
Asynchronous
Programming

SWE 432, Fall 2017
Design and Implementation of Software for the Web

LaToza GMU SWE 432 Fall 2017

Today
• What is asynchronous programming?
• What are threads?
• How does JS keep programs responsive?
• Writing asynchronous code with Promises and

timers

2

LaToza GMU SWE 432 Fall 2017

What does this code do?

var global;
var fetch = require('node-fetch');

fetch('https://api.wmata.com/Incidents.svc/json/
ElevatorIncidents',
 { headers: { api_key:
"e1eee2b5677f408da40af8480a5fd5a8"} })
 .then(function(res) {
 return res.json();
 }).then(function(json) {
 global = json;
});
console.log(global.ElevatorIncidents[0]);

3

LaToza GMU SWE 432 Fall 2017

Why write asynchronous programs?

• Asynchronous programs occur when there are
events which occur outside the control flow of your
program
• Data arrived back from an HTTP request made

earlier
• A timer went off
• The OS sent a message
• (Client-side) The user clicked a button

4

LaToza GMU SWE 432 Fall 2017

What's wrong with this program?

5

var global;
var fetch = require('node-fetch');

global = fetch('https://api.wmata.com/Incidents.svc/json/
ElevatorIncidents',
 { headers: { api_key:
"e1eee2b5677f408da40af8480a5fd5a8"} }).json();

console.log(global.ElevatorIncidents[0]);

Note: this code is hypothetical and does not reflect the
actual behavior of fetch.

LaToza GMU SWE 432 Fall 2017

The perils of blocking
• Asynchronous events might take a long time to

occur
• Waiting for data from a server
• A button that the user never clicks on

• Want to execute code that occurs after such an
event occurs

• But, in the meantime, want application to be
responsive so that other computation can occur
and over events can be handled

6

LaToza/Bell GMU SWE 432 Fall 2016 7

Solution 1: Threads

App Starts

App Ends

Program execution: a series of sequential method calls (s)

LaToza/Bell GMU SWE 432 Fall 2016 8

Solution 1: Threads

App Starts

App Ends

Program execution: a series of sequential method calls (s)

Multiple threads can run at once -> allows for
asynchronous code

LaToza GMU SWE 432 Fall 2017

Multi-Threading in Java
• Allowing more than one thread is multi-threading
• Multi-Threading enables responsiveness by allowing

computation to occur in parallel
• May occur physically through multiple cores and/or

logically through OS scheduler
• Example: Process data while interacting with user

9

main

thread 0

Interacts with user
Draws Swing interface

on screen, updates
screen

worker

thread 1

Processes data,
generates results

Share data
Signal each other

LaToza/Bell GMU SWE 432 Fall 2016 10

Woes of Multi-Threading

Thread 1 Thread 2
Write V = 4

Write V = 2
Read V (2)

Thread 1 Thread 2
Write V = 2

Write V = 4
Read V (4)

public static int v;
public static void thread1()
{

v = 4;
System.out.println(v);

}

public static void thread2()
{

v = 2;
}

This is a data race: the println in thread1 might see either 2 OR 4

LaToza GMU SWE 432 Fall 2017

Solution 2: Single thread w/ event loop
• All of your code will run in a single thread
• Since you are not sharing data between threads, races

don’t happen as easily
• Event-driven: Event loop maintains queue of events, and

invokes handler for each event
• (JavaScript engine itself may still be multithreaded)

11

thread 1 thread 2 thread 3 thread n…
JS Engine

event
looperevent
loop

All of your code runs in this
one thread

event
queue

LaToza GMU SWE 432 Fall 2017

Event Being Processed:

The Event Loop

12

Event Queue

thread 1 thread 2 thread 3 thread n…
JS Engine

event
loop

GET
resource1

POST
resource5 timer fired

Pushes new event into queuePushes new event into queuePushes new event into queue

LaToza GMU SWE 432 Fall 2017

Event Being Processed:

The Event Loop

13

Event Queue

thread 1 thread 2 thread 3 thread n…
JS Engine

event
loop

GET
resource1

POST
resource5 timer fired

Are there any listeners registered for this event?
If so, call listener with event
After the listener is finished, repeat

LaToza GMU SWE 432 Fall 2017

Event Being Processed:

The Event Loop

14

Event Queue

thread 1 thread 2 thread 3 thread n…
JS Engine

event
loop

POST
resource5

timer fired

Are there any listeners registered for this event?
If so, call listener with event
After the listener is finished, repeat

LaToza GMU SWE 432 Fall 2017

Event Being Processed:

The Event Loop

15

Event Queue

thread 1 thread 2 thread 3 thread n…
JS Engine

event
loop

timer fired

Are there any listeners registered for this event?
If so, call listener with event
After the listener is finished, repeat

LaToza GMU SWE 432 Fall 2017

The Event Loop
fetch('https://api.wmata.com/Incidents.svc/json/
ElevatorIncidents',
 { headers: { api_key:
"e1eee2b5677f408da40af8480a5fd5a8"} })
 .then(function(res) {
 return res.json();
 }).then(function(json) {
 global = json;
});

• Event loop is responsible for dispatching events when they
occur

• Simplified main thread for event loop:

while(queue.waitForMessage()){	
		queue.processNextMessage();	
}

16

LaToza GMU SWE 432 Fall 2017

Prioritizing events in node.js
• Some events are more

important than others
• Keep separate queues

for each event "phase"
• Process all events in

each phase before
moving to next

17

https://nodejs.org/en/docs/guides/event-loop-timers-and-nexttick/

https://nodejs.org/en/docs/guides/event-loop-timers-and-nexttick/

LaToza GMU SWE 432 Fall 2017

Advantages of single-threaded event loops

• Managing dependencies between data in different
threads is difficult to understand and get right and
tricky to debug
• When threads share data, need to ensure they

correctly synchronize on it to avoid race
conditions

• But there are downsides
• Can not have slow event handlers
• Can still have data races, although easier to

reason about (data races can only occur at
event boundaries)

18

LaToza GMU SWE 432 Fall 2017

Run-to-completion semantics
• Run-to-completion

• The function handling an event and the functions
that it (transitively) synchronously calls will keep
executing until the function finishes.

• The JS engine will not handle the next event until
the event handler finishes.

19

callback1
f

h

g

callback2

... i

j...

processing of
event queue

LaToza GMU SWE 432 Fall 2017

Implications of run-to-completion

• Good news: no other code will run until you finish
(no worries about other threads overwriting your
data)

20

callback1
f

h

g

callback2

... i

j...

processing of
event queue

j will not execute until after i

LaToza GMU SWE 432 Fall 2017

Implications of run-to-completion
• Bad/OK news: Nothing else will happen until event

handler returns
• Event handlers should never block (e.g., wait for

input) --> all callbacks waiting for network
response or user input are always asynchronous

• Event handlers shouldn't take a long time either

21

callback1
f

h

g

callback2

... i

j...

processing of
event queue

j will not execute until i finishes

LaToza GMU SWE 432 Fall 2017

Decomposing a long-running computation

• If you *must* do something that takes a long time
(e.g. computation), split it into multiple events
• doSomeWork();
• ... [let event loop process other events]..
• continueDoingMoreWork();
• ...

22

LaToza GMU SWE 432 Fall 2017

Dangers of decomposition
• Application state may change before event occurs

• Other event handlers may be interleaved and occur
before event occurs and mutate the same application
state

• --> Need to check that update still makes sense

• Application state may be in inconsistent state until event
occurs
• Application

• leaving data in inconsistent state...
• Loading some data from API, but not all of it...

23

LaToza GMU SWE 432 Fall 2017

When good requests go bad
• What happens if an error occurs in an

asynchronous function?
• Most async functions let you register a second

callback to be used in case of errors
• You *must* check for errors and fail gracefully

• Not ok to assume that errors will never happen.

24

LaToza GMU SWE 432 Fall 2017

Pyramid of doom

25

fs.readdir(source, function (err, files) {
 if (err) {
 console.log('Error finding files: ' + err)
 } else {
 files.forEach(function (filename, fileIndex) {
 console.log(filename)
 gm(source + filename).size(function (err, values) {
 if (err) {
 console.log('Error identifying file size: ' + err)
 } else {
 console.log(filename + ' : ' + values)
 aspect = (values.width / values.height)
 widths.forEach(function (width, widthIndex) {
 height = Math.round(width / aspect)
 console.log('resizing ' + filename + 'to ' + height + 'x' + height)
 this.resize(width, height).write(dest + 'w' + width + '_' + filename, function(err) {
 if (err) console.log('Error writing file: ' + err)
 })
 }.bind(this))
 }
 })
 })
 }
})

From http://callbackhell.com/

http://callbackhell.com/

LaToza GMU SWE 432 Fall 2017

Sequencing events
• We'd like a better way to sequence events.
• Goals:

• Clearly distinguish synchronous from
asynchronous function calls.

• Enable computation to occur only after some
event has happened, without adding an additional
nesting level each time (no pyramid of doom).

• Make it possible to handle errors, including for
multiple related async requests.

• Make it possible to wait for multiple async calls to
finish before proceeding.

26

LaToza GMU SWE 432 Fall 2017

Sequencing events with Promises

• Promises are a wrapper around async callbacks
• Promises represents how to get a value
• Then you tell the promise what to do when it gets it
• Promises organize many steps that need to happen

in order, with each step happening asynchronously
• At any point a promise is either:

• Is unresolved
• Succeeds
• Fails

27

LaToza GMU SWE 432 Fall 2017

Using a Promise
• Declare what you want to do when your promise is

completed (then), or if there’s an error (catch)

28

fetch('https://github.com/')
 .then(function(res) {
 return res.text();
 });

fetch('http://domain.invalid/')
 .catch(function(err) {
 console.log(err);
 });

LaToza/Bell GMU SWE 432 Fall 2016 29

Promise one thing then another
Promise to get

some data

Promise to get
some data based

on that data

then

then

Use that data to
update application

state

Report on the
error

If there’s an error…

If there’s an error…

LaToza/Bell GMU SWE 432 Fall 2016 30

Chaining Promises
myPromise.then(function(resultOfPromise){ 
 //Do something, maybe asynchronously 
 return theResultOfThisStep; 
})
.then(function(resultOfStep1){ 
 //Do something, maybe asynchronously 
 return theResultOfStep2; 
})
.then(function(resultOfStep2){ 
 //Do something, maybe asynchronously 
 return theResultOfStep3; 
})
.then(function(resultOfStep3){ 
 //Do something, maybe asynchronously 
 return theResultOfStep4; 
})
.catch(function(error){ 
  
});

LaToza GMU SWE 432 Fall 2017

Promising many things
• Can also specify that *many* things should be done,

and then something else
• Example: load a whole bunch of images at once:
Promise
 .all([loadImage("GMURGB.jpg"), loadImage(“JonBell.jpg")]) 
 .then(function (imgArray) { 
 imgArray.forEach(img => {document.body.appendChild(img)}) 
 })
 .catch(function (e) { 
 console.log("Oops");  
 console.log(e); 
 });

31

LaToza GMU SWE 432 Fall 2017

Writing a Promise
• Most often, Promises will be generated by an API

function (e.g., fetch) and returned to you.
• But you can also create your own Promise.

32

var p = new Promise(function(resolve, reject) {
 if (/* condition */) {
 resolve(/* value */); // fulfilled successfully
 }
 else {
 reject(/* reason */); // error, rejected
 }
});

LaToza GMU SWE 432 Fall 2017

Example: Writing a Promise
• loadImage returns a promise to load a given image
function loadImage(url){ 
 return new Promise(function(resolve, reject) { 
 var img = new Image(); 
 img.src=url; 
 img.onload = function(){ 
 resolve(img); 
 } 
 img.onerror = function(e){ 
 reject(e); 
 } 
 }); 
}

33

Once the image is loaded, we’ll resolve the promise

If the image has an error, the promise is rejected

LaToza GMU SWE 432 Fall 2017

Timers

Run myFunc no sooner than 1500 ms

34

function	myFunc(arg)	{	
		console.log(`arg	was	=>	${arg}`);	
}	
setTimeout(myFunc,	1500,	'funky');	

Run code every 500 ms

setInterval(()	=>	{	
		console.log('interval	executing');	
},	500);	

setImmediate((arg)	=>	{	
		console.log(`executing	immediate:	${arg}`);	
},	'so	immediate');	

Run code after any I/O operations in current cycle and before
timers from next cycle

LaToza GMU SWE 432 Fall 2017

Stopping timers

35

const	timeoutObj	=	setTimeout(()	=>	{	
		console.log('execute	after	1500	ms');	
},	1500);	

const	intervalObj	=	setInterval(()	=>	{	
		console.log('execute	every	500	ms');	
},	500);	

const	immediateObj	=	setImmediate(()	=>	{	
		console.log('execute	after	IO	operations');	
});	

clearTimeout(timeoutObj);	
clearImmediate(immediateObj);	
clearInterval(intervalObj);	

LaToza GMU SWE 432 Fall 2017

Demo: Promises and Timers

36

LaToza GMU SWE 432 Fall 2017

Readings for next time
• Using Promises

• https://developer.mozilla.org/en-US/docs/Web/
JavaScript/Guide/Using_promises

• Node.js event loop
• https://nodejs.org/en/docs/guides/event-loop-

timers-and-nexttick/

37

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Using_promises
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Using_promises
https://nodejs.org/en/docs/guides/event-loop-timers-and-nexttick/
https://nodejs.org/en/docs/guides/event-loop-timers-and-nexttick/

