
Templates,
Databinding and HTML

SWE 432, Fall 2019
Web Application Development

LaToza GMU SWE 432 Fall 2019

Today
• HTML

• Frontend JavaScript

• Intro to templating and React

2

LaToza GMU SWE 432 Fall 2019

HTML: HyperText Markup Language
• Language for

describing structure
of a document

• Denotes hierarchy of
elements

• What might be
elements in this
document?

3

LaToza GMU SWE 432 Fall 2019

HTML History
• 1995: HTML 2.0. Published as standard with RFC 1866

• 1997: HTML 4.0 Standardized most modern HTML element w/ W3C recommendation

• Encouraged use of CSS for styling elements over HTML attributes

• 2000: XHTML 1.0

• Imposed stricter rules on HTML format

• e.g., elements needed closing tag, attribute names in lowercase

• 2014: HTML5 published as W3C recommendation

• New features for capturing more semantic information and declarative description
of behavior

• e.g., Input constraints

• e.g., New tags that explain purpose of content

• Important changes to DOM

4

LaToza GMU SWE 432 Fall 2019

HTML Elements

5

<p lang=“en-us”>This is a paragraph in English.</p>

“End a paragraph
element”
Closing tag ends an HTML
element. All content between
the tags and the tags
themselves compromise an
HTML element.

“Start a paragraph
element”
Opening tag begins an HTML
element. Opening tags must
have a corresponding closing
tag.

“Set the language
to English”
HTML attributes are name /
value pairs that provide
additional information about
the contents of an element.

name value

LaToza GMU SWE 432 Fall 2019

HTML Elements

6

<input type=“text” />
“Begin and end
input element”
Some HTML tags can be self
closing, including a built-in
closing tag.

<!-- This is a comment. Comments
can be multiline. -->

LaToza GMU SWE 432 Fall 2019

A starter HTML document

7

“Use HTML5
standards mode”

“HTML content” “Header”
Information about the page

“Interpret bytes as
UTF-8 characters”
Includes both ASCII &
international characters.

“Title”
Used by browser for title bar
or tab.

“Document content”

LaToza GMU SWE 432 Fall 2019

HTML Example

8

https://seecode.run/#-KQgR7vG9Ds7IUJS1kdq

Use <h1>, <h2>, …, <h5>
for headings

https://seecode.run/#-KQgR7vG9Ds7IUJS1kdq

LaToza GMU SWE 432 Fall 2019

HTML Example

9

https://seecode.run/#-KQgR7vG9Ds7IUJS1kdq

Paragraphs (<p>) consist of related
content. By default, each paragraph

starts on a new line.

https://seecode.run/#-KQgR7vG9Ds7IUJS1kdq

LaToza GMU SWE 432 Fall 2019

HTML Example

10

https://seecode.run/#-KQgR7vG9Ds7IUJS1kdq

Unordered lists () consist of list items
() that each start on a new line. Lists can

be nested arbitrarily deep.

https://seecode.run/#-KQgR7vG9Ds7IUJS1kdq

LaToza GMU SWE 432 Fall 2019

Text

11

LaToza GMU SWE 432 Fall 2019

Semantic markup
• Tags that can be used to denote the meaning of specific content

• Examples

• An element that has importance.

• <blockquote> An element that is a longer quote.

• <q> A shorter quote inline in paragraph.

• <abbr> Abbreviation

• <cite> Reference to a work.

• <dfn> The definition of a term.

• <address> Contact information.

• <ins> Content that was inserted or deleted.

• <s> Something that is no longer accurate.

12

LaToza GMU SWE 432 Fall 2019

Links

13

LaToza GMU SWE 432 Fall 2019

Controls

14

Search input
provides clear

button

LaToza GMU SWE 432 Fall 2019

Block vs. Inline Elements

15

Block elements
Block elements appear on a new line.
Examples: <h1><p><table><form>

Inline elements
Inline elements appear to continue on the
same line.
Examples: <a><input>

LaToza GMU SWE 432 Fall 2019

Frontend JavaScript
• Static page

• Completely described by HTML & CSS
• Dynamic page

• Adds interactivity, updating HTML based on user
interactions

• Adding JS to frontend:
<script>
 console.log("Hello, world!");
</script>

• We try to avoid doing this because:
• Hard to organize
• Different browsers support different things

16

LaToza GMU SWE 432 Fall 2019

DOM: Document Object Model

• API for interacting with HTML browser
• Contains objects corresponding to every HTML

element
• Contains global objects for using other browser

features

17

Reference and tutorials
https://developer.mozilla.org/en-US/docs/Web/API/Document_Object_Model

https://developer.mozilla.org/en-US/docs/Web/API/Document_Object_Model

LaToza GMU SWE 432 Fall 2019

Global DOM objects
• window - the browser window

• Has properties for following objects (e.g.,
window.document)

• Or can refer to them directly (e.g., document)
• document - the current web page
• history - the list of pages the user has visited

previously
• location - URL of current web page
• navigator - web browser being used
• screen - the area occupied by the browser & page

18

LaToza GMU SWE 432 Fall 2019

Working with popups
• alert, confirm, prompt

• Create modal popups
• User cannot interact with web page until clears

the popups
• Only good style for messages that are really

important

19

LaToza GMU SWE 432 Fall 2019

Working with location
• Some properties

• location.href - full URL of current location
• location.protocol - protocol being used
• location.host - hostname
• location.port
• location.pathname

• Can navigate to new page by updating the current
location
• location.href = ‘[new URL]’;

20

LaToza GMU SWE 432 Fall 2019

Traveling through history
• history.back(), history.forward(), history.go(delta)
• What if you have an SPA & user navigates through

different views?
• Want to be able to jump between different views

within a single URL
• Solution: manipulate history state

• Add entries to history stack describing past
views

• Store and retrieve object using
history.pushState() and history.state

21

LaToza GMU SWE 432 Fall 2019

DOM Manipulation
• We can also manipulate the DOM directly
• For this class, we will not focus on doing this, but

will use React instead
• This is how React works though - it manipulates the

DOM

22

LaToza GMU SWE 432 Fall 2019

DOM Manipulation

• value
• attribute
• style
•

23

document.getElementById('compute')
 .addEventListener("click", multiply);
function multiply()
{
 var x = document.getElementById('num1').value;
 var y = document.getElementById('num2').value;
 var productElem = document.getElementById('product');
 productElem.innerHTML = x * y;
}

<h3>Multiply two numbers</h3>
<div>
 <input id="num1" type="number" /> *
 <input id="num2" type="number" /> =

 <button id="compute">Multiply</button>
</div>

May choose any event that the compute
element produces. May pass the name of a
function or define an anonymous function
inline.

“Get compute element” “When compute is clicked, call
multiply”

LaToza GMU SWE 432 Fall 2019

DOM Manipulation

• value
• attribute
• style
•

24

document.getElementById('compute')
 .addEventListener("click", multiply);
function multiply()
{
 var x = document.getElementById('num1').value;
 var y = document.getElementById('num2').value;
 var productElem = document.getElementById('product');
 productElem.innerHTML = ‘’ + x * y + ‘’;
}

<h3>Multiply two numbers</h3>
<div>
 <input id="num1" type="number" /> *
 <input id="num2" type="number" /> =

 <button id="compute">Multiply</button>
</div>

“Get the current value of the
num1 element”

“Set the HTML between the tags of
productElem to the value of x * y”
Manipulates the DOM by programmatically
updating the value of the HTML content. DOM offers
accessors for updating all of the DOM state.

LaToza GMU SWE 432 Fall 2019

DOM Manipulation Pattern
• Wait for some event

• click, hover, focus, keypress, …
• Do some computation

• Read data from event, controls, and/or previous
application state

• Update application state based on what
happened

• Update the DOM
• Generate HTML based on new application state

• Also: JQuery

25

LaToza GMU SWE 432 Fall 2019

Examples of events
• Form element events

• change, focus, blur
• Network events

• online, offline
• View events

• resize, scroll
• Clipboard events

• cut, copy, paste
• Keyboard events

• keydown, keypress, keypup
• Mouse events

• mouseenter, mouseleave, mousemove, mousedown, mouseup, click,
dblclick, select

26

List of events: https://www.w3.org/TR/DOM-Level-3-Events/

https://www.w3.org/TR/DOM-Level-3-Events/

LaToza GMU SWE 432 Fall 2019

DOM Manipulation Example

https://jsfiddle.net/Lbnhs8aa/1/

https://jsfiddle.net/Lbnhs8aa/1/

LaToza GMU SWE 432 Fall 2019

Loading pages
• What is the output of the following?

<script>
 document.getElementById('elem').innerHTML
= 'New content';
</script>

<div id="elem">Original content</div>

28

Answer: cannot set property innerHTML of undefined
Solution: Put your script in after the rest of the page is loaded

Or, perhaps better solution: don’t do DOM manipulation

LaToza GMU SWE 432 Fall 2019

Anatomy of a Non-Trivial Web App

29

User profile widget

Who to follow
widget

Follow widget

Feed widget

Feed item widget

LaToza GMU SWE 432 Fall 2019

Typical properties of web app UIs
• Each widget has both visual presentation & logic

• e.g., clicking on follow button executes some logic related to the containing
widget

• Logic and presentation of individual widget strongly related, loosely related to
other widgets

• Some widgets occur more than once

• e.g., Follow widget occurs multiple times in Who to Follow Widget

• Need to generate a copy of widget based on data

• Changes to data should cause changes to widget

• e.g., following person should update UI to show that the person is followed.
Should work even if person becomes followed through other UI

• Widgets are hierarchical, with parent and child

• Seen this already with container elements in HTML…

30

LaToza GMU SWE 432 Fall 2019

Idea 1: Templates

• Templates describe repeated HTML through a single common
representation

• May have variables that describe variations in the template

• May have logic that describes what values are used or when to
instantiate template

• Template may be instantiated by binding variables to values,
creating HTML that can be used to update DOM

31

								document.getElementById('todoItems').innerHTML	+=		
																'<div	class="todoItem"	data-index="'	+	key		
																+	'"><input	type="text"	onchange="itemChanged(this)"	value="'	
							+	value	+	'"><button	onclick="deleteItem(this.parentElement)">✖</button></div>';

LaToza GMU SWE 432 Fall 2019

Templates with template literals

• Template literals reduce confusion of nested
strings

32

								document.getElementById('todoItems').innerHTML	+=		
																`<div	class="todoItem"	data-index="${key}">	
																						<input	type="text"	onchange="itemChanged(this)"	value="${value}">	
																						<button	onclick="deleteItem(this.parentElement)">✖</button>	
																	</div>`;

LaToza GMU SWE 432 Fall 2019

Server side vs. client side
• Where should template be instantiated?

• Server-side frameworks: Template instantiated
on server

• Examples: JSP, ColdFusion, PHP, ASP.NET

• Logic executes on server, generating HTML
that is served to browser

• Front-end framework: Template runs in web
browser

• Examples: React, Angular, Meteor, Ember,
Aurelia, …

• Server passes template to browser, browser
generates HTML on demand

33

LaToza GMU SWE 432 Fall 2019

Server side vs. client side
• Server side

• Oldest solution.

• True when “real” code ran on server, Javascript

• Client side

• Enables presentation logic to exist entirely in browser

• e.g., can make call to remote web service, no need for server
to be involved

• (What we are looking at in this course).

34

LaToza GMU SWE 432 Fall 2019

Logic
• Templates require combining logic with HTML

• Conditionals - only display presentation if some
expression is true

• Loops - repeat this template once for every item in
collection

• How should this be expressed?

• Embed code in HTML (ColdFusion, JSP, Angular)

• Embed HTML in code (React)

35

LaToza GMU SWE 432 Fall 2019

Embed code in HTML

• Template takes the form of an HTML file, with extensions

• Custom tags (e.g., <% %>) enable logic to be embedded in
HTML

• Uses another language (e.g., Java, C) or custom language to
express logic

• Found in frameworks such as PHP, Angular, ColdFusion,
ASP, ...

36

LaToza GMU SWE 432 Fall 2019

Embed HTML in code
• Template takes the form of an HTML fragment,

embedded in a code file

• HTML instantiated as part of an expression,
becomes a value that can be stored to variables

• Uses another language (e.g., Javascript) to
express logic

• This course: React

37

LaToza GMU SWE 432 Fall 2019

Templates enable HTML to be rendered
multiple times

• Rendering takes a template, instantiates the template,
outputs HTML

• Logic determines which part(s) of templates are
rendered

• Expressions are evaluated to instantiate values

• e.g., { this.props.name }

• Different variable values ==> different HTML
output

38

LaToza GMU SWE 432 Fall 2019

Idea 2: Components
• Web pages are complex, with

lots of logic and presentation

• How can we organize web
page to maximize modularity?

• Solution: Components

• Templates that correspond
to a specific widget

• Encapsulates related logic &
presentation using language
construct (e.g., class)

39

LaToza GMU SWE 432 Fall 2019

Components
• Organize related logic and presentation into a single unit

• Includes necessary state and the logic for updating this state

• Includes presentation for rendering this state into HTML

• Outside world must interact with state through accessors,
enabling access to be controlled

• Synchronizes state and visual presentation

• Whenever state changes, HTML should be rendered again

• Components instantiated through custom HTML tag

40

LaToza GMU SWE 432 Fall 2019

React: Front End Framework for Components

• Originally build by Facebook

• Opensource frontend framework

• Powerful abstractions for describing frontend UI components

• Official documentation & tutorials

• https://reactjs.org/

41

https://reactjs.org/

LaToza GMU SWE 432 Fall 2019

class HelloMessage extends React.Component {
 render() {
 return (
 <div>
 Hello world!
 </div>
);
 }
}

ReactDOM.render(
 <HelloMessage/>, mountNode
);

Example

42

<div id=“mountNode”></div>
“Declare a HelloMessage
component”
Declares a new component with the
provided functions.

“Return the following HTML
whenever the component is
rendered”
Render generates the HTML for the
component. The HTML is dynamically
generated by the library.

“Render HelloMessage and
insert in mountNode”
Instantiates component, replaces
mountNode innerHTML with
rendered HTML. Second parameter
should always be a DOM element.

LaToza GMU SWE 432 Fall 2019

class HelloMessage extends React.Component {
 render() {
 return (
 <div>
 Hello {this.props.name}
 </div>
);
 }
}

ReactDOM.render(
 <HelloMessage name="John" />,
 mountNode
);

Example - Properties

43

“Read this.props.name
and output the value”
Evaluates the expression to a value.

“Set the name property of
HelloMessage to John”
Components have a this.props collection
that contains a set of properties instantiated
for each component.

LaToza GMU SWE 432 Fall 2019

Embedding HTML in Javascript
• HTML embedded in JavaScript

• HTML can be used as an expression

• HTML is checked for correct syntax

• Can use { expr } to evaluate an expression and return
a value

• e.g., { 5 + 2 }, { foo() }

• Output of expression is HTML

44

return <div>Hello {this.props.name}</div>;

LaToza GMU SWE 432 Fall 2019

JSX
• How do you embed HTML in JavaScript and get syntax checking??

• Idea: extend the language: JSX

• Javascript language, with additional feature that expressions
may be HTML

• Can be used with ES6 or traditional JS (ES5)

• It’s a new language

• Browsers do not natively run JSX

• If you include a JSX file as source, you will get an error

45

LaToza GMU SWE 432 Fall 2019 47

• Pastebin sites such as JSFiddle and codepen.io work with React
• Just need to include React first

http://codepen.io

LaToza GMU SWE 432 Fall 2019

Create React App

48

https://github.com/facebook/create-react-app

https://github.com/facebook/create-react-app

