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Today
• Demo: Promises and Timers 
• What is “state” in a web application? 
• How do we store it, and how do we choose where 

to store it?
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Demo: Promises and Timers
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What is “state” in a 
web app?
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Application State
• All data in an application 
• What kinds of data are we concerned about? 

• What user is logged in? 
• What interactions have they had with us before? 
• What data have they given us? 
• What data have others given us? 

• Where do we store all of these things?
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State: Example
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Home page Login

Amazon.com…
Browse

Still logged in

Add to cart

Still logged in

visit 
amazon.com

Still logged in, 
still have cart…
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HTTP is stateless
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Web “Frontend” Server “Backend”

HTTP GET https://www.amazon.com

HTTP Request

HTTP Request
HTTP GET https://www.amazon.com/Kakanuo-LED-
Dimmable-Bi-pin-72X3014SMD/dp/B01FHKDQ58/
ref=pd_sim_60_1?
_encoding=UTF8&pd_rd_i=B01FHKDQ58&pd_rd_r=YWCC63ERT
FEMK3E7F3H6&pd_rd_w=o3wIl&pd_rd_wg=dMfnr&psc=1&refR
ID=YWCC63ERTFEMK3E7F3H6

• Each request / response pair is independent of previous request / 
response pair 

• Frontend cannot assume that it is making request to the same server. 
• Might be load balanced, crash, ...

https://www.amazon.com
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Where to persist application state?

• Many options 
• Goals: 

• Cost 
• Efficiency 
• Stability
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Web “Front 
End”

Our Node 
Backend

Storage 
provider
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Where to persist application state?

• Should consider how often we need to show it to the user, and how 
permanently we need to store it 

• Examples:  
• What user is logged in? (Transient, relevant to user and backend) 
• What’s in my shopping cart? (Semi-transient, relevant to user and 

backend) 
• What products am I looking at? (Transient, relevant to user) 
• What are all of the products (Long-term, parts are relevant to 

users)
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Frontend 
(browser)

Backend 
(webserver)

Storage 
provider
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Where to persist application state
• URL and query parameters 

• Really small amounts of data 
• Data that should be changed through forward/back buttons in browser 

• Frontend 
• Data we might need to show again soon 
• Fairly small (KB’s or few MBs, not 100 MB’s or GB’s) 
• Data we don’t care about going away or being maliciously manipulated 

• In memory on backend 
• Data that we are working with that will fit in memory (MB’s probably not GB’s) 
• Transient data that can disappear if the server crashes 
• Cache or index of data stored on backend disk, database, or storage provider 

• On backend disk or database 
• Data we need persisted “permanently” 
• Data that only needs to be used by single server 

• Storage provider 
• Data we need persisted "permanently" 
• Data that we need to share across multiple servers
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Frontend State: Cookies
• String associated with a name/domain/path, stored at the 

browser  
• Series of name-value pairs, interpreted by the web application 
• Create in HTTP response with “Set-Cookie: ” 
• In all subsequent requests to this site, until cookie’s 

expiration, the client sends the HTTP header “Cookie: ” 
• Often have an expiration (otherwise expire when browser 

closed) 
• Various technical, privacy and security issues  

• Inconsistent state after using “back” button, third-party 
cookies, cross-site scripting, …
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Cookies and Requests
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Web “Front End” Server “Back End”

HTTP Response
HTTP/1.1 200 OK 
... 
Set-Cookie: class=swe432 
...

HTTP Request
GET / HTTP/1.1 
... 
Cookie: class=swe432 
...

HTTP Request

HTTP Response

HTTP Request
GET / HTTP/1.1 
... 
Cookie: class=swe432 
...

HTTP Response
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Cookies & NodeJS
• cookie-parser enables reading and writing cookies 

• npm install cookie-parser 
• let cookieParser = require('cookie-parser'); 

• Stateful Hello World 
const express = require('express'); 
const cookieParser = require('cookie-parser'); 
const app = express(); 

app.use(cookieParser()); 

app.get('/', (req, res) => { 
    if(req.cookies.helloSent == "true") 
        res.send("I already said hello to you!"); 
    else 
        res.cookie("helloSent","true").send('Hello World!'); 
}); 

app.listen(3000);
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Persisting more complex state
• The most cookies you can have: 4KB (TOTAL per DOMAIN) 
• Old solution 

• Cookie is a key to some data stored on server 
• When client makes a request, server always includes this 

“extra data” being stored on server 
• What’s wrong with this old solution? 

• Really slow 
• For every request 

• Client passes key to server using cookie 
• Server loads data corresponding to key 
• Client downloads data as part of HTTP response
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Frontend State with LocalStorage
• HTML5 added support for persisting larger data on the frontend 

localStorage (Persists forever) 
sessionStorage (Persists until tab is closed) 

• To use localStorage and sessionStorage 
setItem(“key","value"); 
getItem(“key”); 

var id = localStorage.getItem(“userID”); 

• Can store any string 
• All pages in the same domain see the same localStorage and 

sessionStorage 
• Alternatively: SQLite (SQL DB) that you can use in JS

15



Persisting state on the 
backend
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Storing state in a global variable
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• Global variables
var express = require('express');  
var app = express(); 
var port = process.env.port || 3000;  
 
var counter = 0;  
app.get('/', function (req, res) { 
    res.send('Hello World has been said ' + counter + ' times!'); 
    counter++; 
}); 
 
app.listen(port, function () { 
    console.log('Example app listening on port' + port);  
}); 

• Pros/cons? 
• Keep data between requests 
• Goes away when your server stops 

• Should use for transient state or as cache
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What forms of data might you have

• Key / value pairs 
• JSON objects 
• Tabular arrays of data 
• Files

18



LaToza GMU SWE 432 Fall 2017

Options for backend persistence

• Where it is stored 
• On your server or another server you own 

• SQL databases, NoSQL databases 
• File system 

• Storage provider (not on a server you own) 
• BLOB store 
• NoSQL databases: Next time

19
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Blobs: Storing uploaded files

• Example: User uploads picture 
• … and then? 
• … somehow process the file?
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How do we store our files?
• Dealing with text is easy - we already figured out 

firebase 
• Could use other databases too… but that’s another 

class! 
• But 

• What about pictures? 
• What about movies? 
• What about big huge text files? 

• Aka…Binary Large OBject (BLOB) 
• Collection of binary data stored as a single entity 
• Generic terms for an entity that is array of bytes

21
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Working with Blobs
• Module: express-fileupload 

• Simplest case: take a file, save it on the server 
app.post('/upload', function(req, res) { 
    var sampleFile;  
    sampleFile = req.files.sampleFile; 
    sampleFile.mv('/somewhere/on/your/server/filename.jpg', function(err) { 
        if (err) { 
            res.status(500).send(err); 
        } 
        else {  
            res.send('File uploaded!');  
        } 
    }); 
}); 

• Long story... can't app.use(body-parser) when you are 
handling file uploads. Instead: 

app.use(express.json())	
			.use(express.urlencoded());
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Where to store blobs
• Saving them on our server is fine, but… 

• What if we don't want to deal with making sure 
we have enough storage 

• What if we don't want to deal with backing up 
those files 

• What if our app has too many requests for one 
server and state needs to be shared between 
load-balanced servers 

• What if we want someone else to deal with 
administering a server

23
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Blob stores
• Amazon, Google, and others want to let you use 

their platform to solve this!
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Client Node 
Backend

Google Cloud

Server

Server

Server

Server

Server

Server

Server

Server

Client

Client

Client

Client

Client

Client

Uploads file

Distributes file
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Blob Stores

Client Node 
Backend

Google Cloud

Server

Server

Server

Server

Server

Server

Server

Server

Uploads file

Returns link

Typical workflow:
Client uploads file to your backend 
Backend persists file to blob store 
Backend saves link to file, e.g. in Firebase
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Google Cloud Storage
• You get to store 5GB for free 
• Setup
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• https://www.npmjs.com/package/google-cloud

npm	install	--save	@google-cloud/storage 

var storage = require('@google-cloud/storage'); 

var fs = require('fs'); 
  
// Authenticating on a per-API-basis. You don't need to do this if you auth on a  
// global basis (see Authentication section above).  
  
var gcs = storage({ 
  projectId: 'grape-spaceship-123', 
  keyFilename: '/path/to/keyfile.json' 
}); 
  
// Create a new bucket.  
gcs.createBucket('my-new-bucket', function(err, bucket) { 
  if (!err) { 
    // "my-new-bucket" was successfully created.  
  } 
}); 

https://www.npmjs.com/package/google-cloud
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Google Cloud Storage
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// Reference an existing bucket.  
var bucket = gcs.bucket('my-existing-bucket'); 
  
// Upload a local file to a new file to be created in your bucket.  
bucket.upload('/photos/zoo/zebra.jpg', function(err, file) { 
  if (!err) { 
    // "zebra.jpg" is now in your bucket.  
  } 
}); 
  
// Download a file from your bucket.  
bucket.file('giraffe.jpg').download({ 
  destination: '/photos/zoo/giraffe.jpg' 
}, function(err) {}); 
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Exercise: Where to Persist

• You are building a news aggregator site and want 
to recommend articles based on past articles the 
user has clicked on. Where should you persist this?

28
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Exercise: Where to Persist

• You are building a shopping app and need to track 
a shopping card. How might you persist this?

29
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Where to persist application state
• Frontend 

• Data we might need to show again soon 
• Fairly small (KB’s or few MBs, not 100 MB’s or GB’s) 
• Data we don’t care about going away or being maliciously manipulated 

• In memory on backend 
• Data that we are working with that will fit in memory (MB’s probably not 

GB’s) 
• Transient data that can disappear if the server crashes 
• Cache or index of data stored on backend disk, database, or storage 

provider 
• On backend disk or database 

• Data we need persisted “permanently” 
• Data that only needs to be used by single server 

• On storage provider 
• Data we need persisted "permanently" 
• Data that we need to share across multiple servers
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Readings for next time
• Firebase Get Started 

• https://firebase.google.com/docs/database/web/
start 

• Firebase Structure Data 
• https://firebase.google.com/docs/database/web/

structure-data  
• Firebase Read and Write Data 

• https://firebase.google.com/docs/database/web/
read-and-write 
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https://firebase.google.com/docs/database/web/start
https://firebase.google.com/docs/database/web/start
https://firebase.google.com/docs/database/web/structure-data
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https://firebase.google.com/docs/database/web/read-and-write
https://firebase.google.com/docs/database/web/read-and-write

