
React Part 3
SWE 432, Fall 2019

Web Application Development

LaToza GMU SWE 432 Fall 2019

Review: Cascading selectors
• What happens if more than one rule applies?
• Most specific rule takes precedence

• p b is more specific than p
• #maximizeButton is more specific than button

• If otherwise the same, last rule wins
• Enables writing generic rules that apply to many

elements that are overriden by specific rules
applying to a few elements

2

LaToza GMU SWE 432 Fall 2019

Review: Centering content

• How do you center an element inside a container?
• Step 1: Must first ensure that element is narrower

than container.
• By default, element will expand to fill entire

container.
• So must usually explicitly set width for element.

• Step 2: Use auto value for left and right to create
equal gaps

3

LaToza GMU SWE 432 Fall 2019

Review: Transitions

• transition: [property time], …, [property time]
• When new class is applied, specifies the time it

will take for each property to change
• Can use all to select all changed properties

4

LaToza GMU SWE 432 Fall 2019

Review: Fixed width vs. liquid layouts

• Fixed width
• Use width=“[num]px” to force specific sizes
• Allows for tightest control of look and feel
• But can end up with extra whitespace around edge of web page

• Liquid layout
• Use width=“[num]%” to size relative to container sizes
• Pages expand to fill the entire container size
• Problems

• Wide windows may create long lines of text can be difficult to
read

• Very narrow windows may squash words, breaking text onto
many lines

• (Partial) solution
• Can use min-width, min-height, max-width, max-height to set

bounds on sizes

5

LaToza GMU SWE 432 Fall 2019

Review: Display Grid
• Can explicitly place elements inside grid into grid

areas

6

<div	class="wrapper">	
		<div	class="box1">One</div>	
		<div	class="box2">Two</div>	
		<div	class="box3">Three</div>	
		<div	class="box4">Four</div>	
		<div	class="box5">Five</div>	
</div>	
.wrapper	{		
		display:	grid;		
		grid-template-columns:	repeat(3,	1fr);		
		grid-auto-rows:	100px;		
}		
.box1	{		
		grid-column-start:	1;		
		grid-column-end:	4;		
		grid-row-start:	1;		
		grid-row-end:	3;		
}	
.box2	{		
		grid-column-start:	1;		
		grid-row-start:	3;		
		grid-row-end:	5;		
}

https://jsfiddle.net/73dpfb4k/

https://jsfiddle.net/73dpfb4k/

Bell GMU SWE 432 Fall 2018

Review: Handling events

7

class Toggle extends React.Component {
 constructor(props) {
 super(props);
 this.state = {isToggleOn: true};

 // This binding is necessary to make `this` work in the callback
 this.handleClick = this.handleClick.bind(this);
 }

 handleClick() {
 this.setState(prevState => ({ isToggleOn: !prevState.isToggleOn }));
 }

 render() {
 return (
 <button onClick={this.handleClick}>
 {this.state.isToggleOn ? 'ON' : 'OFF'}
 </button>
);
 }
}

ReactDOM.render(
 <Toggle />, document.getElementById('root')
);

https://reactjs.org/docs/handling-events.html

https://reactjs.org/docs/handling-events.html

Bell GMU SWE 432 Fall 2018

Review: Component lifecycle

8

class Timer extends React.Component {
 constructor(props) {
 super(props);
 this.state = { seconds: 0 };
 }

 tick() {
 this.setState(prevState => ({
 seconds: prevState.seconds + 1
 }));
 }

 componentDidMount() {
 this.interval = setInterval(() => this.tick(), 1000);
 }

 componentWillUnmount() {
 clearInterval(this.interval);
 }

 render() {
 return (
 <div>
 Seconds: {this.state.seconds}
 </div>
);
 }
}

ReactDOM.render(<Timer />, mountNode);

Bell GMU SWE 432 Fall 2018

Review: Component lifecycle

9

class Timer extends React.Component {
 constructor(props) {
 super(props);
 this.state = { seconds: 0 };
 }

 tick() {
 this.setState(prevState => ({
 seconds: prevState.seconds + 1
 }));
 }

 componentDidMount() {
 this.interval = setInterval(() => this.tick(), 1000);
 }

 componentWillUnmount() {
 clearInterval(this.interval);
 }

 render() {
 return (
 <div>
 Seconds: {this.state.seconds}
 </div>
);
 }
}

ReactDOM.render(<Timer />, mountNode);

ReactDOM.render(...)
[component created]
constructor(...)
render()
componentDidMount()

tick()
render()
...

[component rendered
again by parent]
componentWillUnmount()
[component created]
...

Bell GMU SWE 432 Fall 2018

Review: Controlled Components

• Single source of truth
• Whenever a control changes its value

• React is notified
• State is updated

• Whenever state is updated
• If necessary, render function executes and

generates control with new value

10

Bell GMU SWE 432 Fall 2018

Review: Reconciliation
• Process by which React updates the DOM with

each new render pass
• Occurs based on order of components

• Second child of Card is destroyed.
• First child of Card has text mutated.

11

<Card>
 <p>Paragraph 1</p>
 <p>Paragraph 2</p>
</Card>

<Card>
 <p>Paragraph 2</p>
</Card>

https://reactjs.org/docs/reconciliation.html

https://reactjs.org/docs/reconciliation.html

LaToza GMU SWE 432 Fall 2019

Overview
• GUI Component Frameworks
• React Recap
• More React: React Router, working with state
• Demo

12

LaToza GMU SWE 432 Fall 2019

Logistics: HW4: Interactive Frontend

Requirements

• React

• Create at least 5 separate React components.

• Use conditional rendering to conditionally render visual content

• Include handlers in your React components for at least 5 events

• Create at least two controlled components, where input from an HTML

control is bidirectionally synchronized with state in a React component

• Create a list of child elements or components with unique keys

• CSS

• Create at least one cascading selector which overrides another

selector

• Use at least two pseudo-classes

• Center at least one element inside its container

• Use the z-index and absolute or fixed positioning to display an element

stacked on top of another element

• Create an least one animation using transition

• Specify at least one fixed size and one relative size

• Use display grid to create a layout with multiple rows and columns

• Due 11/18

13

LaToza GMU SWE 432 Fall 2019

GUI Component Frameworks
• Can build arbitrarily complex UIs from the primitives

we’ve seen
• menus, nav bars, multiple views, movable panes, …

• But lots of work
• Lots of functionality / behavior / styling to build from

scratch
• Browsers are not always consistent (especially

before HTML5, CSS3)
• Responsive layouts add complexity

• Solution: GUI component frameworks

14

LaToza GMU SWE 432 Fall 2019

GUI Component Frameworks
• Higher-level abstractions for GUI components

• Rather than building a nav
• Exposes new options, events, properties

• Integrated component
• Associate HTML elements with components

using CSS classes
• Framework dynamically updates HTML as

necessary through JS
• Offers higher-level abstractions for interacting

with components

15

LaToza GMU SWE 432 Fall 2019

Bootstrap
• Popular GUI component framework

• http://getbootstrap.com/
• Originally built and released by developers at

Twitter in 2011
• Open source
• Offers baseline CSS styling & library of GUI

components

16

http://getbootstrap.com/

LaToza GMU SWE 432 Fall 2019

Examples

17

LaToza GMU SWE 432 Fall 2019

Bootstrap & React
• We’ll use the react-bootstrap NPM module -

Bootstrap for React!
• https://react-bootstrap.github.io

18

https://react-bootstrap.github.io

Bell GMU SWE 432 Fall 2018

Questions about React

19

Bell GMU SWE 432 Fall 2018

Select control example

20

https://codesandbox.io/s/dreamy-flower-3s536

https://codesandbox.io/s/dreamy-flower-3s536

Bell GMU SWE 432 Fall 2018

More ways to create React components

21

function Square(props) {
 return (
 <button className="square" onClick={props.onClick}>
 {props.value}
 </button>
);
}

const Square = props => {
 return (
 <button className="square" onClick={props.onClick}>
 {props.value}
 </button>
);
}

equivalent to

LaToza GMU SWE 432 Fall 2019

Conditional Rendering
• Based on state or props of component, render

something

22

function UserGreeting(props) {
 return <h1>Welcome back!</h1>;
}

function GuestGreeting(props) {
 return <h1>Please sign up.</h1>;
}

function Greeting(props) {
 const isLoggedIn = props.isLoggedIn;
 if (isLoggedIn) {
 return <UserGreeting />;
 }
 return <GuestGreeting />;
}

LaToza GMU SWE 432 Fall 2019

Lifting State Up
• If state is shared by multiple components (i.e., more than one

component will change its rendering when the state changes),
state should be shared in the least common ancestor component

• Key steps
• Pass event handlers down: include param when creating leaf of

event handler defined in component in ancestor
• onSomethingChanged={this.changeHandler}

• Listen for change: attach event handler for control change
• onChange={this.handleChange}

• Pass state change up: when event handler fires in leaf
component, pass event up to parent
• handleChange(e) {
• this.props.onTemperatureChange(e.target.value);
• }

23

LaToza GMU SWE 432 Fall 2019

Lifting state up: Example

24

https://codepen.io/gaearon/pen/WZpxpz?editors=0010

https://codepen.io/gaearon/pen/WZpxpz?editors=0010

Bell GMU SWE 432 Fall 2018

Front end routing
• Using state to represent views is great
• But....

• Does not offer unique URL for each view
• Breaks the back / forward buttons
• Makes it harder to deep link to specific views

• Would be great to simply render a component
based on the current URL
• => front end routing

25

Bell GMU SWE 432 Fall 2018

React-Router
• Install npm package in client
•

26

npm	install	react-router-dom	

https://reacttraining.com/react-router/web/guides/philosophy

https://reacttraining.com/react-router/web/guides/philosophy

Bell GMU SWE 432 Fall 2018

In App.js

27

import	React	from	'react'	
import	{	
		BrowserRouter	as	Router,	
		Route,	
		Link	
}	from	'react-router-dom'	

const	Home	=	()	=>	(
		<div>	
				<h2>Home</h2>	
		</div>	
)	

const	About	=	()	=>	(
		<div>	
				<h2>About</h2>	
		</div>	
)	

const	Topic	=	({	match	})	=>	(
		<div>	
				<h3>{match.params.topicId}</h3>	
		</div>	
)

const	Topics	=	({	match	})	=>	(
		<div>	
				<h2>Topics</h2>	
					
							
								<Link	to={`${match.url}/rendering`}>	
										Rendering	with	React	
								</Link>	
							
							
								<Link	to={`${match.url}/components`}>	
										Components	
								</Link>	
							
							
								<Link	to={`${match.url}/props-v-state`}>	
										Props	v.	State	
								</Link>	
							
					

				<Route	path={`${match.url}/:topicId`}	component={Topic}/>	
				<Route	exact	path={match.url}	render={()	=>	(
						<h3>Please	select	a	topic.</h3>	
)}/>	
		</div>	
)	

const	BasicExample	=	()	=>	(
		<Router>	
				<div>	
							
								<Link	to="/">Home</Link>	
								<Link	to="/about">About</Link>	
								<Link	to="/topics">Topics</Link>	
							

						<hr/>	

						<Route	exact	path="/"	component={Home}/>	
						<Route	path="/about"	component={About}/>	
						<Route	path="/topics"	component={Topics}/>	
				</div>	
		</Router>	
)	
export	default	BasicExample

LaToza GMU SWE 432 Fall 2019

Router example

• https://codesandbox.io/s/react-router-basic-
bnpsd?from-embed

28

https://codesandbox.io/s/react-router-basic-bnpsd?from-embed
https://codesandbox.io/s/react-router-basic-bnpsd?from-embed

