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Review: Course Topics
• JavaScript and Backend development (first 

half of semester) 

• JavaScript, back-end development, 
programming models, testing, 
performance, privacy, security, scalability, 
deployment, etc. 

• Frontend development and user experience 
design (second half of semester) 

• Templates and data binding, React, user-
centered design, user studies, information 
visualization, visual design, etc.
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You are here.
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Today

• Brief history of JavaScript/ECMAScript 

• Overview of core syntax and language semantics 

• Overview of key libraries 

• In class activity working with JavaScript 

• Next: 

• Testing and tooling
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Survey
Go to: 

b.socrative.com, Click student login 
Room name: SWE432 

Student ID: Your G-number (Including the G) 

Reminder: Survey can only be completed if you are in 
class. If you are not in class and do it you will be referred 
directly to the honor code board, no questions asked, no 

warning.

http://b.socrative.com
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JavaScript: Some History
• JavaScript: 1995 at Netscape (supposedly in only 10 

days) 

• No relation to Java (maybe a little syntax, that’s all) 

• Naming was marketing ploy 

• ECMAScript -> International standard for the language
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Reference materials
• Not any “official”  

documentation 

• Most definitive 
source for 
JavaScript, DOM, 
HTML, CSS: 
Mozilla 
Development 
Network (MDN) 

• StackOverflow 
posts, blogs 
often have good 
examples
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https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array 

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array
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Pastebins

• Code snippet hosted on the web with an in-
browser editor  

• Used to share code and experiment with small 
code snippets 

• Examples: JSFiddle, JSBin
!7

http://jsfiddle.net
http://jsbin.com/
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Variables
• Variables are loosely typed 

• String:  
var strVar = 'Hello'; 

• Number:  
var num = 10; 

• Boolean:  
var bool = true; 

• Undefined: 
var undefined; 

• Null: 
var nulled = null; 

• Objects (includes arrays): 
var intArray = [1,2,3]; 

• Symbols (named magic strings): 
var sym = Symbol(‘Description of the symbol’); 

• Functions (We’ll get back to this) 
• Names start with letters, $ or _ 
• Case sensitive
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Const
• Can define a variable that cannot be assigned 

again using const 

const numConst = 10; //numConst can’t be 
changed 

• For objects, properties may change, but object 
identify may not.
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More Variables
• Loose typing means that JS figures out the type based on the value 

    let x; //Type: Undefined 
    x = 2; //Type: Number 
    x = 'Hi'; //Type: String 

• Variables defined with let (but not var) have block scope 

• If defined in a function, can only be seen in that function 

• If defined outside of a function, then global. Can also make 
arbitrary blocks: 

    { 
        let a = 3;  
    } 
    //a is undefined
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Loops and Control Structures
• if - pretty standard 
    if (myVar >= 35) { 
        //... 
    } else if(myVar >= 25){ 
        //... 
    } else { 
        //... 
    } 

• Also get while, for, and break as you might expect 
while(myVar > 30){ 
    //... 
} 

  
for(var i = 0; i < myVar; i++){ 

        //... 
        if(someOtherVar == 0) 

            break; 
}
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Operators
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Operator Meaning Examples

== Equality age == 20 
age == '20' 

!= Inequality age != 21
> Greater than age > 19

>= Greater or Equal age >= 20

< Less than age < 21

<= Less or equal age <= 20

=== Strict equal age === 20

!== Strict Inequality age !== '20'

var age = 20;

Annoying
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Functions
• At a high level, syntax should be familiar: 
    function add(num1, num2) { 
        return num1 + num2; 
    } 

• Calling syntax should be familiar too: 
var num = add(4,6); 

• Can also assign functions to variables! 
    var magic = function(num1, num2){ 
        return num1+num2; 
    } 
    var myNum = magic(4,6); 

• Why might you want to do this?
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Default Values
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    function add(num1=10, num2=45) { 
        return num1 + num2; 
    }

var r = add(2,4); //6

var r = add(); // 55 
var r = add(40); //85
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Rest Parameters
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function add(num1, ... morenums) { 
    var ret = num1; 
    for(var i = 0; i < morenums.length; i++) 
        ret += morenums[i]; 
    return ret; 
} 

add(40,10,20); //70
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=> Arrow Functions
• Simple syntax to define short functions inline 

• Several ways to use
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var add = (a,b) => { 
    return a+b; 
}

var add = (a,b) => a+b;  

If your arrow function only has one expression, JavaScript 
will automatically add the word “return”

Parameters
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Objects
• What are objects like in other languages? How are they 

written and organized? 

• Traditionally in JS, no classes 

• Remember - JS is not really typed… if it doesn’t care 
between a number and a string, why care between two 
kinds of objects?
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var profHacker = { 
    firstName: "Alyssa", 
    lastName: “P Hacker", 
    teaches: "SWE 432", 
    office: "ENGR 6409”, 
    fullName: function(){ 
        return this.firstName + " " + this.lastName; 
    } 
};
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Working with Objects
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var profLaToza = { 
    firstName: "Alyssa", 
    lastName: “P Hacker", 
    teaches: "SWE 432", 
    office: "ENGR 6409”, 
    fullName: function(){ 
        return this.firstName + " " + this.lastName; 
    } 
};

Our Object

console.log(profHacker.firstName); //Alyssa 
console.log(profHacker[“firstName”]); //Alyssa

Accessing Fields

console.log(profHacker.fullName()); //Alyssa P Hacker

Calling Methods

console.log(profHacker.fullName);//function...
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Bind and This
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var profHacker = {
firstName: "Alyssa",
lastName: "P Hacker",
teaches: "SWE 432",
office: "ENGR 6409",
fullName: function(){

    return this.firstName + " " + this.lastName;
}

};

var func = profHacker.fullName;
console.log(func());//undefined undefined

This occurs because when the function is called, ‘this’ refers to 
the ‘this’ that calls it (who knows what that is… the file itself?)
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Binding This
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var func = profHacker.fullName.bind(profHacker);
console.log(func()); //Alyssa P Hacker

var ben = {
firstName: "Ben",
lastName: "Bitdiddle"

};
var func = profHacker.fullName.bind(ben);
console.log(func()); //Ben Bitdiddle

The bind() function lets you pre-set the arguments for a 
function (starting with what ‘this’ is)
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JSON: JavaScript Object Notation
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var profHacker = { 
    firstName: "Alyssa", 
    lastName: “P Hacker", 
    teaches: "SWE 432", 
    office: "ENGR 6409", 
    fullName: { 
        firstName: “Alyssa”, 
        lastName: “P Hacker”} 
};

JSON Object

Open standard format for transmitting data objects. 
No functions, only key / value pairs 
Values may be other objects or arrays 

var profHacker = { 
    firstName: "Alyssa", 
    lastName: “P Hacker", 
    teaches: "SWE 432", 
    office: “ENGR 6409”, 
    fullName: function(){ 
        return this.firstName + " " + this.lastName; 
    } 
};

Our Object
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Interacting w/ JSON
• Important functions 

• JSON.parse(jsonString) 

• Takes a String in JSON format, creates an Object 

• JSON.stringify(obj) 

• Takes a Javascript object, creates a JSON String 

• Useful for persistence, interacting with files, debugging, etc. 

• e.g., console.log(JSON.stringify(obj));

!22
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Arrays
• Syntax similar to C/Java/Ruby/Python etc. 

• Because JS is loosely typed, can mix types of 
elements in an array 

• Arrays automatically grow/shrink in size to fit the 
contents
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var students = ["Alice", "Bob", "Carol"]; 
var faculty = [profHacker]; 
var classMembers = students.concat(faculty);

Arrays are actually objects… and come with a bunch of “free” 
functions
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Some Array Functions
• Length 

var numberOfStudents = students.length; 

• Join 
var classMembers = students.concat(faculty); 

• Sort 
var sortedStudents = students.sort(); 

• Reverse 
var backwardsStudents = sortedStudents.reverse(); 

• Map 
var capitalizedStudents = students.map(x =>             
                             x.toUpperCase()); 
//["ALICE","BOB","CAROL"]
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For Each
• JavaScript offers two constructs for looping over arrays 

and objects 

• For of (iterates over values): 
for(var student of students) 
{ 
 console.log(student); 

} //Prints out all student names 

• For in (iterates over keys): 
for(var prop in profHacker){ 
 console.log(prop + ": " + profHacker[prop]); 

}
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Output:
firstName: Alyssa 
lastName: P Hacker 
teaches: SWE 432 
office: ENGR 6409
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Arrays vs Objects
• Arrays are Objects 

• Can access elements of both using syntax  
var val = array[idx]; 

• Indexes of arrays must be integers 

• Don’t find out what happens when you make an 
array and add an element with a non-integer key :)
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String Functions
• Includes many of the same String processing functions as Java 

• Some examples 

• var stringVal = ‘George Mason University’; 

• stringVal.endsWith(‘University’)   // returns true 

• stringVal.match(….)   // matches a regular expression 

• stringVal.split(‘ ‘) // returns three separate words 

• https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/String 
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https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/String
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Template Literals
• Enable embedding expressions inside strings 

• Denoted by a back tick grave accent `, not a 
single quote
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var	a	=	5;	
var	b	=	10;	
console.log(`Fifteen	is	${a	+	b}	and	
not	${2	*	a	+	b}.`);	
//	"Fifteen	is	15	and	not	20."	
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Set Collection
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var	mySet	=	new	Set();	

mySet.add(1);	//	Set	{	1	}	
mySet.add(5);	//	Set	{	1,	5	}	
mySet.add(5);	//	Set	{	1,	5	}	
mySet.add('some	text');	//	Set	{	1,	5,	'some	text'	}	
var	o	=	{a:	1,	b:	2};	
mySet.add(o);	

mySet.add({a:	1,	b:	2});	//	o	is	referencing	a	different	object	so	this	is	okay	

mySet.has(1);	//	true	
mySet.has(3);	//	false,	3	has	not	been	added	to	the	set	
mySet.has(5);														//	true	
mySet.has(Math.sqrt(25));		//	true	
mySet.has('Some	Text'.toLowerCase());	//	true	
mySet.has(o);	//	true	

mySet.size;	//	5	

mySet.delete(5);	//	removes	5	from	the	set	
mySet.has(5);				//	false,	5	has	been	removed	

mySet.size;	//	4,	we	just	removed	one	value	
console.log(mySet);//	Set	{1,	"some	text",	Object	{a:	1,	b:	2},	Object	{a:	1,	b:	2}}	

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Set 

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Set
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Map Collection
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var	myMap	=	new	Map();	

var	keyString	=	'a	string',	
				keyObj	=	{},	
				keyFunc	=	function()	{};	

//	setting	the	values	
myMap.set(keyString,	"value	associated	with	'a	string'");	
myMap.set(keyObj,	'value	associated	with	keyObj');	
myMap.set(keyFunc,	'value	associated	with	keyFunc');	

myMap.size;	//	3	

//	getting	the	values	
myMap.get(keyString);				//	"value	associated	with	'a	string'"	
myMap.get(keyObj);							//	"value	associated	with	keyObj"	
myMap.get(keyFunc);						//	"value	associated	with	keyFunc"	

myMap.get('a	string');			//	"value	associated	with	'a	string'"	
																									//	because	keyString	===	'a	string'	
myMap.get({});											//	undefined,	because	keyObj	!==	{}	
myMap.get(function()	{})	//	undefined,	because	keyFunc	!==	function	()	{}	

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Map 

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Map


Exercise

https://jsfiddle.net/4sgz8dn3/

https://jsfiddle.net/4sgz8dn3/
http://www.apple.com

