SWE 432 Fall 2017

JavaScript Files

• Can create a plain text
file with .js extension
that contains
JavaScript code.

• Can contain whatever
expressions and code
you’d like.

• We’ll look at how to run
these next lecture.

• For now, use a
pastebin.

3

LaToza GMU SWE 432 Fall 2017

Combining files

• What happens when there are two or more places
where JavaScript code is declared?

• Java: each has it's own scope (e.g., Class)
• JavaScript: code is concatenated together

• Can reference variables declared in a different
file

• Sounds great! So convenient…
• But is there a downside here?

4

LaToza/Bell GMU SWE 432 Fall 2016 5

Spaghetti Code

Brian Foote and Joe Yoder

LaToza/Bell GMU SWE 432 Fall 2016 6

function setEquation(val) {
 eqCtl.innerHTML = val;
}

function clearNumbers() {
 lastNumber = null;
 equalsPressed = operatorSet = false;
 setVal('0');
 setEquation('');
}

function setOperator(newOperator) {
 if (newOperator == '=') {
 equalsPressed = true;
 calculate();
 setEquation('');
 return;
 }

 if (!equalsPressed) calculate();
 equalsPressed = false;
 operator = newOperator;
 operatorSet = true;
 lastNumber = parseFloat(currNumberCtl.innerHTML);
 var eqText = (eqCtl.innerHTML == '') ?
 lastNumber + ' ' + operator + ' ' :
 eqCtl.innerHTML + ' ' + operator + ' ';
 setEquation(eqText);
}

function numberClick(e) {
 var button = (e.target) ? e.target : e.srcElement;
 if (operatorSet == true || currNumberCtl.innerHTML == '0') {
 setVal('');
 operatorSet = false;
 }
 setVal(currNumberCtl.innerHTML + button.innerHTML);
 setEquation(eqCtl.innerHTML + button.innerHTML);
}

function calculate() {
 if (!operator || lastNumber == null) return;
 var currNumber = parseFloat(currNumberCtl.innerHTML),
 newVal = 0;
 switch (operator) {
 case '+':
 newVal = add(lastNumber, currNumber);
 break;
 case '-':
 newVal = subtract(lastNumber, currNumber);

LaToza/Bell GMU SWE 432 Fall 2016 7

…aka big ball of mud aka shanty town
code

Brian Foote and Joe Yoder

LaToza GMU SWE 432 Fall 2017

Bad Code “Smells”

• Tons of not-very related functions in the same file
• No/uninformative comments
• Hard to understand

8

LaToza GMU SWE 432 Fall 2017

Design Goals
• Within a component

• Cohesive
• Complete
• Convenient
• Clear
• Consistent

• Between components
• Low coupling

9

LaToza GMU SWE 432 Fall 2017

Cohesion and Coupling
• Cohesion is a property or characteristic of an

individual unit
• Coupling is a property of a collection of units
• High cohesion GOOD, high coupling BAD
• Design for change:

• Reduce interdependency (coupling): You don't
want a change in one unit to ripple throughout
your system

• Group functionality (cohesion): Easier to find
things, intuitive metaphor aids understanding

10

LaToza GMU SWE 432 Fall 2017

Design for Reuse
• Why?

• Don’t duplicate existing functionality
• Avoid repeated effort

• How?
• Make it easy to extract a single component:

• Low coupling between components
• Have high cohesion within a component

11

LaToza GMU SWE 432 Fall 2017

Design for Change
• Why?

• Want to be able to add new features
• Want to be able to easily maintain existing

software
• Adapt to new environments
• Support new configurations

• How?
• Low coupling - prevents unintended side effects
• High cohesion - easier to find things

12

LaToza GMU SWE 432 Fall 2017

Closures

• Closures are expressions that work with variables
in a specific context

• Closures contain a function, and its needed state
• Closure is that function and a stack frame that is

allocated when a function starts executing and
not freed after the function returns

13

LaToza GMU SWE 432 Fall 2017

Closures & Stack Frames
• What is a stack frame?

• Variables created by function in its execution
• Maintained by environment executing code

14

function a() {
 var x = 5, z = 3;
 b(x);
}
function b(y) {
 console.log(y);
}
a();

a: x: 5
z: 3

Contents of memory:

Stack frame
Function called: stack frame created

LaToza GMU SWE 432 Fall 2017

Closures & Stack Frames
• What is a stack frame?

• Variables created by function in its execution
• Maintained by environment executing code

15

function a() {
 var x = 5, z = 3;
 b(x);
}
function b(y) {
 console.log(y);
}
a();

a:

b:

x: 5

y: 5

z: 3

Contents of memory:

Stack frame
Function called: new stack frame created

LaToza GMU SWE 432 Fall 2017

Closures & Stack Frames
• What is a stack frame?

• Variables created by function in its execution
• Maintained by environment executing code

16

function a() {
 var x = 5, z = 3;
 b(x);
}
function b(y) {
 console.log(y);
}
a();

a: x: 5
z: 3

Contents of memory:

Stack frame
Function returned: stack frame popped

LaToza GMU SWE 432 Fall 2017

Closures
• Closures are expressions that work with variables in a specific context
• Closures contain a function, and its needed state

• Closure is a stack frame that is allocated when a function starts
executing and not freed after the function returns

• That state just refers to that state by name (sees updates)

17

var x = 1;
function f() {
 var y = 2;
 return function() {

 console.log(x + y);
 y++;
 };
}
var g = f();
g(); // 1+2 is 3
g(); // 1+3 is 4

This function attaches itself to x and y
so that it can continue to access them.

It “closes up” those references

LaToza/Bell GMU SWE 432 Fall 2016

var x = 1;
function f() {
 var y = 2;
 return function() {

 console.log(x + y);
 y++;
 };
}
var g = f();
g(); // 1+2 is 3
g(); // 1+3 is 4

18

Closures

f()

var x

var y

function

Global

Closure

1

2

LaToza/Bell GMU SWE 432 Fall 2016

var x = 1;
function f() {
 var y = 2;
 return function() {

 console.log(x + y);
 y++;
 };
}
var g = f();
g(); // 1+2 is 3
g(); // 1+3 is 4

19

Closures

f()

var x

var y

function

1

3

Global

Closure

LaToza/Bell GMU SWE 432 Fall 2016

var x = 1;
function f() {
 var y = 2;
 return function() {

 console.log(x + y);
 y++;
 };
}
var g = f();
g(); // 1+2 is 3
g(); // 1+3 is 4

20

Closures

f()

var x

var y

function

1

4

Global

Closure

LaToza GMU SWE 432 Fall 2017

Modules
• We can do it with closures!
• Define a function

• Variables/functions defined in that function are
“private”

• Return an object - every member of that object is
public!

• Remember: Closures have access to the outer
function’s variables even after it returns

21

LaToza/Bell GMU SWE 432 Fall 2016 22

Modules with Closures
var facultyAPI = (function(){
 var faculty = [{name:"Prof Bell", section: 2}, {name:"Prof
LaToza", section:1}];

 return {
 getFaculty : function(i)
 {
 return faculty[i].name + " ("+faculty[i].section +")";
 }

 };
})();

console.log(facultyAPI.getFaculty(0));

This works because inner functions have visibility to all
variables of outer functions!

LaToza/Bell GMU SWE 432 Fall 2016 23

Closures gone awry

var funcs = [];
for (var i = 0; i < 5; i++) {
 funcs[i] = function() { return i; };
}

What is the output of funcs[0]()?
>5

Why?
Closures retain a pointer to their needed state!

LaToza/Bell GMU SWE 432 Fall 2016 24

Closures under control
Solution: IIFE - Immediately-Invoked Function Expression

Why does it work?
Each time the anonymous function is called, it will create a new

variable n, rather than reusing the same variable i

function makeFunction(n)
{
 return function(){ return n; };
}
for (var i = 0; i < 5; i++) {
 funcs[i] = makeFunction(i);
}

var funcs = [];
for (var i = 0; i < 5; i++) {
 funcs[i] = (function(n) {
 return function() { return n; }
 })(i);
}

Shortcut syntax:

LaToza/Bell GMU SWE 432 Fall 2016 25

Exercise: Closures

Here’s our simple closure. Add a new function to create a new
faculty, then call getFaculty to view their formatted name.

var facultyAPI = (function(){
 var faculty = [{name:"Prof LaToza", section: 1},
{name:"Prof Bell”, section:2}];

 return {
 getFaculty : function(i)
 {
 return faculty[i].name + " ("+faculty[i].section +")";
 }

 };
})();

console.log(facultyAPI.getFaculty(0));

https://jsfiddle.net/hkcq5vpa/

https://jsfiddle.net/hkcq5vpa/

LaToza GMU SWE 432 Fall 2017

Classes
• ES6 introduces the class keyword
• Mainly just syntax

26

function Faculty(first, last, teaches, office)
{
 this.firstName = first;
 this.lastName = last;
 this.teaches = teaches;
 this.office = office;
 this.fullName = function(){
 return this.firstName + " " + this.lastName;
 }
}
var profLaToza = new Faculty("Thomas", "LaToza", "SWE432", "ENGR 4431”);

Old

class Faculty {
 constructor(first, last, teaches, office)
 {
 this.firstName = first;
 this.lastName = last;
 this.teaches = teaches;
 this.office = office;
 }
 fullname() {
 return this.firstName + " " + this.lastName;
 }
}
var profJon = new Faculty("Thomas", "LaToza", "SWE432", "ENGR 4431”);

New

LaToza GMU SWE 432 Fall 2017

“Member” variables
• Can’t declare member variables explicitly like in

Java.
• Instead, create them implicitly by referencing “this”

27

class Faculty {
 constructor(first, last, teaches, office)
 {
 this.firstName = first;
 this.lastName = last;
 this.teaches = teaches;
 this.office = office;
 }
 fullname() {
 return this.firstName + " " + this.lastName;
 }
}
var profJon = new Faculty("Thomas", "LaToza", "SWE432", "ENGR 4431”);

LaToza GMU SWE 432 Fall 2017

Classes - Extends
extends allows an object created by a class to be linked to
a “super” class. Can (but don’t have to) add parent
constructor.

28

class Faculty {
 constructor(first, last, teaches, office)
 {
 this.firstName = first;
 this.lastName = last;
 this.teaches = teaches;
 this.office = office;
 }
 fullname() {
 return this.firstName + " " + this.lastName;
 }
}

class CoolFaculty extends Faculty {
 fullname() {
 return "The really cool " + super.fullname();
 }
}

LaToza GMU SWE 432 Fall 2017

Classes - static
static declarations in a class work like in Java

29

class Faculty {
 constructor(first, last, teaches, office)
 {
 this.firstName = first;
 this.lastName = last;
 this.teaches = teaches;
 this.office = office;
 }
 fullname() {
 return this.firstName + " " + this.lastName;
 }

static formatFacultyName(f) {
 return f.firstName + " " + f.lastName;
 }
}

LaToza GMU SWE 432 Fall 2017

Demo: Classes

30

LaToza GMU SWE 432 Fall 2017

Modules
• With ES6, there is finally language support for

modules
• Module must be defined in its own JS file
• Modules export declarations

• Publicly exposes functions as part of module
interface

• Code imports modules (and optionally only parts
of them)
• Specify module by path to the file

31

LaToza GMU SWE 432 Fall 2017

Modules (ES6) - Export Syntax

32

var faculty = [{name:"Prof Bell", section: 2}, {name:"Prof
LaToza", section:1}];
export function getFaculty(i) {
 // ..
}
export var someVar = [1,2,3];
var faculty = [{name:"Prof Bell", section: 2}, {name:"Prof
LaToza", section:1}];
var someVar = [1,2,3];
function getFaculty(i) {
 // ..
}
export {getFaculty, someVar};
export {getFaculty as aliasForFunction, someVar};

Label each declaration with
“export”

Or name all of the exports at
once

Can rename exports too

export default function getFaculty(i){...

Default export

LaToza GMU SWE 432 Fall 2017

Modules (ES6) - Import Syntax
• Import specific exports, binding them to the same

name
import { getFaculty, someVar } from "myModule";
getFaculty()...
• Import specific exports, binding them to a new name
import { getFaculty as aliasForFaculty } from
"myModule";
aliasForFaculty()...
• Import default export, binding to specified name
import theThing from "myModule";
theThing()... -> calls getFaculty()
• Import all exports, binding to specified name
import * as facModule from "myModule";
facModule.getFaculty()...

33

LaToza GMU SWE 432 Fall 2017

Classes Exercise
• Build a Course Class
• Should have following member variables:

• students (Array of objects with firstname and lastname)
• instructor (object with firstname, lastname, office #)
• meeting times (Array of objects with string of meeting

time)
• classroom (String)

• Public functions:
• Constructor
• Add a student to the class
• Get an Array of meeting times for a course

34

https://jsfiddle.net/hkcq5vpa/3/

LaToza GMU SWE 432 Fall 2017

Readings for next time

• Intro to Git: https://try.github.io
• Intro to Node Package Manager (NPM): https://

nodesource.com/blog/an-absolute-beginners-
guide-to-using-npm/

35

https://try.github.io
https://nodesource.com/blog/an-absolute-beginners-guide-to-using-npm/
https://nodesource.com/blog/an-absolute-beginners-guide-to-using-npm/
https://nodesource.com/blog/an-absolute-beginners-guide-to-using-npm/
https://nodesource.com/blog/an-absolute-beginners-guide-to-using-npm/

