
Persistence
SWE 432, Fall 2017

Design and Implementation of Software for the Web

LaToza GMU SWE 432 Fall 2017

Today
• Demo: Promises and Timers
• What is “state” in a web application?
• How do we store it, and how do we choose where

to store it?

2

LaToza GMU SWE 432 Fall 2017

Demo: Promises and Timers

3

What is “state” in a
web app?

LaToza GMU SWE 432 Fall 2017

Application State
• All data in an application
• What kinds of data are we concerned about?

• What user is logged in?
• What interactions have they had with us before?
• What data have they given us?
• What data have others given us?

• Where do we store all of these things?

5

LaToza GMU SWE 432 Fall 2017

State: Example

6

Home page Login

Amazon.com…
Browse

Still logged in

Add to cart

Still logged in

visit
amazon.com

Still logged in,
still have cart…

LaToza GMU SWE 432 Fall 2017

HTTP is stateless

7

Web “Frontend” Server “Backend”

HTTP GET https://www.amazon.com

HTTP Request

HTTP Request
HTTP GET https://www.amazon.com/Kakanuo-LED-
Dimmable-Bi-pin-72X3014SMD/dp/B01FHKDQ58/
ref=pd_sim_60_1?
_encoding=UTF8&pd_rd_i=B01FHKDQ58&pd_rd_r=YWCC63ERT
FEMK3E7F3H6&pd_rd_w=o3wIl&pd_rd_wg=dMfnr&psc=1&refR
ID=YWCC63ERTFEMK3E7F3H6

• Each request / response pair is independent of previous request /
response pair

• Frontend cannot assume that it is making request to the same server.
• Might be load balanced, crash, ...

https://www.amazon.com

LaToza GMU SWE 432 Fall 2017

Where to persist application state?

• Many options
• Goals:

• Cost
• Efficiency
• Stability

8

Web “Front
End”

Our Node
Backend

Storage
provider

LaToza GMU SWE 432 Fall 2017

Where to persist application state?

• Should consider how often we need to show it to the user, and how
permanently we need to store it

• Examples:
• What user is logged in? (Transient, relevant to user and backend)
• What’s in my shopping cart? (Semi-transient, relevant to user and

backend)
• What products am I looking at? (Transient, relevant to user)
• What are all of the products (Long-term, parts are relevant to

users)

9

Frontend
(browser)

Backend
(webserver)

Storage
provider

LaToza GMU SWE 432 Fall 2017

Where to persist application state
• URL and query parameters

• Really small amounts of data
• Data that should be changed through forward/back buttons in browser

• Frontend
• Data we might need to show again soon
• Fairly small (KB’s or few MBs, not 100 MB’s or GB’s)
• Data we don’t care about going away or being maliciously manipulated

• In memory on backend
• Data that we are working with that will fit in memory (MB’s probably not GB’s)
• Transient data that can disappear if the server crashes
• Cache or index of data stored on backend disk, database, or storage provider

• On backend disk or database
• Data we need persisted “permanently”
• Data that only needs to be used by single server

• Storage provider
• Data we need persisted "permanently"
• Data that we need to share across multiple servers

10

LaToza GMU SWE 432 Fall 2017

Frontend State: Cookies
• String associated with a name/domain/path, stored at the

browser
• Series of name-value pairs, interpreted by the web application
• Create in HTTP response with “Set-Cookie: ”
• In all subsequent requests to this site, until cookie’s

expiration, the client sends the HTTP header “Cookie: ”
• Often have an expiration (otherwise expire when browser

closed)
• Various technical, privacy and security issues

• Inconsistent state after using “back” button, third-party
cookies, cross-site scripting, …

11

LaToza GMU SWE 432 Fall 2017

Cookies and Requests

12

Web “Front End” Server “Back End”

HTTP Response
HTTP/1.1 200 OK
...
Set-Cookie: class=swe432
...

HTTP Request
GET / HTTP/1.1
...
Cookie: class=swe432
...

HTTP Request

HTTP Response

HTTP Request
GET / HTTP/1.1
...
Cookie: class=swe432
...

HTTP Response

LaToza GMU SWE 432 Fall 2017

Cookies & NodeJS
• cookie-parser enables reading and writing cookies

• npm install cookie-parser
• let cookieParser = require('cookie-parser');

• Stateful Hello World
const express = require('express');
const cookieParser = require('cookie-parser');
const app = express();

app.use(cookieParser());

app.get('/', (req, res) => {
 if(req.cookies.helloSent == "true")
 res.send("I already said hello to you!");
 else
 res.cookie("helloSent","true").send('Hello World!');
});

app.listen(3000);

13

LaToza GMU SWE 432 Fall 2017

Persisting more complex state
• The most cookies you can have: 4KB (TOTAL per DOMAIN)
• Old solution

• Cookie is a key to some data stored on server
• When client makes a request, server always includes this

“extra data” being stored on server
• What’s wrong with this old solution?

• Really slow
• For every request

• Client passes key to server using cookie
• Server loads data corresponding to key
• Client downloads data as part of HTTP response

14

LaToza GMU SWE 432 Fall 2017

Frontend State with LocalStorage
• HTML5 added support for persisting larger data on the frontend

localStorage (Persists forever) 
sessionStorage (Persists until tab is closed)

• To use localStorage and sessionStorage
setItem(“key","value");
getItem(“key”);

var id = localStorage.getItem(“userID”);

• Can store any string
• All pages in the same domain see the same localStorage and

sessionStorage
• Alternatively: SQLite (SQL DB) that you can use in JS

15

Persisting state on the
backend

LaToza GMU SWE 432 Fall 2017

Storing state in a global variable

17

• Global variables
var express = require('express');  
var app = express(); 
var port = process.env.port || 3000;  
 
var counter = 0;  
app.get('/', function (req, res) { 
 res.send('Hello World has been said ' + counter + ' times!'); 
 counter++; 
}); 
 
app.listen(port, function () { 
 console.log('Example app listening on port' + port);  
});

• Pros/cons?
• Keep data between requests
• Goes away when your server stops

• Should use for transient state or as cache

LaToza GMU SWE 432 Fall 2017

What forms of data might you have

• Key / value pairs
• JSON objects
• Tabular arrays of data
• Files

18

LaToza GMU SWE 432 Fall 2017

Options for backend persistence

• Where it is stored
• On your server or another server you own

• SQL databases, NoSQL databases
• File system

• Storage provider (not on a server you own)
• BLOB store
• NoSQL databases: Next time

19

LaToza GMU SWE 432 Fall 2017

Blobs: Storing uploaded files

• Example: User uploads picture
• … and then?
• … somehow process the file?

20

LaToza GMU SWE 432 Fall 2017

How do we store our files?
• Dealing with text is easy - we already figured out

firebase
• Could use other databases too… but that’s another

class!
• But

• What about pictures?
• What about movies?
• What about big huge text files?

• Aka…Binary Large OBject (BLOB)
• Collection of binary data stored as a single entity
• Generic terms for an entity that is array of bytes

21

LaToza GMU SWE 432 Fall 2017

Working with Blobs
• Module: express-fileupload

• Simplest case: take a file, save it on the server
app.post('/upload', function(req, res) { 
 var sampleFile;  
 sampleFile = req.files.sampleFile; 
 sampleFile.mv('/somewhere/on/your/server/filename.jpg', function(err) { 
 if (err) { 
 res.status(500).send(err); 
 } 
 else {  
 res.send('File uploaded!');  
 } 
 }); 
});

• Long story... can't app.use(body-parser) when you are
handling file uploads. Instead:

app.use(express.json())	
			.use(express.urlencoded());

22

LaToza GMU SWE 432 Fall 2017

Where to store blobs
• Saving them on our server is fine, but…

• What if we don't want to deal with making sure
we have enough storage

• What if we don't want to deal with backing up
those files

• What if our app has too many requests for one
server and state needs to be shared between
load-balanced servers

• What if we want someone else to deal with
administering a server

23

LaToza GMU SWE 432 Fall 2017

Blob stores
• Amazon, Google, and others want to let you use

their platform to solve this!

24

Client Node
Backend

Google Cloud

Server

Server

Server

Server

Server

Server

Server

Server

Client

Client

Client

Client

Client

Client

Uploads file

Distributes file

LaToza/Bell GMU SWE 432 Fall 2016 25

Blob Stores

Client Node
Backend

Google Cloud

Server

Server

Server

Server

Server

Server

Server

Server

Uploads file

Returns link

Typical workflow:
Client uploads file to your backend
Backend persists file to blob store
Backend saves link to file, e.g. in Firebase

LaToza GMU SWE 432 Fall 2017

Google Cloud Storage
• You get to store 5GB for free
• Setup

26

• https://www.npmjs.com/package/google-cloud

npm	install	--save	@google-cloud/storage

var storage = require('@google-cloud/storage');

var fs = require('fs');

// Authenticating on a per-API-basis. You don't need to do this if you auth on a
// global basis (see Authentication section above).

var gcs = storage({
 projectId: 'grape-spaceship-123',
 keyFilename: '/path/to/keyfile.json'
});

// Create a new bucket.
gcs.createBucket('my-new-bucket', function(err, bucket) {
 if (!err) {
 // "my-new-bucket" was successfully created.
 }
});

https://www.npmjs.com/package/google-cloud

LaToza GMU SWE 432 Fall 2017

Google Cloud Storage

27

// Reference an existing bucket.
var bucket = gcs.bucket('my-existing-bucket');

// Upload a local file to a new file to be created in your bucket.
bucket.upload('/photos/zoo/zebra.jpg', function(err, file) {
 if (!err) {
 // "zebra.jpg" is now in your bucket.
 }
});

// Download a file from your bucket.
bucket.file('giraffe.jpg').download({
 destination: '/photos/zoo/giraffe.jpg'
}, function(err) {});

LaToza GMU SWE 432 Fall 2017

Exercise: Where to Persist

• You are building a news aggregator site and want
to recommend articles based on past articles the
user has clicked on. Where should you persist this?

28

LaToza GMU SWE 432 Fall 2017

Exercise: Where to Persist

• You are building a shopping app and need to track
a shopping card. How might you persist this?

29

LaToza GMU SWE 432 Fall 2017

Where to persist application state
• Frontend

• Data we might need to show again soon
• Fairly small (KB’s or few MBs, not 100 MB’s or GB’s)
• Data we don’t care about going away or being maliciously manipulated

• In memory on backend
• Data that we are working with that will fit in memory (MB’s probably not

GB’s)
• Transient data that can disappear if the server crashes
• Cache or index of data stored on backend disk, database, or storage

provider
• On backend disk or database

• Data we need persisted “permanently”
• Data that only needs to be used by single server

• On storage provider
• Data we need persisted "permanently"
• Data that we need to share across multiple servers

30

LaToza GMU SWE 432 Fall 2017

Readings for next time
• Firebase Get Started

• https://firebase.google.com/docs/database/web/
start

• Firebase Structure Data
• https://firebase.google.com/docs/database/web/

structure-data
• Firebase Read and Write Data

• https://firebase.google.com/docs/database/web/
read-and-write

31

https://firebase.google.com/docs/database/web/start
https://firebase.google.com/docs/database/web/start
https://firebase.google.com/docs/database/web/structure-data
https://firebase.google.com/docs/database/web/structure-data
https://firebase.google.com/docs/database/web/read-and-write
https://firebase.google.com/docs/database/web/read-and-write

