
NoSQL
SWE 432, Fall 2017

Design and Implementation of Software for the Web

LaToza GMU SWE 432 Fall 2017

Today
• What is NoSQL?
• How can you create a NoSQL app with Firebase?

2

LaToza GMU SWE 432 Fall 2017

NoSQL
• non SQL, non-relational, "not only" SQL databases
• Emphasizes simplicity & scalability over support for relational

queries
• Important characteristics

• Schema-less: each row in dataset can have different fields
(just like JSON!)

• Non-relational: no structure linking tables together or queries
to "join" tables

• (Often) weaker consistency: after a field is updated, all clients
eventually see the update but may see older data in the
meantime

• Advantages: greater scalability, faster, simplicity, easier
integration with code

• Several types. We'll look only at key-value.

3

LaToza GMU SWE 432 Fall 2017

Key-Value NoSQL

4

https://www.thoughtworks.com/insights/blog/nosql-databases-overview

https://www.thoughtworks.com/insights/blog/nosql-databases-overview

LaToza/Bell GMU SWE 432 Fall 2016

Firebase Realtime Database
• Example of a NoSQL datastore
• Google web service

• https://firebase.google.com/docs/database/
• Realtime database

• Data stored to remote web service
• Data synchronized to clients in real time

• Simple API
• Offers library wrapping HTTP requests & responses
• Handles synchronization of data

• Can also be used on frontend to build web apps with persistence
without backend

5

https://firebase.google.com/docs/database/

LaToza/Bell GMU SWE 432 Fall 2016

Setting up Firebase

• Detailed instructions to create project, get API key
• https://firebase.google.com/docs/web/setup

6

<script src="https://www.gstatic.com/firebasejs/3.4.0/firebase.js"></script>
<script>
// Initialize Firebase
// TODO: Replace with your project's customized code snippet
var config = {
 apiKey: "<API_KEY>",
 authDomain: "<PROJECT_ID>.firebaseapp.com",
 databaseURL: "https://<DATABASE_NAME>.firebaseio.com",
 storageBucket: "<BUCKET>.appspot.com",
};
firebase.initializeApp(config);
</script>

https://firebase.google.com/docs/web/setup

LaToza GMU SWE 432 Fall 2017

Setting up Firebase Realtime Database

• Go to https://console.firebase.google.com/, create
a new project

• Install firebase module

7

npm install firebase

const firebase = require("firebase");

// Initialize Firebase
// TODO: Replace with your project's customized code snippet
const config = {
 apiKey: "<API_KEY>",
 authDomain: "<PROJECT_ID>.firebaseapp.com",
 databaseURL: "https://<DATABASE_NAME>.firebaseio.com",
 storageBucket: "<BUCKET>.appspot.com",
};
firebase.initializeApp(config);

• Include Firebase in your web app

https://console.firebase.google.com/

LaToza GMU SWE 432 Fall 2017

Get Config Object for your Project
• Go to Authentication, Click "Web Setup" in the

upper right corner

8

LaToza/Bell GMU SWE 432 Fall 2016

Permissions
• By default, Firebase requires authentication

• All unauthenticated requests will be refused
• Do not want anyone with your URL to steal, destroy your production

data
• Will look at authentication in later lecture
• For development, ok to allow anonymous access

9

LaToza GMU SWE 432 Fall 2017

Firebase Console
• See data values, updated in realtime
• Can edit data values

10

https://console.firebase.google.com

https://console.firebase.google.com

LaToza GMU SWE 432 Fall 2017

Simple test program
• After successfully completing previous steps,

should be able to replace config and run this
script. Can test by viewing data on console.

11

const firebase = require("firebase");

// Initialize Firebase
const config = {
 ... [copied from your config object on Firebase]
};
firebase.initializeApp(config);

let database = firebase.database();
database.ref('users/' + 'Josh').set(
 { username: 'Josh', email: 'josh@gmail.com'
 });

LaToza GMU SWE 432 Fall 2017

Activity: Set up Firebase Realtime
Database

12

LaToza/Bell GMU SWE 432 Fall 2016

Firebase data model: JSON
• JSON format data

• Hierarchic tree of
key/value pairs

• Can view as one
big object

• Or describe path
to descendent and
view descendent
as object

13

LaToza GMU SWE 432 Fall 2017

Structuring data
• How do you organize lots of data?

• One idea: just have a hierarchic structure
• Level 1: most general elements
• Level 2: elements that belong to Level 1 elements
• Level n: elements that belong to Level n-1

elements

• What are the pros and cons of this approach?

14

LaToza GMU SWE 432 Fall 2017

Structuring data
• Should be considering

what types of records
clients will be
requesting.
• Do not want to force

client to download
data that do not
need.

• Better to think of
structure as lists of data
that clients will retrieve

• Can duplicate deeply
nested structures with
separate indexes

15

LaToza GMU SWE 432 Fall 2017

Activity: Design a data model
• Imagine you are designing a data model for a

restaurant review site.
• Each user has a profile, may submit reviews

(linked to the user) for a restaurant, and may
upvote, downvote, and comment on reviews
(linked to the reviewer and restaurant).  

• How would you structure this data?

16

LaToza/Bell GMU SWE 432 Fall 2016

Storing Data: Set

17

function writeUserData(userId, name, email, imageUrl) {
 firebase.database().ref('users/' + userId).set({
 username: name,
 email: email,
 profile_picture : imageUrl
 });
}

“On the active
firebase database”
Must be initialized first (coming
soon….).

“Get the users/
[userID] node”

“Set value”

Arbitrary nodes in the tree can be
addressed by their path.

Sets the value to
specified JSON.

LaToza/Bell GMU SWE 432 Fall 2016

Storing Data: Push

• What about storing collections?
• Use push to create key automatically
• All data MUST have a key so it can be uniquely

referenced
• Arrays given index keys

• Should never have multiple clients synchronizing an array
• Local indexes could get of sync with remote keys
• Instead, use JSON object with number as key

18

var key = firebase.database().ref().child('posts').push(
 { author: username, uid: uid, body: body, title: title });

LaToza/Bell GMU SWE 432 Fall 2016

Storing Data: Delete

• Can delete a subtree by setting value to null or by
calling remove on ref
• If you want to store null, first need to convert value

to something else (e.g., 0, '')

19

firebase.database().ref().child(‘posts’).remove();

Removes the ‘posts’ subtree.

LaToza/Bell GMU SWE 432 Fall 2016

Listening to data changes

• Read data by listening to changes to specific
subtrees

• Events will be generated for initial values and then
for each subsequent update

20

var starCountRef = firebase.database().ref('posts/' + postId + '/starCount');
starCountRef.on('value', function(snapshot) {
 updateStarCount(postElement, snapshot.val());
});

“When values changes, invoke function”
Specify a subtree by creating a reference to a path. Listen to one or
more events by using on(eventName, eventHandlerFunction(snapshot))

LaToza/Bell GMU SWE 432 Fall 2016

Data Update Events

• Types of events
• value: entire contents of a path
• child_added
• child_changed
• child_removed

• Can listen to events on any part of subtree
• Could have subtrees that correspond to different collections of

data
• Should always listen to lowest subtree of interest to minimize

extraneous communication
• Can read data exactly one time (and not get updates) using once

21

LaToza/Bell GMU SWE 432 Fall 2016

Ordering data
• Data is by, default, ordered by key in ascending

order
• e.g., numeric index keys are ordered from 0…n
• e.g., alphanumeric keys are ordered in

alphanumeric order
• Can get only first (or last) n elements

• e.g., get n most recent news items

22

var recentPostsRef = firebase.database().ref('posts').limitToLast(100);
recentPostsRef.once('value', function(snapshot) {
 displayPost(snapshot.val());
});

LaToza GMU SWE 432 Fall 2017

Activity: Persist restaurant data in
Firebase

• Assume you have some endpoints to gather
submitted data from users for previous scenario.

• Using data submitted through these endpoints,
store to Firebase.

• Offer endpoints for retrieving this data back from
Firebase.

23

LaToza GMU SWE 432 Fall 2017

Reading for next time

• Intro to CORS: https://www.moesif.com/blog/
technical/cors/Authoritative-Guide-to-CORS-Cross-
Origin-Resource-Sharing-for-REST-APIs/

24

https://www.moesif.com/blog/technical/cors/Authoritative-Guide-to-CORS-Cross-Origin-Resource-Sharing-for-REST-APIs/
https://www.moesif.com/blog/technical/cors/Authoritative-Guide-to-CORS-Cross-Origin-Resource-Sharing-for-REST-APIs/
https://www.moesif.com/blog/technical/cors/Authoritative-Guide-to-CORS-Cross-Origin-Resource-Sharing-for-REST-APIs/

