
Handling HTTP
Requests

SWE 432, Fall 2017
Design and Implementation of Software for the Web

LaToza GMU SWE 432 Fall 2017

Today

• Status checkpoint

• Demo: Building a microservice with Express

• Design considerations in identifying resources
• REST

• What is it?
• Why use it?

2

LaToza GMU SWE 432 Fall 2017

(Some) topics covered so far

• What is the web
• Basic JavaScript syntax
• Organizing code with closures, classes, packages
• Using Git, NPM, Node, Heroku to assemble web

apps
• Building a webserver with Express; routing

3

LaToza GMU SWE 432 Fall 2017

Some topics we have yet to cover

• How should HTTP requests be identified? (today)
• When do callbacks execute?
• How do you ensure clients can only do what they are

allowed to do?
• How do you store data in a backend?
• How do you ensure your web app stays available?

• How do you design and implement a frontend using
HTML, CSS, DOM, templates, front-end frameworks,
information visualizations? (Part 2)

• How do you design a web app that enables humans to
successfully accomplish their tasks? (Part 3)

4

LaToza GMU SWE 432 Fall 2017

Demo: Building a microservice w/ Express

5

Microservice API

GET /loadCityList
GET /updateDetails

cityinfo.org

LaToza GMU SWE 432 Fall 2017

API: Application Programming Interface

• Microservice offers public interface for
interacting with backend
• Offers abstraction that hides

implementation details
• Set of endpoints exposed on micro

service

• Users of API might include
• Frontend of your app
• Frontend of other apps using your

backend
• Other servers using your service

6

Microservice API

GET /loadCityList
GET /updateDetails

cityinfo.org

LaToza GMU SWE 432 Fall 2017

APIs for functions and classes

7

function sort(elements)
{
 [sort algorithm A]
}

class Graph
{
 [rep of Graph A]
}

Implementation change Consistent interface

V1

V2

function sort(elements)
{
 [sort algorithm B]
}

class Graph
{
 [rep of Graph B]
}

LaToza GMU SWE 432 Fall 2017

What makes a good microservice API
design?

8

LaToza GMU SWE 432 Fall 2017

Support scaling

• Yesterday, cityinfo.org had 10 daily active
users. Today, it was featured on several
news sites and has 10,000 daily active
users.

• Yesterday, you were running on a single
server. Today, you need more than a single
server.

• Can you just add more servers?
• What should you have done yesterday to

make sure you can scale quickly today?

9

Microservice API

GET /loadCities.jsp
GET /updateDetails.jsp

cityinfo.org

LaToza GMU SWE 432 Fall 2017

Support change
• Due to your popularity, your

backend data provider just backed
out of their contract and are now
your competitor.

• The data you have is now in a
different format.

• Also, you've decided to migrate
your backend from PHP to node.js
to enable better scaling.

• How do you update your backend
without breaking all of your clients?

10

Microservice API

GET /loadCities.jsp
GET /updateDetails.jsp

cityinfo.org

LaToza GMU SWE 432 Fall 2017

Support reuse

• You have your own frontend for
cityinfo.org. But everyone now wants
to build their own sites on top of your
city analytics.

• Can they do that?

11

Microservice API

GET /loadCities.jsp
GET /updateDetails.jsp

cityinfo.org

http://cityinfo.org

LaToza GMU SWE 432 Fall 2017

Design Considerations for Microservice
APIs

• API: What requests should be supported?
• Identifiers: How are requests described?
• Errors: What happens when a request fails?
• Heterogeneity: What happens when different clients

make different requests?
• Caching: How can server requests be reduced by

caching responses?
• Versioning: What happens when the supported

requests change?

12

LaToza GMU SWE 432 Fall 2017

REST: REpresentational State Transfer

• Defined by Roy Fielding in his 2000 Ph.D. dissertation
• Used by Fielding to design HTTP 1.1 that generalizes

URLs to URIs
• http://www.ics.uci.edu/~fielding/pubs/dissertation/

fielding_dissertation.pdf
• “Throughout the HTTP standardization process, I was

called on to defend the design choices of the Web. That is
an extremely difficult thing to do… I had comments from
well over 500 developers, many of whom were
distinguished engineers with decades of experience. That
process honed my model down to a core set of principles,
properties, and constraints that are now called REST.”

• Interfaces that follow REST principles are called RESTful

13

http://www.ics.uci.edu/~fielding/pubs/dissertation/fielding_dissertation.pdf
http://www.ics.uci.edu/~fielding/pubs/dissertation/fielding_dissertation.pdf

LaToza GMU SWE 432 Fall 2017

Properties of REST
• Performance
• Scalability
• Simplicity of a Uniform Interface
• Modifiability of components (even at runtime)
• Visibility of communication between components

by service agents
• Portability of components by moving program code

with data
• Reliability

14

LaToza GMU SWE 432 Fall 2017

Principles of REST
• Client server: separation of concerns (reuse)
• Stateless: each client request contains all information

necessary to service request (scaling)
• Cacheable: clients and intermediaries may cache

responses. (scaling)
• Layered system: client cannot determine if it is

connected to end server or intermediary along the way.
(scaling)

• Uniform interface for resources: a single uniform
interface (URIs) simplifies and decouples architecture
(change & reuse)

15

LaToza GMU SWE 432 Fall 2017

HTTP: HyperText Transfer Protocol
High-level protocol built on TCP/IP that defines how data is transferred
on the web

16

HTTP Request
GET	/syllabus/syllabi-fall16/SWE432BellJ.html	HTTP/1.1	
Host:	cs.gmu.edu	
Accept:	text/html

web server

HTTP Response
HTTP/1.1	200	OK	
Content-Type:	text/html;	charset=UTF-8	

<html><head>...

Reads file from disk

LaToza GMU SWE 432 Fall 2017

Uniform Interface for Resources
• Originally files on a web server

• URL refers to directory path and file of a resource
• But… URIs might be used as an identity for any entity

• A person, location, place, item, tweet, email, detail
view, like

• Does not matter if resource is a file, an entry in a
database, retrieved from another server, or
computed by the server on demand

• Resources offer an interface to the server
describing the resources with which clients can
interact

17

LaToza GMU SWE 432 Fall 2017

URI: Universal Resource Identifier

• Uniquely describes a resource
• https://mail.google.com/mail/u/0/#inbox/

157d5fb795159ac0
• https://www.amazon.com/gp/yourstore/home/

ref=nav_cs_ys
• http://gotocon.com/dl/goto-amsterdam-2014/slides/

StefanTilkov_RESTIDontThinkItMeansWhatYouThinkItDoes.
pdf

• Which is a file, external web service request, or stored in a
database?
• It does not matter

• As client, only matters what actions we can do with resource,
not how resource is represented on server

18

https://mail.google.com/mail/u/0/#inbox/157d5fb795159ac0
https://mail.google.com/mail/u/0/#inbox/157d5fb795159ac0
https://www.amazon.com/gp/yourstore/home/ref=nav_cs_ys
https://www.amazon.com/gp/yourstore/home/ref=nav_cs_ys
http://gotocon.com/dl/goto-amsterdam-2014/slides/StefanTilkov_RESTIDontThinkItMeansWhatYouThinkItDoes.pdf
http://gotocon.com/dl/goto-amsterdam-2014/slides/StefanTilkov_RESTIDontThinkItMeansWhatYouThinkItDoes.pdf
http://gotocon.com/dl/goto-amsterdam-2014/slides/StefanTilkov_RESTIDontThinkItMeansWhatYouThinkItDoes.pdf

LaToza GMU SWE 432 Fall 2017

Intermediaries

19

HTTP GET http://api.wunderground.com/api/
3bee87321900cf14/conditions/q/VA/Fairfax.json

HTTP Request

Web “Front End” “Origin” server

HTTP Response
HTTP/1.1 200 OK
Server: Apache/2.2.15 (CentOS)
Access-Control-Allow-Origin: *
Access-Control-Allow-Credentials: true
X-CreationTime: 0.134
Last-Modified: Mon, 19 Sep 2016 17:37:52 GMT
Content-Type: application/json; charset=UTF-8
Expires: Mon, 19 Sep 2016 17:38:42 GMT
Cache-Control: max-age=0, no-cache
Pragma: no-cache
Date: Mon, 19 Sep 2016 17:38:42 GMT
Content-Length: 2589
Connection: keep-alive

{
 "response": {
 "version":"0.1",
 "termsofService":"http://www.wunderground.com/weather/api/d/terms.html",
 "features": {

LaToza GMU SWE 432 Fall 2017

Intermediaries

20

HTTP Request

Web “Front End” “Origin” server

HTTP Response

Intermediary

HTTP Request

HTTP Response

???

• Client interacts with a resource identified by a URI
• But it never knows (or cares) whether it interacts with origin

server or an unknown intermediary server
• Might be randomly load balanced to one of many servers
• Might be cache, so that large file can be stored locally

• (e.g., GMU caching an OSX update)
• Might be server checking security and rejecting requests

LaToza GMU SWE 432 Fall 2017

Challenges with intermediaries
• But can all requests really be intercepted in the

same way?
• Some requests might produce a change to a

resource
• Can’t just cache a response… would not get

updated!
• Some requests might create a change every

time they execute
• Must be careful retrying failed requests or

could create extra copies of resources

21

LaToza GMU SWE 432 Fall 2017

HTTP Actions
• How do intermediaries know what they can and

cannot do with a request?
• Solution: HTTP Actions

• Describes what will be done with resource
• GET: retrieve the current state of the resource
• PUT: modify the state of a resource
• DELETE: clear a resource
• POST: initialize the state of a new resource

22

LaToza GMU SWE 432 Fall 2017

HTTP Actions
• GET: safe method with no side effects

• Requests can be intercepted and replaced with cache
response

• PUT, DELETE: idempotent method that can be repeated
with same result
• Requests that fail can be retried indefinitely till they

succeed
• POST: creates new element

• Retrying a failed request might create duplicate copies
of new resource

23

LaToza GMU SWE 432 Fall 2017

Support scaling

• Yesterday, cityinfo.org had 10 daily active
users. Today, it was featured on several
news sites and has 10,000 daily active
users.

• Yesterday, you were running on a single
server. Today, you need more than a single
server.

• Can you just add more servers?
• What should you have done yesterday to

make sure you can scale quickly today?

24

Microservice API

GET /loadCities.jsp
GET /updateDetails.jsp

cityinfo.org

LaToza GMU SWE 432 Fall 2017

Support scaling

• Yesterday, cityinfo.org had 10 daily active
users. Today, it was featured on several
news sites and has 10,000 daily active
users.

• Yesterday, you were running on a single
server. Today, you need more than a single
server.

• Can you just add more servers?
• What should you have done yesterday to

make sure you can scale quickly today?

25

GET /loadCityList
PUT /updateDetails

Microservice API

GET /loadCities.jsp
PUT /updateDetails.jsp

cityinfo.org

http://cityinfo.org
http://cityinfo.org

LaToza GMU SWE 432 Fall 2017

Versioning
• Your web service just added a great new feature!

• You’d like to expose it in your API.
• But… there might be old clients (e.g., websites)

built using the old API.
• These websites might be owned by someone

else and might not know about the change.
• Don’t want these clients to throw an error

whenever they access an updated API.

26

LaToza GMU SWE 432 Fall 2017

Cool URIs don’t change
• In theory, URI could last forever, being reused as server is

rearchitected, new features are added, or even whole technology stack
is replaced.

• “What makes a cool URI? 
A cool URI is one which does not change. 
What sorts of URIs change? 
URIs don't change: people change them.”
• https://www.w3.org/Provider/Style/URI.html
• Bad:

• https://www.w3.org/Content/id/50/URI.html (What does this path
mean? What if we wanted to change it to mean something else?)

• Why might URIs change?
• We reorganized our website to make it better.
• We used to use a cgi script and now we use node.JS.

27

https://www.w3.org/Provider/Style/URI.html

LaToza GMU SWE 432 Fall 2017

URI Design
• URIs represent a contract about what resources your server

exposes and what can be done with them
• Leave out anything that might change

• Content author names, status of content, other keys that
might change

• File name extensions: response describes content type
through MIME header not extension (e.g., .jpg, .mp3, .pdf)

• Server technology: should not reference technology
(e.g., .cfm, .jsp)

• Endeavor to make all changes backwards compatible
• Add new resources and actions rather than remove old

• If you must change URI structure, support old URI structure
and new URI structure

28

LaToza GMU SWE 432 Fall 2017

Support change
• Due to your popularity, your

backend data provider just backed
out of their contract and are now
your competitor.

• The data you have is now in a
different format.

• Also, you've decided to migrate
your backend from PHP to node.js
to enable better scaling.

• How do you update your backend
without breaking all of your clients?

29

Microservice API

GET /loadCities.jsp
PUT /updateDetails.jsp

cityinfo.org

LaToza GMU SWE 432 Fall 2017

Support change
• Due to your popularity, your

backend data provider just backed
out of their contract and are now
your competitor.

• The data you have is now in a
different format.

• Also, you've decided to migrate
your backend from PHP to node.js
to enable better scaling.

• How do you update your backend
without breaking all of your clients?

30

Microservice API

GET /loadCities
PUT /updateDetails

cityinfo.org

LaToza GMU SWE 432 Fall 2017

Nouns vs. Verbs
• URIs should hierarchically identify nouns describing

resources that exist
• Verbs describing actions that can be taken with

resources should be described with an HTTP action

• PUT /cities/:cityID (nouns: cities, :cityID)(verb: PUT)
• GET /cities/:cityID (nouns: cities, :cityID)(verb: GET)

• Want to offer expressive abstraction that can be
reused for many scenarios

31

LaToza GMU SWE 432 Fall 2017

Support reuse

• You have your own frontend for
cityinfo.org. But everyone now wants
to build their own sites on top of your
city analytics.

• Can they do that?

32

Microservice API

GET /loadCities
PUT /updateDetails

cityinfo.org

http://cityinfo.org

LaToza GMU SWE 432 Fall 2017

Support reuse

33

Microservice API
cityinfo.org

/topCities GET
/topCities/:cityID/descrip PUT, GET

/city/:cityID GET, PUT, POST, DELETE
/city/:cityID/averages GET
/city/:cityID/weather GET
/city/:cityID/transitProvders GET, POST
/city/:cityID/transitProvders/:providerID GET, PUT, DELETE

http://cityinfo.org

LaToza GMU SWE 432 Fall 2017

What happens when a request has many
parameters?

• /topCities/:cityID/descrip PUT

• Shouldn't this really be something more like
• /topCities/:cityID/

descrip/:descriptionText/:submitter/:time/

34

LaToza GMU SWE 432 Fall 2017

Solution 1: Query strings
• PUT /topCities/Memphis?submitter=Dan&time=1025313

• Use req.query to retrieve
• Shows up in URL string, making it possible to store full URL

• e.g., user adds a bookmark to URL
• Sometimes works well for short params

35

var	express	=	require('express');	
var	app	=	express();	

app.put('/topCities/:cityID', function(req, res){
 res.send(`descrip: ${req.query.descrip} submitter: ${req.query.submitter}`);
});

app.listen(3000);	

LaToza GMU SWE 432 Fall 2017

Solution 2: JSON request body
• PUT /topCities/Memphis  

{ "descrip": "Memphis is a city of ...",  
 "submitter": "Dan", "time": 1025313 }

• Best solution for all but the simplest parameters (and often
times everything)

• Use body-parser package and req.body to retrieve

36

$npm	install	body-parser	

https://www.npmjs.com/package/body-parser

var express = require('express');
var bodyParser = require('body-parser');

var app = express();

// parse application/json
app.use(bodyParser.json());

app.put('/topCities/:cityID', function(req, res){
 res.send(`descrip: ${req.body.descrip} submitter: ${req.body.submitter}`);
});

app.listen(3000);

https://www.npmjs.com/package/body-parser

LaToza GMU SWE 432 Fall 2017

How do you persist state?

• Can save state as global
variables.

• Cons
• State will be lost whenever

server restarts
• State will not be shared

across multiple servers

• Sometimes useful as a
cache

• We'll look at better
approaches in a few
lectures...

37

var express = require('express');
var bodyParser = require('body-parser');

var app = express();

var cities = new Map();

// parse application/json
app.use(bodyParser.json());

app.put('/topCities/:cityID', function(req, res){
 cities.set(req.params.cityID, req.body);
});

app.listen(3000);

