Asynchronous
Programming

SWE 432, Fall 2017
Design and Implementation of Software for the Web

IIIIIIIIII

LaToza

Today

What is asynchronous programming?

What are th

reads?

How does

Writing asynchronous code with Promises and

timers

S keep programs responsive?

GMU SWE 432 Fall 2017

What does this code do?

var global;
var fetch = require('node-fetch');

fetch("https://api.wmata.com/Incidents.svc/json/
ElevatorIncidents',

{ headers: { api_key:
"eleee2b5677f408da40af8480a5fd5a8"} })
.then(function(res) {
return res.json();
}).then(function(json) {
global = json;
F);

console.log(global.ElevatorIncidents[0]);

LaToza GMU SWE 432 Fall 2017

LaToza

Why write asynchronous programs?

* Asynchronous programs occur when there are
events which occur outside the control flow of your
program

 Data arrived back from an HT TP request made
earlier

A timer went off
 The OS sent a message
e (Client-side) The user clicked a button

GMU SWE 432 Fall 2017

What's wrong with this program?

var global;
var fetch = require('node-fetch');

global = fetch('https://api.wmata.com/Incidents.svc/json/
ElevatorIncidents',

{ headers: { api_key:
"eleee2b5677f408dad0af8480a5fd5a8"} }).json();

console.log(global.ElevatorIncidents[0]);

Note: this code is hypothetical and does not reflect the
actual behavior of fetch.

LaToza GMU SWE 432 Fall 2017 5

LaToza

The perils of blocking

* Asynchronous events might take a long time to
occur

* Waiting for data from a server
e A button that the user never clicks on

e \Want to execute code that occurs after such an
event occurs

e But, In the meantime, want application to be

responsive so that other computation can occur
and over events can be handled

GMU SWE 432 Fall 2017

Solution 1: Threads

Program execution: a series of sequential method calls (*s)

App Starts

App Ends

LaToza/Bell GMU SWE 432 Fall 2016

Solution 1: Threads

Program execution: a series of sequential method calls (*s)

App Starts

App Ends

Multiple threads can run at once -> allows for
asynchronous code

LaToza/Bell GMU SWE 432 Fall 2016

Multi-Threading in Java

* Allowing more than one thread is multi-threading

 Multi-Threading enables responsiveness by allowing
computation to occur in parallel

 May occur physically through multiple cores and/or
logically through OS scheduler

 Example: Process data while interacting with user

Interacts with user
Draws Swing interface
on screen, updates
screen

Processes data,
generates results

Share data

maiﬂ ﬁ WOI’keI’

Signal each other
thread O thread 1

LaToza GMU SWE 432 Fall 2017

Woes of Multi-Threading

public static int v;

public static void threadl() public static void thread2()
{ {
v = 4; v =25
System.out.println(v); }
¥

This is a data race: the printin in thread1 might see either 2 OR 4

Thread 1 Thread 2 Thread 1 Thread 2

Write V=4 Write V =2
Write V =2 Write V =4
Read V (2) Read V (4)

LaToza/Bell GMU SWE 432 Fall 2016 10

Solution 2: Single thread w/ event loop

o All of your code will run in a single thread

e Since you are not sharing data between threads, races
don't happen as easily

 Event-driven: Event loop maintains queue of events, and
invokes handler for each event

e (JavaScript engine itself may still be multithreaded)

All of your code runs in this
one thread

thread 1 | | thread 2 | | thread 3 EEE thread n

JS Engine

LaToza GMU SWE 432 Fall 2017 11

Event Queue
GET POST

timer fired
resource resourceb

FPrs s i =

Event Being Processed:

LaToza GMU SWE 432 Fall 2017

‘\-

The Event Loop

E— I
| — I

o~
loop
JS Engine

12

The Event Loop

=MON] : :
timer fired
resourceb

JS Engine

Event Queue

Event Being Processed:

GET
resource

Are there any listeners registered for this event?
It so, call listener with event

After the listener is finished, repeat

LaToza GMU SWE 432 Fall 2017 13

The Event Loop

tmer firec I I I

JS Engine

Event Queue

Event Being Processed:

POST
resourceb

Are there any listeners registered for this event?
It so, call listener with event

After the listener is finished, repeat

LaToza GMU SWE 432 Fall 2017 14

The Event Loop

JS Engine

Event Queue

Event Being Processed:

Are there any listeners registered for this event?
It so, call listener with event

After the listener is finished, repeat

LaToza GMU SWE 432 Fall 2017 15

LaToza

The Event Loop

fetch('https://api.wmata.com/Incidents.svc/json/
ElevatorIncidents',
{ headers: { api_key:
"eleee2b5677f408da40af8480a5fd5a8"} })
.then(function(res) {
return res.json();
}).then(function(json) A
global = json;
+);

 Event loop is responsible tfor dispatching events when they
occur

o Simplified main thread for event loop:

while(queue.waitForMessage()){
queue.processNextMessage();

}

GMU SWE 432 Fall 2017

16

Prioritizing events in node.js

e Some events are more
important than others

o Keep separate queues
for each event "phase’

e Process all events In S

I incoming: I

each phase betfore P

| data, etc. |

moving to next

close callbacks

https://nodejs.org/en/docs/guides/event-loop-timers-and-nexttick/

LaToza GMU SWE 432 Fall 2017 17

https://nodejs.org/en/docs/guides/event-loop-timers-and-nexttick/

LaToza

Advantages of single-threaded event loops

« Managing dependencies between data in different

threads is difficult to understand and get right and
tricky to debug

 \WWhen threads share data, need to ensure they

CO
CO

e Butt

'rectly synchronize on it to avoid race
nditions

nere are downsides

e Can not have slow event handlers

* (Can still have data races, although easier to
reason about (data races can only occur at
event boundaries)

GMU SWE 432 Fall 2017 18

Run-to-completion semantics

* Run-to-completion

* The function handling an event and the functions
that it (transitively) synchronously calls will keep
executing until the function finishes.

 The JS engine will not handle the next event until
the event handler finishes.

processing of
event gueue f > Q

/'

callback

~nh > ... > |

callback2 —— —» |
\/

LaToza GMU SWE 432 Fall 2017 19

LaToza

Implications of run-to-completion

* (Good news: no other code will run until you finish
(no worries about other threads overwriting your
data)

processing of
event gqueue f > Q

callback < h

callback2 —— ——» |
\4

| will not execute until after i

GMU SWE 432 Fall 2017 20

Implications of run-to-completion

 Bad/OK news: Nothing else will happen until event
handler returns

e Event hand
input) --> a
'esSpoNnse O

e Event hand

| callbacks waiting for network

ruser input are always asynchro
lers shouldn't take a long time elt

processing of
event gueue f e

\4

LaToza

callback

/'
\h > ... >i

callback2 —— —» |

J will not execute until i finishes

GMU SWE 432 Fall 2017

ers should never block (e.g., wait for

N0OUS

ner

21

Decomposing a long-running computation

e |f you "must® do something that takes a long time
(e.g. computation), split it into multiple events

e doSomeWork();
e ... [let event loop process other events]..
» continueDoingMoreWork();

GMU SWE 432 Fall 2017

LaToza

Dangers of decomposition

« Application state may change before event occurs

o Other event handlers may be interleaved and occur

before event occurs and mutate the same application
state

 —-> Need to check that update still makes sense

* Application state may be in inconsistent state until event

OCCuUrs
 Application

e |eaving data in inconsistent state...
e Loading some data from API, but not all of it...

GMU SWE 432 Fall 2017

23

When good requests go bad

 \What happens if an error occurs in an

asynchronous fu
 Most async func

*

e You

e Not

LaToza

MUS

ok

t* check for er

nction?

rors and fai

to assume thal

GMU SWE 432 Fall 2017

lons let you register a second
callback to be used in case of erro

(S

gracefully

- errors will never happen.

24

Pyramid of doom

fs.readdir(source, function (err, files) {
if (err) {
console.log('Error finding files: ' + err)

} else {
files.forEach(function (filename, fileIndex) {

console. log(filename)
gm(source + filename).size(function (err, values) {

if (err) {

console.log('Error identifying file size: ' + err)
} else {

console.log(filename + ' : ' + values)

aspect = (values.width / values.height)
widths.forEach(function (width, widthIndex) {
height = Math.round(width / aspect)
console.log('resizing ' + filename + 'to ' + height + 'x' + height)

this.resize(width, height).write(dest + 'w' + width + '_' + filename, function(err) -
if (err) console.log('Error writing file: ' + err)
})
}.bind(this))
}
})
1)
}
})

From http://callbackhell.com/

LaToza GMU SWE 432 Fall 2017 25

http://callbackhell.com/

LaToza

Sequencing events

o We'd like a better way to sequence events.
e (Goals:

Clearly distinguish synchronous from
asynchronous function calls.

Enable computation to occur only after some
event has happened, without adding an additional

nesting level each ti

Make it possible to
multiple related asy

me (no pyramid of doom).
nandle errors, including for

NC requests.

Make it possible to walit for multiple async calls to
finish betore proceeding.

GMU SWE 432 Fall 2017 26

Sequencing events with Promises

 Promises are a wrapper around async callbacks
 Promises represents how to get a value
* Then you tell the promise what to do when it gets it

 Promises organize many steps that need to happen
IN order, with each step happening asynchronously

At any point a promise is either:
* |s unresolved
* Succeeds
e falls

LaToza GMU SWE 432 Fall 2017

27

LaToza

Using a Promise

 Declare what you want to do when your promise Is
completed (then), or if there’s an error (catch)

fetch('https://github.com/")
.then (function (res) {
return res.text () ;

b) s

fetch('http://domain.invalid/")
.catch (function(err) {
console.log(err);

b) s

GMU SWE 432 Fall 2017

28

LaToza/Bell

Promise one thing then another

Promise to get
some data

L 4
*+,, If there's an error. ..

L 4

then ’0,.
A

Promise to get

some data based EEEEEEEER .> Report on the

on that data error
R 4
then %
y“ f there’s an error...
Use that data to

update application
state

GMU SWE 432 Fall 2016

29

LaToza/Bell

Chaining Promises

myPromise.then(function(resultOfPromise){
//Do something, maybe asynchronously
return theResultOfThisStep;

})

.then(function(result0fStepl){
//Do something, maybe asynchronously
return theResultOfStep2;

})

.then(function(result0fStep2){
//Do something, maybe asynchronously
return theResultOfStep3;

})

.then(function(result0fStep3){
//Do something, maybe asynchronously
return theResultOfStep4;

})

.catch(function(error){

});

GMU SWE 432 Fall 2016

30

LaToza

Promising many things

» (Can also specity that *many” things should be done,
and then something else

« Example: load a whole bunch of images at once:

Promise
.all([loadImage("GMURGB. jpg"), loadImage(‘“JonBell.jpg")])
.then(function (imgArray) A
imgArray.forEach(img => {document.body.appendChild(img)})
)

.catch(function (e) {
console. log("Oops");
console. log(e);

F);

GMU SWE 432 Fall 2017

31

LaToza

Writing a Promise

* Most often, Promises will be generated by an API

function (e.qg., fetch) and re

urned to you.

e But you can also create you

var p = new Promise(function(

if () 1
resolve() ;
s
else {
reject() ;
s

1)

r own Promise.

resolve, reject) {

GMU SWE 432 Fall 2017

32

LaToza

Example: Writing a Promise

e |oadlmage returns a promise to load a given image

function loadImage(url){
return new Promise(function(resolve, reject) 1
var img = new Image();
img.src=url;
img.onload = function(){
resolve(img);
I3

img.onerror = function(e){
reject(e);
s

1) ;
Once the image is loaded, we'll resolve the promise

e —

If the Image has an error, the promise Is rejected

———a—

GMU SWE 432 Fall 2017 33

LaToza

Timers

function myFunc(arg) {

console.log(arg was => ${arg});

setTimeout(myFunc, 1500, 'funky');

Run myFunc no sooner than 1500 ms

setInterval(() => {
console.log('interval executing');

Run code every 500 ms

setImmediate((arg) => {
console.log(executing immediate: ${arg});

}, 'so immediate');

Run code after any I/O operations in current cycle and before
timers from next cycle

GMU SWE 432 Fall 2017

34

LaToza

Stopping timers

const timeoutObj = setTimeout(() => {
console.log('execute after 1500 ms');

const intervalObj = setInterval(() => {
console.log('execute every 500 ms');

const immediateObj = setImmediate(() => {
console.log('execute after I0 operations');

clearTimeout (timeoutObj);
clearImmediate(immediateObj);
clearInterval(intervalObj);

GMU SWE 432 Fall 2017

35

Demo: Promises and Timers

22222222222222222

36

LaToza

Readings for next time

e Using Promises

» https://developer.mozilla.org/en-US/docs/Web/
JavaScript/Guide/Using_promises

 Node.|s event loop

» https://nodejs.org/en/docs/guides/event-l0op-
timers-and-nexttick/

GMU SWE 432 Fall 2017

37

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Using_promises
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Using_promises
https://nodejs.org/en/docs/guides/event-loop-timers-and-nexttick/
https://nodejs.org/en/docs/guides/event-loop-timers-and-nexttick/

