
JavaScript
SWE 432, Fall 2019

Web Application Development

LaToza GMU SWE 432 Fall 2019

Review: Course Topics
• JavaScript and Backend development (first

half of semester)

• JavaScript, back-end development,
programming models, testing,
performance, privacy, security, scalability,
deployment, etc.

• Frontend development and user experience
design (second half of semester)

• Templates and data binding, React, user-
centered design, user studies, information
visualization, visual design, etc.

!2

You are here.

LaToza GMU SWE 432 Fall 2019

Today

• Brief history of JavaScript/ECMAScript

• Overview of core syntax and language semantics

• Overview of key libraries

• In class activity working with JavaScript

• Next:

• Testing and tooling

!3

Survey
Go to:

b.socrative.com, Click student login
Room name: SWE432

Student ID: Your G-number (Including the G)

Reminder: Survey can only be completed if you are in
class. If you are not in class and do it you will be referred
directly to the honor code board, no questions asked, no

warning.

http://b.socrative.com

LaToza GMU SWE 432 Fall 2019

JavaScript: Some History
• JavaScript: 1995 at Netscape (supposedly in only 10

days)

• No relation to Java (maybe a little syntax, that’s all)

• Naming was marketing ploy

• ECMAScript -> International standard for the language

!5

1995

Mocha/LiveScript/JavaScript 1.0

1997

ES1

1998

ES2

1999

ES3

2009

ES5

2015

ES6

2005

“AJAX”

2006

jQuery

LaToza GMU SWE 432 Fall 2019

Reference materials
• Not any “official”

documentation

• Most definitive
source for
JavaScript, DOM,
HTML, CSS:
Mozilla
Development
Network (MDN)

• StackOverflow
posts, blogs
often have good
examples

!6

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array

LaToza GMU SWE 432 Fall 2019

Pastebins

• Code snippet hosted on the web with an in-
browser editor

• Used to share code and experiment with small
code snippets

• Examples: JSFiddle, JSBin
!7

http://jsfiddle.net
http://jsbin.com/

LaToza GMU SWE 432 Fall 2019

Variables
• Variables are loosely typed

• String:
var strVar = 'Hello';

• Number:
var num = 10;

• Boolean:
var bool = true;

• Undefined:
var undefined;

• Null:
var nulled = null;

• Objects (includes arrays):
var intArray = [1,2,3];

• Symbols (named magic strings):
var sym = Symbol(‘Description of the symbol’);

• Functions (We’ll get back to this)
• Names start with letters, $ or _
• Case sensitive

!8

LaToza GMU SWE 432 Fall 2019

Const
• Can define a variable that cannot be assigned

again using const

const numConst = 10; //numConst can’t be
changed

• For objects, properties may change, but object
identify may not.

!9

LaToza GMU SWE 432 Fall 2019

More Variables
• Loose typing means that JS figures out the type based on the value

 let x; //Type: Undefined
 x = 2; //Type: Number
 x = 'Hi'; //Type: String

• Variables defined with let (but not var) have block scope

• If defined in a function, can only be seen in that function

• If defined outside of a function, then global. Can also make
arbitrary blocks:

 {
 let a = 3;
 }
 //a is undefined

!10

LaToza GMU SWE 432 Fall 2019

Loops and Control Structures
• if - pretty standard
 if (myVar >= 35) {
 //...
 } else if(myVar >= 25){
 //...
 } else {
 //...
 }

• Also get while, for, and break as you might expect
while(myVar > 30){
 //...
}

for(var i = 0; i < myVar; i++){

 //...
 if(someOtherVar == 0)

 break;
}

!11

LaToza GMU SWE 432 Fall 2019

Operators

!12

Operator Meaning Examples

== Equality age == 20
age == '20'

!= Inequality age != 21
> Greater than age > 19

>= Greater or Equal age >= 20

< Less than age < 21

<= Less or equal age <= 20

=== Strict equal age === 20

!== Strict Inequality age !== '20'

var age = 20;

Annoying

LaToza GMU SWE 432 Fall 2019

Functions
• At a high level, syntax should be familiar:
 function add(num1, num2) {
 return num1 + num2;
 }

• Calling syntax should be familiar too:
var num = add(4,6);

• Can also assign functions to variables!
 var magic = function(num1, num2){
 return num1+num2;
 }
 var myNum = magic(4,6);

• Why might you want to do this?

!13

LaToza GMU SWE 432 Fall 2019

Default Values

!14

 function add(num1=10, num2=45) {
 return num1 + num2;
 }

var r = add(2,4); //6

var r = add(); // 55
var r = add(40); //85

LaToza GMU SWE 432 Fall 2019

Rest Parameters

!15

function add(num1, ... morenums) {
 var ret = num1;
 for(var i = 0; i < morenums.length; i++)
 ret += morenums[i];
 return ret;
}

add(40,10,20); //70

LaToza GMU SWE 432 Fall 2019

=> Arrow Functions
• Simple syntax to define short functions inline

• Several ways to use

!16

var add = (a,b) => {
 return a+b;
}

var add = (a,b) => a+b;

If your arrow function only has one expression, JavaScript
will automatically add the word “return”

Parameters

LaToza GMU SWE 432 Fall 2019

Objects
• What are objects like in other languages? How are they

written and organized?

• Traditionally in JS, no classes

• Remember - JS is not really typed… if it doesn’t care
between a number and a string, why care between two
kinds of objects?

!17

var profHacker = {
 firstName: "Alyssa",
 lastName: “P Hacker",
 teaches: "SWE 432",
 office: "ENGR 6409”,
 fullName: function(){
 return this.firstName + " " + this.lastName;
 }
};

LaToza GMU SWE 432 Fall 2019

Working with Objects

!18

var profLaToza = {
 firstName: "Alyssa",
 lastName: “P Hacker",
 teaches: "SWE 432",
 office: "ENGR 6409”,
 fullName: function(){
 return this.firstName + " " + this.lastName;
 }
};

Our Object

console.log(profHacker.firstName); //Alyssa
console.log(profHacker[“firstName”]); //Alyssa

Accessing Fields

console.log(profHacker.fullName()); //Alyssa P Hacker

Calling Methods

console.log(profHacker.fullName);//function...

LaToza GMU SWE 432 Fall 2019

Bind and This

!19

var profHacker = {
firstName: "Alyssa",
lastName: "P Hacker",
teaches: "SWE 432",
office: "ENGR 6409",
fullName: function(){

 return this.firstName + " " + this.lastName;
}

};

var func = profHacker.fullName;
console.log(func());//undefined undefined

This occurs because when the function is called, ‘this’ refers to
the ‘this’ that calls it (who knows what that is… the file itself?)

LaToza GMU SWE 432 Fall 2019

Binding This

!20

var func = profHacker.fullName.bind(profHacker);
console.log(func()); //Alyssa P Hacker

var ben = {
firstName: "Ben",
lastName: "Bitdiddle"

};
var func = profHacker.fullName.bind(ben);
console.log(func()); //Ben Bitdiddle

The bind() function lets you pre-set the arguments for a
function (starting with what ‘this’ is)

LaToza GMU SWE 432 Fall 2019

JSON: JavaScript Object Notation

!21

var profHacker = {
 firstName: "Alyssa",
 lastName: “P Hacker",
 teaches: "SWE 432",
 office: "ENGR 6409",
 fullName: {
 firstName: “Alyssa”,
 lastName: “P Hacker”}
};

JSON Object

Open standard format for transmitting data objects.
No functions, only key / value pairs
Values may be other objects or arrays

var profHacker = {
 firstName: "Alyssa",
 lastName: “P Hacker",
 teaches: "SWE 432",
 office: “ENGR 6409”,
 fullName: function(){
 return this.firstName + " " + this.lastName;
 }
};

Our Object

LaToza GMU SWE 432 Fall 2019

Interacting w/ JSON
• Important functions

• JSON.parse(jsonString)

• Takes a String in JSON format, creates an Object

• JSON.stringify(obj)

• Takes a Javascript object, creates a JSON String

• Useful for persistence, interacting with files, debugging, etc.

• e.g., console.log(JSON.stringify(obj));

!22

LaToza GMU SWE 432 Fall 2019

Arrays
• Syntax similar to C/Java/Ruby/Python etc.

• Because JS is loosely typed, can mix types of
elements in an array

• Arrays automatically grow/shrink in size to fit the
contents

!23

var students = ["Alice", "Bob", "Carol"];
var faculty = [profHacker];
var classMembers = students.concat(faculty);

Arrays are actually objects… and come with a bunch of “free”
functions

LaToza GMU SWE 432 Fall 2019

Some Array Functions
• Length

var numberOfStudents = students.length;

• Join
var classMembers = students.concat(faculty);

• Sort
var sortedStudents = students.sort();

• Reverse
var backwardsStudents = sortedStudents.reverse();

• Map
var capitalizedStudents = students.map(x =>  
 x.toUpperCase());
//["ALICE","BOB","CAROL"]

!24

LaToza GMU SWE 432 Fall 2019

For Each
• JavaScript offers two constructs for looping over arrays

and objects

• For of (iterates over values):
for(var student of students)
{
 console.log(student);

} //Prints out all student names

• For in (iterates over keys):
for(var prop in profHacker){
 console.log(prop + ": " + profHacker[prop]);

}

!25

Output:
firstName: Alyssa
lastName: P Hacker
teaches: SWE 432
office: ENGR 6409

LaToza GMU SWE 432 Fall 2019

Arrays vs Objects
• Arrays are Objects

• Can access elements of both using syntax
var val = array[idx];

• Indexes of arrays must be integers

• Don’t find out what happens when you make an
array and add an element with a non-integer key :)

!26

LaToza GMU SWE 432 Fall 2019

String Functions
• Includes many of the same String processing functions as Java

• Some examples

• var stringVal = ‘George Mason University’;

• stringVal.endsWith(‘University’) // returns true

• stringVal.match(….) // matches a regular expression

• stringVal.split(‘ ‘) // returns three separate words

• https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/String

!27

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/String

LaToza GMU SWE 432 Fall 2019

Template Literals
• Enable embedding expressions inside strings

• Denoted by a back tick grave accent `, not a
single quote

!28

var	a	=	5;	
var	b	=	10;	
console.log(`Fifteen	is	${a	+	b}	and	
not	${2	*	a	+	b}.`);	
//	"Fifteen	is	15	and	not	20."	

LaToza GMU SWE 432 Fall 2019

Set Collection

!29

var	mySet	=	new	Set();	

mySet.add(1);	//	Set	{	1	}	
mySet.add(5);	//	Set	{	1,	5	}	
mySet.add(5);	//	Set	{	1,	5	}	
mySet.add('some	text');	//	Set	{	1,	5,	'some	text'	}	
var	o	=	{a:	1,	b:	2};	
mySet.add(o);	

mySet.add({a:	1,	b:	2});	//	o	is	referencing	a	different	object	so	this	is	okay	

mySet.has(1);	//	true	
mySet.has(3);	//	false,	3	has	not	been	added	to	the	set	
mySet.has(5);														//	true	
mySet.has(Math.sqrt(25));		//	true	
mySet.has('Some	Text'.toLowerCase());	//	true	
mySet.has(o);	//	true	

mySet.size;	//	5	

mySet.delete(5);	//	removes	5	from	the	set	
mySet.has(5);				//	false,	5	has	been	removed	

mySet.size;	//	4,	we	just	removed	one	value	
console.log(mySet);//	Set	{1,	"some	text",	Object	{a:	1,	b:	2},	Object	{a:	1,	b:	2}}	

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Set

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Set

LaToza GMU SWE 432 Fall 2019

Map Collection

!30

var	myMap	=	new	Map();	

var	keyString	=	'a	string',	
				keyObj	=	{},	
				keyFunc	=	function()	{};	

//	setting	the	values	
myMap.set(keyString,	"value	associated	with	'a	string'");	
myMap.set(keyObj,	'value	associated	with	keyObj');	
myMap.set(keyFunc,	'value	associated	with	keyFunc');	

myMap.size;	//	3	

//	getting	the	values	
myMap.get(keyString);				//	"value	associated	with	'a	string'"	
myMap.get(keyObj);							//	"value	associated	with	keyObj"	
myMap.get(keyFunc);						//	"value	associated	with	keyFunc"	

myMap.get('a	string');			//	"value	associated	with	'a	string'"	
																									//	because	keyString	===	'a	string'	
myMap.get({});											//	undefined,	because	keyObj	!==	{}	
myMap.get(function()	{})	//	undefined,	because	keyFunc	!==	function	()	{}	

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Map

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Map

Exercise

https://jsfiddle.net/4sgz8dn3/

https://jsfiddle.net/4sgz8dn3/
http://www.apple.com

