
Backend Development
SWE 432, Fall 2017

Design and Implementation of Software for the Web

LaToza GMU SWE 432 Fall 2017

Real World
Example

2
https://qz.com/1073221/the-hackers-who-broke-into-equifax-exploited-a-nine-year-old-security-flaw/

https://qz.com/1073221/the-hackers-who-broke-into-equifax-exploited-a-nine-year-old-security-flaw/

LaToza GMU SWE 432 Fall 2017

Today
• HW2 out, due next Tues before class

• Why do we need backends?
• Building backend web service with Node.js and

Express

3

LaToza GMU SWE 432 Fall 2017

The “good” old days of backends

4

HTTP Request
GET	/myApplicationEndpoint	HTTP/1.1	
Host:	cs.gmu.edu	
Accept:	text/html

web server

HTTP Response
HTTP/1.1	200	OK	
Content-Type:	text/html;	charset=UTF-8	

<html><head>...

Runs a program

Web Server
Application

My
Application
Backend

Give	me	/myApplicationEndpoint

Here’s	some	text	to	send	back

Does whatever it wants

LaToza GMU SWE 432 Fall 2017

History of Backend Development

• In the beginning, you wrote whatever you wanted
using whatever language you wanted and whatever
framework you wanted

• Then… PHP and ASP
• Languages “designed” for writing backends
• Encouraged spaghetti code
• A lot of the web was built on this

• A whole lot of other languages were also springing
up in the 90’s…
• Ruby, Python, JSP

5

LaToza GMU SWE 432 Fall 2017

Backends today: Microservices

6

Browser

Web Servers

Database

HTTP  
Request

HTTP  
Response

(JSON)

Front end framework

Component logic Component logic Component logic

Component presentation Component presentation Component presentation

HTTP  
Request

HTTP  
Response

(JSON)

HTTP  
Request

HTTP  
Response

(JSON)

Microservice Microservice

HTTP  
Request

HTTP  
Response

(JSON)

LaToza GMU SWE 432 Fall 2017

Microservices
• Rather than horizontally scale identical web servers, vertically scale

server infrastructure into many, small focused servers

• Some advantages

• Fine-grained scalability: scale what services you need

• Data-locality: data can be cached close to service providing
functionality

• Fault tolerance: restart only failing service rather than whole
system

• Reuse: use same micro service in multiple apps; use 3rd party
rather than first party services

7

LaToza GMU SWE 432 Fall 2017

Why write a backend at all?

8

LaToza GMU SWE 432 Fall 2017

Why we need backends
• Security: SOME part of our code needs to be “trusted”

• Validation, security, etc. that we don’t want to allow
users to bypass

• Performance:
• Avoid duplicating computation (do it once and cache)
• Do heavy computation on more powerful machines
• Do data-intensive computation “nearer” to the data

• Compatibility:
• Can bring some dynamic behavior without requiring

much JS support

9

LaToza GMU SWE 432 Fall 2017

Why Trust Matters
• Example: Transaction app
function updateBalance(user, amountToAdd) 
{  
 user.balance = user.balance + amountToAdd; 
 fireRef.child(user.username).child("balance").set(user.balance);  
}

• What’s wrong?
• How do you fix that?

10

LaToza GMU SWE 432 Fall 2017

Dynamic Web Apps

11

Web “Front End”

“Back End”

HTML CSS JavaScript

React
What th

e user in
teracts with

What th
e fro

nt end interacts with

Firebase Some
other API

Presentation
Some logic

Data storage
Some other logic

LaToza GMU SWE 432 Fall 2017

Where do we put the logic?

12

Web “Front End”

HTML CSS JavaScript

React

“Back End”

Firebase Some other
API

Presentation

Some logic

Data storage

Some other logic

What th
e user in

teracts with

What th
e fro

nt end interacts with

Frontend
Pros

Very responsive (low latency)

Cons
Security
Performance
Unable to share between front-ends

Backend
Pros

Easy to refactor between multiple
clients

Logic is hidden from users (good for
security, compatibility, and intensive
computation)

Cons
Interactions require a round-trip to

server

LaToza GMU SWE 432 Fall 2017

HTTP: HyperText Transfer Protocol

High-level protocol built on TCP/IP that defines how data is transferred
on the web

13

HTTP Request
GET	/syllabus/syllabi-fall16/SWE432BellJ.html	HTTP/1.1	
Host:	cs.gmu.edu	
Accept:	text/html

web server

HTTP Response
HTTP/1.1	200	OK	
Content-Type:	text/html;	charset=UTF-8	

<html><head>...

Reads file from disk

LaToza GMU SWE 432 Fall 2017

HTTP Requests

• Request may contain additional header lines
specifying, e.g. client info, parameters for forms,
cookies, etc.

• Ends with a carriage return, line feed (blank line)
• May also contain a message body, delineated by a

blank line
14

HTTP Request
GET	/syllabus/syllabi-fall16/SWE432BellJ.html	HTTP/1.1	
Host:	cs.gmu.edu	
Accept:	text/html

“GET request”
Other popular types:
POST, PUT, DELETE, HEAD

“Resource”

LaToza GMU SWE 432 Fall 2017

Handling HTTP Requests in Express

• Node.js package for expressing rules about how to
handle HTTP requests

15

LaToza GMU SWE 432 Fall 2017

Handling requests with Express

app.get("/myResource/endpoint", function(req, res){ 
 //Read stuff from req, then call res.send(myResponse) 
});

app.post("/myResource/endpoint", function(req, res){ 
 //Read stuff from req, then call res.send(myResponse) 
});

16

HTTP GET Request
GET	/myResource/endpoint	HTTP/1.1	
Host:	myHost.net	
Accept:	text/html

HTTP POST Request
POST	/myResource/endpoint	HTTP/1.1	
Host:	myHost.net	
Accept:	text/html

LaToza/Bell GMU SWE 432 Fall 2016

Demo: Hello World Server

17

1: Make a directory, myapp

3: Type npm	install	express	--save

4: Create text file app.js:

const	express	=	require(‘express');	

const	app	=	express();	

const	port	=	process.env.port	||	3000;		

app.get('/', (req, res) => {
 var course = { name: 'SWE 432' };
 res.send(`Hello ${ course.name }!`);
});

app.listen(port,	function	()	{	});	

Import the module express

Create a new instance of express

Decide what port we want express to listen on

Create a callback for express to call when we have a “get” request to “/“. That
callback has access to the request (req) and response (res).

Tell our new instance of express to listen on port.

LaToza GMU SWE 432 Fall 2017

Core concept: Routing
• The definition of end points (URIs) and how they

respond to client requests.
• app.METHOD(PATH, HANDLER)
• METHOD: all, get, post, put, delete, [and others]
• PATH: string
• HANDLER: call back

app.post('/',	function	(req,	res)	{	
		res.send('Got	a	POST	request');	
});

18

LaToza GMU SWE 432 Fall 2017

Route paths
• Can specify strings, string patterns, and regular expressions

• Can use ?, +, *, and ()
• Matches request to root route
app.get('/',	function	(req,	res)	{	
		res.send('root');	
});	

• Matches request to /about
app.get('/about',	function	(req,	res)	{	
		res.send('about');	
});	

• Matches request to /abe and /abcde
app.get('/ab(cd)?e',	function(req,	res)	{	
	res.send('ab(cd)?e');	
});

19

LaToza GMU SWE 432 Fall 2017

Route parameters
• Named URL segments that capture values at specified

location in URL
• Stored into req.params object by name

• Example
• Route path /users/:userId/books/:bookId
• Request URL http://localhost:3000/users/34/books/8989
• Resulting req.params: { "userId": "34", "bookId":

"8989" }

app.get('/users/:userId/books/:bookId',	function(req,	res)	{	
		res.send(req.params);	
});

20

LaToza GMU SWE 432 Fall 2017

Request object
• Enables reading properties of HTTP request

• req.body: JSON submitted in request body
(must define body-parser to use)

• req.ip: IP of the address
• req.query: URL query parameters

21

LaToza GMU SWE 432 Fall 2017

HTTP Responses
• Larger number of response codes (200 OK, 404 NOT FOUND)
• Message body only allowed with certain response status codes

22

“OK response”
Response status codes:
1xx Informational
2xx Success
3xx Redirection
4xx Client error
5xx Server error

“HTML returned  
content”
Common MIME types:
application/json
application/pdf
image/png

[HTML data]

LaToza GMU SWE 432 Fall 2017

Response object
• Enables a response to client to be generated

• res.send() - send string content
• res.download() - prompts for a file download
• res.json() - sends a response w/ application/json

Content-Type header
• res.redirect() - sends a redirect response
• res.sendStatus() - sends only a status message
• res.sendFile() - sends the file at the specified path

app.get('/users/:userId/books/:bookId',	function(req,	res)	{	
		res.json({	“id”:	req.params.bookID	});	
});

23

LaToza GMU SWE 432 Fall 2017

Describing Responses
• What happens if something goes wrong while handling HTTP

request?
• How does client know what happened and what to try next?

• HTTP offers response status codes describing the nature of the
response
• 1xx Informational: Request received, continuing
• 2xx Success: Request received, understood, accepted,

processed
• 200: OK

• 3xx Redirection: Client must take additional action to complete
request
• 301: Moved Permanently
• 307: Temporary Redirect

24

https://en.wikipedia.org/wiki/List_of_HTTP_status_codes

https://en.wikipedia.org/wiki/List_of_HTTP_status_codes

LaToza GMU SWE 432 Fall 2017

Describing Errors
• 4xx Client Error: client did not make a valid request to server.

Examples:
• 400 Bad request (e.g., malformed syntax)
• 403 Forbidden: client lacks necessary permissions
• 404 Not found
• 405 Method Not Allowed: specified HTTP action not

allowed for resource
• 408 Request Timeout: server timed out waiting for a request
• 410 Gone: Resource has been intentionally removed and

will not return
• 429 Too Many Requests

25

LaToza GMU SWE 432 Fall 2017

Describing Errors
• 5xx Server Error: The server failed to fulfill an

apparently valid request.
• 500 Internal Server Error: generic error message
• 501 Not Implemented
• 503 Service Unavailable: server is currently

unavailable

26

LaToza GMU SWE 432 Fall 2017

Error handling in Express
• Express offers a default error handler

• Can specific error explicitly with status
• res.status(500);

27

LaToza GMU SWE 432 Fall 2017

Making a request....

28

HTTP Request
GET	/syllabus/syllabi-fall16/SWE432BellJ.html	HTTP/1.1	
Host:	cs.gmu.edu	
Accept:	text/html

web server

HTTP Response
HTTP/1.1	200	OK	
Content-Type:	text/html;	charset=UTF-8	

<html><head>...

Reads file from disk

LaToza GMU SWE 432 Fall 2017

Making HTTP Requests w/ fetch

29

var fetch = require('node-fetch');

fetch('https://api.github.com/users/
github')
 .then(function(res) {
 return res.json();
 }).then(function(json) {
 console.log(json);
 });

https://www.npmjs.com/package/node-fetch

var fetch = require('node-
fetch');

fetch('https://github.com/')
 .then(function(res) {
 return res.text();
 }).then(function(body) {
 console.log(body);
 });

https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API/Using_Fetch

https://www.npmjs.com/package/node-fetch
https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API/Using_Fetch

LaToza GMU SWE 432 Fall 2017

Demo: Example Express Microservice

30

LaToza GMU SWE 432 Fall 2017

Readings for next time
• Overview of HTTP:  

https://developer.mozilla.org/en-US/docs/Web/
HTTP/Overview

• Intro to REST:  
https://www.infoq.com/articles/rest-introduction

31

https://developer.mozilla.org/en-US/docs/Web/HTTP/Overview
https://developer.mozilla.org/en-US/docs/Web/HTTP/Overview
https://www.infoq.com/articles/rest-introduction

