React Part 3

SWE 432, Fall 2019
Web Application Development

Review: Cascading selectors

 What happens if more than one rule applies?
* Most specific rule takes precedence

 p b is more specific than p

* #maximizeButton is more specific than button
e |f otherwise the same, /ast rule wins

 Enables writing generic rules that apply to many
elements that are overriden by specific rules
applying to a few elements

LaToza GMU SWE 432 Fall 2019

Review: Centering content

centered {
width: 300px;

argin: 10px auto 10px auto; This box is centered in its container.

border: 2px solid #0088dd;
}

« How do you center an element inside a container?

o Step 1: Must first ensure that element is narrower
than container.

* By default, element will expand to fill entire
container.

e SO must usually explicitly set width for element.

o Step 2: Use auto value for left and right to create
equal gaps

LaToza GMU SWE 432 Fall 2019

LaToza

Review: Transitions

box {
width: 100px;
height: 100px;
background-color: #0000FF;
transition: width 2s, height 2s, background-color 2s, transform 2s;

}

.box:hover {
background-color: #FFCCCC;
width: 200px;
height: 200px;
transform: rotate(18@deg);
}

<div class="box"></div>

e transition: [property time], ..., [property time]

 When new class is applied, specities the time it
will take for each property to change

 (Can use allto select all changed properties

GMU SWE 432 Fall 2019

Review: Fixed width vs. liquid layouts

e Fixed width

e Use width="[num]px” to force specific sizes

» Allows for tightest control of look and feel

e But can end up with extra whitespace around edge of web page
e Liquid layout

o Use width="“num]%” to size relative to container sizes

e Pages expand to fill the entire container size

* Problems

« Wide windows may create long lines of text can be difficult to
read

* \ery narrow windows may squash words, breaking text onto
many lines

e (Partial) solution

» (Can use min-width, min-height, max-width, max-height to set
bounds on sizes

LaToza GMU SWE 432 Fall 2019

Review: Display Grid
* Can explicitly place elements inside grid into grid
areas

div class="wrapper
div class="box1">0One</div

div class="box2">Two</div
div class="box3">Three</div e
div class="box4">Four</div
div class="box5">Five</div

div

.wrapper
display: grid
grid-template-columns: repeat(3, 1fr Two Three Four
grid-auto-rows: 100px

.box1 Five
grid-column-start: 1

grid-column-end: 4

grid-row-start: 1
grid-row-end: 3

.box2
;:id—column-start 1 https://jsfiddle .net/73dpfb4k/

grid-row-start: 3
grid-row-end: 5

LaToza GMU SWE 432 Fall 2019

https://jsfiddle.net/73dpfb4k/

Review: Handling events

class Toggle extends React.Component {
constructor(props) {
super(props);
this.state = {isToggleOn: true};

// This binding is necessary to make "this work in the callback
this.handleClick = this.handleClick.bind(this);
+

handleClick() {
this.setState(prevState => ({ isToggleOn: !prevState.isToggleOn }));

}

render() {
return (

<button onClick={this.handleClick}>
{this.state.isToggleOn ? 'ON' : 'OFF'}

</button>

);
}

}

ReactDOM. render (
<Toggle />, document.getElementById('root"')

)

react|s.org/docs/handling-events.html

GMU SWE 432 Fall 2018

https://reactjs.org/docs/handling-events.html

Review: Component lifecycle

class Timer extends React.Component {
constructor(props) {
super(props);
this.state = { seconds: 0 };

tick() {
this.setState(prevState => ({
seconds: prevState.seconds + 1
1))
I3

componentDidMount() {
this.interval = setInterval(() => this.tick(), 1000);
}

componentWillUnmount() {
clearInterval(this.interval);

}

render() {
return (
<div>
Seconds: {this.state.seconds}
</div>

ReactDOM. render(<Timer />, mountNode);

Bell GMU SWE 432 Fall 2018

Review: Component lifecycle

class Timer extends React.Component {

canstructar (props) { ReactDOM.render(...)
} this.state = { seconds: 0 }; [COmpOnent Created]
k) o constructor(...)
this.setState(prevState => ({ render()
seconds: prevState.seconds + 1]
et componentDidMount()
componentDidMount() {
this.interval = setInterval(() => this.tick(), 1000); t|Ck()
}
componentWillUnmount() { render()
clearInterval(this.interval);
}
render() {
return [component rendered
econds: {this.state.seconds} .
Seconds: {this. stat d again by pare_‘nt]
)3 componentWillUnmount()
} [component created]

ReactDOM. render(<Timer />, mountNode);

Bell GMU SWE 432 Fall 2018 °)

Review: Controlled Components

* Single source of truth

 Whenever a control changes its value
* React is notitied

o State is updated
 \Whenever state Is updated

e [f necessary, render function executes and
generates control with new value

Bell GMU SWE 432 Fall 2018

10

Review: Reconciliation

* Process by which React updates the DOM with
each new render pass

* Occurs based on order of components
e Second child of Card is destroyed.
* First child of Card has text mutated.

<Card> <Card>
<p>Paragraph 1</p> <p>Paragraph 2</p>
<p>Paragraph 2</p> </Card>

</Card>

https://reactjs.org/docs/reconciliation.html

Bell GMU SWE 432 Fall 2018

11

https://reactjs.org/docs/reconciliation.html

LaToza

Overview

GUI Component Frameworks

React Recap

More React: React Router, working with state
Demo

GMU SWE 432 Fall 2019

12

LaToza

Logistics: HW4: Interactive Frontend

Requirements
React
- Create at least 5 separate React components.
Use conditional rendering to conditionally render visual content
Include handlers in your React components for at least 5 events
- Create at least two controlled components, where input from an HTML
control is bidirectionally synchronized with state in a React component
Create a list of child elements or components with unique keys
CSS
Create at least one cascading selector which overrides another
selector
Use at least two pseudo-classes
-+ Center at least one element inside its container
Use the z-index and absolute or fixed positioning to display an element
stacked on top of another element
-+ Create an least one animation using transition
. Specify at least one fixed size and one relative size
Use display grid to create a layout with multiple rows and columns
- Due 11/18

GMU SWE 432 Fall 2019

13

LaToza

GUI Component Frameworks

* Can build arbitrarily complex Uls from the primitives
we've seen

* menus, nav bars, multiple views, movable panes, ...
* But /ots of work

* Lots of functionality / behavior / styling to build from
scratch

 Browsers are not always consistent (especially
before HTML5, CSS3)

 Responsive layouts add complexity

e Solution: GUI component frameworks

GMU SWE 432 Fall 2019 14

GUI Component Frameworks

Popover title

o Hig
b Click to toggle popover And here's some amazing content. It's

° [very engaging. Right?

_ <button type="button" class="btn btn-1g btn-danger" data-toggle="popover" title="Popover title"
Py . data-content="And here's some amazing content. It's very engaging. Right?">Click to toggle

" popover</button>

* Integrated component

 Associate HTML elements with components
using CSS classes

* Framework dynamically updates HTML as
necessary through Js

» (Offers higher-level abstractions for interacting
with components

LaToza GMU SWE 432 Fall 2019 15

LaToza

Bootstrap

Popular GUlI component framework
e http://getbootstrap.com/

Originally built and released by developers at
Twitter in 2011

Open source

Offers baseline CSS styling & library of GUI
components

GMU SWE 432 Fall 2019

16

http://getbootstrap.com/

Examples

Single toggle

<button type="button" class="btn btn-primary" data-toggle="button" aria-pressed="false"
autocomplete="off">

Single toggle
</button>

Modal title

One fine body...

=

<div class="modal fade" tabindex="-1" role="dialog">
<div class="modal-dialog" role="document">
<div class="modal-content">
<div class="modal-header">
<button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-
hidden="true">× </button>
<h4 class="modal-title">Modal title</h4>
</div>
<div class="modal-body">
<p>0One fine body…</p>
</div>
<div class="modal-footer'">
<button type="button" class="btn btn-default" data-dismiss="modal">Close</button>
<button type="button" class="btn btn-primary">Save changes</button>

</div>
</div><!— /.modal-content —>
</div><!-— /.modal-dialog ——>

</div><!— /.modal —>

LaToza GMU SWE 432 Fall 2019

LaToza

Bootstrap & React

e We'll use the react-

Bootstrap for React!

bootstrap NPM module -
|

« https://react-bootst

rap.qithub.io

e ANV W .

Holy guacamole! Best check yo self, you're not looking too good.

bsStyle="warning"
Holy guacamole!

good.

Best check yo self, you're not looking too

GMU SWE 432 Fall 2019

18

https://react-bootstrap.github.io

Questions about React

22222222222222222

19

Bell

Select control example

https://codesandbox.i0/s/dreamy-flower-3s536

GMU SWE 432 Fall 2018

20

https://codesandbox.io/s/dreamy-flower-3s536

Bell

More ways to create React components

function Square(props) {

<button className="square" onClick={props.onClick}>
iprops.value}
</button>

eqguivalent to

const Square = props => A
return (

<button className="square" onClick={props.onClick}>
{props.value}

GMU SWE 432 Fall 2018

21

LaToza

Conditional Rendering

 Based on state or props of component, render
something

function UserGreeting(props) {
return <hl>Welcome back!</h1>;

function GuestGreeting(props) 4
return <hl>Please sign up.</hl>;

function Greeting(props) {

const 1islLoggedIn = props.isLoggedIn;
if (isLoggedIn) {
return <UserGreeting />;

return <GuestGreeting />,

GMU SWE 432 Fall 2019

22

LaToza

Lifting State Up

* |f state is shared by multiple components (i.e., more than one
component will change its rendering when the state changes),
state should be shared in the least common ancestor component

* Key steps
* Pass event handlers down: include param when creating leaf of
event handler defined in component in ancestor

* onSomethingChanged={this.changeHandler}
e Listen for change: attach event handler for control change

 onChange={this.handleChange}

* Pass state change up: when event handler fires in leaf
component, pass event up to parent

* handleChange(e) {
* this.props.onTemperatureChange(e.target.value);

*)

GMU SWE 432 Fall 2019

23

LaToza

Lifting state up: Example

https://codepen.io/gaearon/pen/WZpxpzleditors=0010

GMU SWE 432 Fall 2019

24

https://codepen.io/gaearon/pen/WZpxpz?editors=0010

Front end routing

e Using state to represent views is great
e But....
* Does not offer unigue URL for each view

e B

reaks the back / forward buttons

 Makes it harder to deep link to specific views

 Would be great to simply render a component
based on the current URL

e => front end routing

Bell

GMU SWE 432 Fall 2018

25

React-Router

* [nstall npm package in client

o npm install react-router-dom

REACT TRAINING / REACT ROUTER

Philosophy

This guide’s purpose is to explain the mental model to have when using React Router. We call it “Dynamic Routing”, which is quite
m NATIVE CORE different from the “Static Routing” you're probably more familiar with.
EXAMPLES . .
Basic Static Routing
URL Parameters If you've used Rails, Express, Ember, Angular etc. you've used static routing. In these frameworks, you declare your routes as part of

your app's initialization before any rendering takes place. React Router pre-v4 was also static (mostly). Let's take a look at how to

Redirects (Auth) configure routes in express:

Custom Link
Preventing Transitions
No Match (404)

Recursive Paths

app.get('/', handlelIndex)

app.get('/invoices', handleInvoices)
app.get('/invoices/:id', handlelInvoice)

Sidebar app.get('/invoices/:id/edit', handleInvoiceEdit)
Animated Transitions
Ambiguous Matches app.listen()

Route Config

Modal Gallery Note how the routes are declared before the app listens. The client side routers we've used are similar. In Angular you declare your
SRR P s S e rantes 1in frant and then imnart them tn the tan-laval AnnMndule hafare renderinn-

https://reacttraining.com/react-router/web/gquides/philosophy

Bell GMU SWE 432 Fall 2018 26

https://reacttraining.com/react-router/web/guides/philosophy

const Topics = ({ match }) => (
<div>
<h2>Topics</h2>

<Link to={" ${match.url}/rendering }>
Rendering with React
</Link>
</1i>

import React from 'react' <1i>, X .
import { <Link to={ ${match.url}/components” }>

BrowserRouter as Router, Cgmponents
Route, </Link>
Link </1li>
} from 'react-router-dom' <1li>
<Link to={ ${match.url}/props-v-state’ }>

const Home = () => (Props v. State
<div> </Link>
<h2>Home</h2> </1i>
</div>

) <Route path={ ${match.url}/:topicId } component={Topic}/>
const About = () => (<Route exact path={match.url} render={() => (

PaES <h3>Please select a topic.</h3>

<h2>About</h2>)}/>
</diV> </d1V>

))

const Topic = ({ match }) => (const BasicExample = () => (
<div> <Router>
<h3>{match.params.topicId}</h3> <div>

</div> wl> _ _
) <1li><Link to="/">Home</Link></1i>

<Link to="/about">About</Link></1i>
<Link to="/topics">Topics</Link></1i>

<hr/>

<Route exact path="/" component={Home}/>
<Route path="/about" component={About}/>
<Route path="/topics" component={Topics}/>
</div>
</Router>

)

export default BasicExample

GMU SWE 432 Fall

LaToza

Router example

o https://codesandbox.io/s/react-router-basic-

bnpsd?from-embed

GMU SWE 432 Fall 2019

28

https://codesandbox.io/s/react-router-basic-bnpsd?from-embed
https://codesandbox.io/s/react-router-basic-bnpsd?from-embed

